CSCI 6411: Operating Systems

Acknowledgements: Some slide material derived from Silberschatz, et al.

“High-level”

Cars Computers

...detalls...

Cars Computers

00000000004006h0
4006b0 :
4006b5:
4006ba:
4006¢cl:
4006¢8:
4006cd:

T
LS luemsn o ae

i :
RIE J TUED L=l [BJGINE} ¥ kel T
I — (.13 oy s
pretes ? ﬁ n.nﬂ(«: 5 TFL'&' @m s | omeaty 0 ,:#m‘ L vip
LI LI, W RE ,4. \. T
Che Lwm W3 TumBaY = ganize _‘.“)
Ceahrer " | ¥ .
N 1 Ly L B
—w e p—
KENITION T ! e
| T SWICH 1 i bl i
. ™ J_ o R FAOMNT
| . | WASHER
: , = L WIFr R Gl.nsm wwrn- TNRCH
W boaw AN vl Lt
[rEGR L o a— i & ﬂ-ur i
¥ £ W@ i
I Lﬁl- T T g st |\T[wWIir l
| paliil
. .
L
N
ESTARTFR
(Mm‘on =3
R mq'—\wuélc
Mo "\)
' MooR THEFM° B =il
-}: BATTERY -l- 284 WO 5 | 53
| B T 418 o,

400739:
40073a:
40073h:
Wiring diagram tar the power supply, starting, charging, engine, front and rear wiper, cigarette lighter,
sunroof [G11), sound system and rear demlster systems. G10, G11 and G11 Turbo madals.

Cars

low-level

__libc_csu_init>:

89

0x200753(
0x20074c(

W H WY W W

O 0O WM oMK MWD

@ =
oo AW

o
w

TCOOCOTOTOTUWW=h
HHO
R -]

€0 CO €O 0O CO 00 0 D W 00 =h
WNN

w

Computers

600el4d

f 600el4

__libe_csu_init+0x66:>

init+0x50=>

__init_array_end>
_init_array_end>

What is an Operating System!?

What is an OS: Where is it?

What is an OS: Where is it?

COURTESY: KFC

What is an OS: Analogy

Youl!

Cuﬁomen

Cuﬁomeg

N S R

Cuﬁome%

What is an OS: Analogy

You!

Cuﬁomen

Cuﬁomeg

Cuﬁomem

What is an OS: Analogy

Hardware Operating Applications

You!

Cuﬁomen

Cuﬁomeg

Cuﬁome%

Operating System as Abstraction

» "The effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent
programmer.” - Edsger W. Dijkstra

* Provides abstractions for resources (memory,
CPU, disk) and controls application execution

* Provide environment for application execution

« Each application can pretend like it is using the
entire computer!

 Allow users to translate intentions into actions
» Aside: Edsger Dijkstra - Discipline in Thought

OS as Abstraction: System Layers

user user user user
1 2 3 e n
compiler assembler text editor S database
system

system and application programs

operating system

computer hardware

AN x64 PROCESSOR 16 SLREAMING ALONG AT BLUONS OF
CYtLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S

FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIRED
ARSTRACTION T» CREATE THE DRRUIN SYSTEM UNDERIYING
05 X, WHICH IN TURN IS STRAINING ITSELF T0 RN FIREFX
AND IT5 GECKO RENDERER, WHICH CREATES A HASH OBTECT
WHICH RENDERS [DZENS OF VIDED FRAMES EVERY SELOND

BECAUSE I WANTED TO SEE A Gy
JUMP INTD A ROX AND FALL OVER.

O Snaco

Source: xkecd.com

Computers as Distributed Systems

“Hardware: The parts of a computer system that can be kicked.”
- Jeff Pesis

mouse keyboard printer monitor

/— on-line —\

—

.

disk
controller

graphics

G adapter

USB controller

memory

OS as Hardware Manager

 Control a diverse set of hardware

e Processors

« Memory

e Disks

« Networking cards
 Video cards

« Coordinates these hardware resources amongst
user programs

« OS as a resource manager/multiplexer

OS Services

user and other system programs

GUI batch command line

user interfaces

system calls
program 11O file o resource .
; : communication : accountin
execution operations systems allocation 9
error pro;icglon
detection _ security
services

operating system

hardware

Interrupts, exceptions, and traps —
OH MY

« Interrupts thus far: Device — kernel
« Software-triggered events

« Application state saved (as for interrupt) and can be
resumed
« Exceptions

- Program faults (divide by zero, general protection fault,
segmentation fault)

— Not requested by executing application
« Traps/Software Interrupts

- Requested by application by executing specific instruction: sysenter
or int %d on x86

MSDOS: No Structure/Protection

application program

resident system program

MS-DOS device driversf

ROM BIOS device drivers

System Calls

« Wait, hardware support for calling the kernel?

 Why can't | just call it directly (function call)?

System Call w/ Dual-Mode HW

user process
user mode
user process executing » calls system call return from system call (mode bit = 1)
\ 7
3 7.4
: 7
kernel trap return
L mode bit = 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Timesharing systems: 1) protection applications from each
other, and 2) kernel from applications (why the latter?)
* Mode bit == 0
e Access kernel memory segments
» Protected instructions
» Access I/O: instructions to read/write to device control
registers (in/out on x86)
« Sensitive instructions
* What happens to the registers, and stack?

Syscall Mechanics

printf(“print me!”)
write(1, “print me!”)

put syscall number for write (4), file
descriptor (1), and pointer to “print
me!” into registers

sysenter: mode bit = 0

user

> Change to kernel stack node

cernel

Call address in syscall tbl at index 4 1o04e
Execute write system call
sysexit: mode bit = 1

> Restore application registers

#include <stdio.h>
int main ()

{

printf ("Greetings");

return O;

}

standard C library

Qrite ()

write ()
system call

)

Abstraction for syscalls: APIs

« Application Programmer Interfaces (APIs)

« Hide the details of how a syscall is carried out
POSIX (UNIX, Linux)

Win32 (Windows)

Net (Windows XP and later)

Cocoa (OS X)

System Structure

« System Structure — How different parts of software
1) Are separated from each other (Why?)
2) Communicate
 How does a system use
« dual mode
 virtual address spaces
 Implications on
« Security/Reliability
« Programming style/Maintainability

Monolithic System Structure

e Includes Unix/Windows/OSX

Word Excel Browser
| “User-Level’
System|
Call
Kernel
- most trusted
- must work

Hardware (CPU, Memory, Peripherals
— hard drive, NIC, GPU)

Monolithic System Structure

e Includes Unix/Windows/OSX

60

50

=
S
=

40

30 - ‘ wvel’
SYSte m u L\)/:‘"P:Oondsem Lines -
Call 20
0

Windows 98 Windows Vista

Windows 95 Windows XP fU Sted
vork

When's the last time you tried
to get 50 MLOC to work???

Harad\
— hard drive, NIC, GPU)

Microkernel System Structure

File
System Memory
4 Management
User level open...

Kernel level PO <10 KLOC

« Moves functionality from the kernel to “user” space

« Communication takes place between user servers using
inter-process communication (IPC)

» Benefits:
« Easier to add functionality

« More reliable (less code is running in kernel mode)
« More secure

e Detriments: performance! (why?)

Processes

.. compiler loader , OS ,
.c file > .0/.exe — *>|oad sections *>setipto *>exec

} i into memory prag. ol
source program st;)&

* An executable program (seenin /s) process
« passive collection of code and data; kept in file

 UNIX Process: active entity that includes (seen
in ps)
» Registers (instruction counter, stack pointer, etc..)
« Execution stack
* Heap
e Data and text (code) segments

Process in Memory

char *s = malloc(10);
printf(’stk: %p\n”, &s);
stack printf(“malloc: %p\n”, s);
- printf("global: %p\n”, &global_variable);
l printf("fn: %p\n”, main);

max

—

stk: OxBC87B240
emp malloc: 0x1070B4F0
global: 0x004C72A0
fn: 0x000BC240

heap malloc, free

data int global_variable;

text / int main(void) { return 0; }

OS Support for Process Memory

e OS uses HW to provide virtual

max

stack address space (VAS)
1 « Each process thinks it has all
memory
e OS abstraction!!!
| * Provides protection between
heap processes
data * Only subset of that address

space is populated by actual
e memory

OS Support for Process Memory ||

max

« Kernel must manage virtual
address spaces

stack

1 « Create mapping between virtual
and actual memory
| Switch between apps == switch
Heap between VAS

e Only mode 0 can switch VAS!
data

text

Process Control Block (PCB)

» Kernel, per-process, data-structure includes:

« CPU reqisters (including instruction counter)
« Scheduling state (priority)

 Memory management information (amount of
memory allocated, virtual address space mapping,
stack location)

CPU accounting info (exec time at user/kernel level)

File info (open files)
Process state

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

