csci 297: Advanced Operating
Systems

* Professor Gabriel Parmer (aka. Gabe)
gparmer@gwu.edu, office hours 10am-12
Tuesday (Tentative. Does this work for you?)

« Class: Tompkins 205, Monday 6:10-8:40

Acknowledgements: Some slide material derived from Silberschatz, et al.

mailto:gparmer@gwu.edu

Today

1) Administrative information
« Course requirements
e Grading
2) What's an OS
3) Research OSes vs. Real-World Oses

4) Meet the Hardware

« Background for reading this week

Administrative Info

« Paper-based class

« We will read research papers
* You will present them

« We will discuss them

« Semester-long project
* In-depth implementation study within OS

Grading

« Class participation

« Class presentations
* Final project

...that's It.

Class Participation

1) Class attendance
2) Contributions to the class discussion
...n0 zombies Iin class
« questions/comments/stories/...
« Always interrupt me
3) Paper summaries
« 1-3 sentence summary of the purpose of the paper
« Questions: you are not expected to know everything
« What you liked, and what you identified as limitations
« Due night before class (Sunday 11:59pm)

Class Presentations

» 1-2 presentations each

 Read a research paper, and do a 30 minute
presentation on it

* You will be stopped frequently
« Goal: foster and encourage discussion

* A useful skill
* Read papers for next class on Schedule

Project

« Implementation experience with a real OS

 Significant contribution
o C
* You don't have to be an expert, but you have to
know your way around (pointers, data-structs,...)

- And know another language well
« Debugging is the hard part

Project Il

* Do you have a systems-y project in mind?
« Are you already doing work with a systems flavor?
* Double-dipping policy:

* You can certainly do a project that you are using for
another class, for your research, or for
entertainment

* You just have to OK it with me and talk about goals

Project Il

* Most of you will not have a project in mind
o Great!
* | have a number of them
* Most are in the Composite OS, a GW-native OS

- Can come to me with implementation difficulties
o Linux
- | can help to some degree

e Other

- More than welcome, but | can't guarantee | can help

Project |V

« Possibility for publication

« But this will be a /ot more work
« Don't have to just get something working, but also

- Evaluate it rigorously
- Write a paper

Project Timetable

...webpage...

Course Materials

» Course papers and Composite virtual machine
« Too large for blackboard (VM is 1.5G)
» ssh/sftp to <contact me for ip> (write this down)

 User: <contact me>
e Password: <contact me>

 VMWare player/workstation

| have licenses if needed (e.g. if you use OS X)

What is an Operating System!?

 What does an OS do?
 What is the purpose of an OS?

Operating System as Abstraction

* "The effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent
programmer.” - Edsger W. Dijkstra

e Allow users to translate intentions into actions

* Provide environment in which applications can
execute

e Each application believes it is sole user of HW

Computers as Distributed Systems

“Hardware: The parts of a computer system that can be kicked.”
- Jeff Pesis

mouse keyboard printer monitor

/— on-line —\

—

.

disk
controller

graphics

Sl adapter

USB controller

memory

OS as Hardware Manager

 Control a diverse set of hardware

* Processors
 Memory

e Disks

* Networking cards
 Video cards

 Coordinates these hardware resources
amongst user programs

Policy/Mechanism Separation in Hydra

 Mechanism: a utility or resource that can be
used in a specific manner

 Policy: the algorithm or logic that determines
how to use a mechanism

« A policy at one level might be a mechanism for
a higher level of abstraction

* Disk — blocks in mem — files — database — ...
« Sequential exec — threads — scheduling — ...

Policy/Mechanism Separation in Hydra

« OSes are concerned with building policy and
mechanism

 Create a usable abstraction to achieve a
system'’s goals

AN %64 PROCESYR 16 SCREAMING ALONG AT BLUONSOF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SHECIFED
ARSTRACTION T0 CREATE THE DRRUIN SYSTEM UNDERIYING
05 X, WHICH INTURN IS STRAINING 1TSELF T0 RN FIRERX
AND IT5 GECKO RENDERER, WHICH CREATES A FLASH (BTECT
WHICH RENDERS TDZENS OF VIDEY FRAMES EVERY SELOND

O

BECAUSE I WANTED TO SEE A AT
JUMP INTD A BOX AND FALL OVER.

T AMA GOD.

Source: xkcd.com

Fundamental OS Concepts

e Abstraction

Concurrency
Parallelism

Resource management
Protection

Performance

 Kernel doesn't do useful work, enables it

Course Topics

« System Structure * Keep in mind any

. Data Movement preferences you may

_ have between topics
« Accounting

« Concurrency
« Threading models

o Parallelism

« Reliabllity
e Security

Research Papers

» We will be reading old and new papers...
...about systems...
...that noone uses.

* If the proposed systems aren't being used, why
do we care

« Competitive environment: that which is best will
prevail, right?

The Rise of “Worse Is Better”

* Richard Gabriel — lisp researcher
« 1991
e Lisp vs Unix/C

evalquote[fn;x] = apply[fn;x;NIL]
where

apply[fn;x;a] =
[atom[fn] - [eq[fn;CAR] = caar[x];
eq[fn;CDR | - cdar[x];
eq[fn; CONS] — cons[car[x];cadr[x]];
eq[fn; ATOM] = atom[car[x]];
eq[fn;EQ} - Eq[c:ar[x];cadr[x]];
T -apply[eval[fn;a]ix;a]];

eq[car[fn; LAMBDA] - eval[caddr[fn];pairlis[cadr[fn];x;a]];

eg[car[fn; LABEL] = apply[caddr[fn];x; cons[cons[cadr[fn];
caddrfin]];a]]]

Eval[e; a] = {atnm[e] - cdr[ass:}e[e;a]];
ato m[c ar [e]] -
|eq[car[e].QUOTE] - cadr[e];
eq[car[e];COND] -~ evcon[edr[e];a];
T - apply[car[e]evlis[cdr[e];a];a]];
T — apply[car[e];evlis[cdr[e];a];a]]

pairlis and assoc have been previously defined.

eveon[c;a] = [eval[caar[c];a] = eval[cadar[c]a];
T = evcon[cdr(c];a]]

and
evlis[m;a] = [null[m] = NIL;

T = cons[eval[car[m];a];evlis[cdr[m];a]]]

Source: LISP 1.5 Programmers Manual, 1985

VS.

char buff[4];
strcpy(buff, “fail”);

Intertia vs. “The right thing”

 Normal OS class: how systems we use work

e This class:

« Will include some of how current systems work

« Focus on non-typical design decisions to explore
the possibilities of OSes

Intertia vs. “The right thing” Il

 Why read these papers?

» Understanding different design's trade-offs makes
us better understand the systems we do use
* The computing environment changes

- Hardware — multicore
- Culture/economics — power/cloud
- Requires “out of the box” thinking

Blank Slate

« Hardware as a blank slate

 Where do we go from there?

» Each paper in this class approaches this
guestion differently

 Next slides: what does this blank slate look
like?

Basic Hardware: Mechanism

 CPU - sequential execution
 Memory — large array of physical memory

e Devices —

 Recelve instructions

frOI I I C P U e CPU disk USB controller
controller

e QOver a distributed
system...

e To interact with the outside world

Complicating the CPU

: . struct thread *"current, *next;
- Sequential execution: switch_regs(current, next)

« Stream of instructions are executed

« Manipulate registers and memory switch_regs:

: mov %a, current->regs.a
« Use stack for storage/bookkeeping g

. Wish to execute multiple MoV %eSp, current->regs.sp
: : mov post_switch, current->regs.ip
appllcatlons mov next->regs.a, %a
— multllple sequential streams of MOV next->regs.sp, %sp
Instructions imp next->regs.ip
, post_switch:
« Switch between these threads: ret

dispatching mechanism
Do threads complicate the
system as a whole?

Complicating Memory

« Want multiple applications
* Protection — reliability and security

e Segregate diff system parts from each other: Virtual Mem
« Memory accesses in virtual address space

 Virtual memory mechanism provided by hardware

« Paging/segmentation/etc...

Complicating Memory |l

« System complications:

« Page-table maintenance

« Overhead of switching between address spaces:
mov pgtbl_addr, %cr3 = 300-800 cycles on P4

« Hydra — “Given that user-level policy programs must execute
in their own protection domains, and that domain switching
Is costly..., it is impractical to invoke such programs each
time a policy decision is required.

Thus we compromise. We give this compromise a name:
the principle of policy/mechanism separation.”

Complicating Devices

* General operations (type of data/device differs):
 CPU — Device: transfer data @ address x to the
device

« CPU — Device: when you have data ready (?),
transfer it to address y in memory

* Direct Memory Access (DMA)

e How does the CPU know when the device has
placed new data at y?

Complicating Devices Il

» Devices can raise interrupts on CPU

« Halt current stream of instructions
- Save some register state such as instruction ptr (where?)
« Begin execution of an interrupt service routine (ISR)
- Understands how to communicate with device
 Interrupts can happen at any time

- Except when they are disabled: i gt

How do interrupts complicate the system?

Done?

» With these hardware-provided mechanisms

* Do we have the necessary building blocks for
complex systems?

- With multiple applications

 What else do we need from hardware? Why?

Separation of Privileges

« Can all applications

« Switch page tables?

« Switch between any threads?
e Send commands to devices?
« Disable interrupts?

 What keeps them from doing this?

Separation of Privileges Il

 Dual-mode execution

« User-mode

- Applications execute in user-mode in protection domains
- Cannot execute sensitive instructions
— Cannot access kernel memory (memory marked with mode)

« Kernel-mode
- Trusted code
- Can execute sensitive instructions (cli, sti, mov cr3, ...)

- Creates and manages protection domains
- The kernel

System Calls

User-level syscall function: Kernel system call handler:
mov syscall _num, %eax pushl %ebp /* user-sp */
/* save normal regs */ pushl %ecx /* user-ip */
push %ebp call *cos_syscall tbl(,%eax,4)
mov %esp, Y%ebp popl Y%oedx /* user-ip */
mov $1f, %ecx popl Y%ecx /* and sp */
sysenter sysexit

1:
mov %eax, 0 « Sysenter instruction changes
pop %ebp the mode from user — kernel
/* restore normal regs */ - Sysexit does opposite

System Structure

o Defines

« how different parts of the system (or subsystems) interact
« the separation of mechanism/policy throughout the system

AA

Monolithic Language- Exokernels Microkernels Virtual Machines
Based

Bias

* As you read papers, please, choose sides
« What do you like about specific approaches?
« And what are the limitations?

 And always: what is new about the paper
(contributions)

* Which systems present the best trade-offs?

Volunteers

« Two system structure papers 2 weeks from
today...

 Everyone: Email me with
* Your interests

* |If you have any projects you're already working on

« Which topics/titles (on the schedule) are most
Interesting to you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

