

csci 3411: Operating Systems

CPU Scheduling

Gabriel Parmer

Slides evolved from Silberschatz and West

Today: Scheduling

● Basis for multiprogrammed/multithreaded OSes

● Scheduling:
● Given a runqueue of threads that are runnable/ready
● Select one of those threads to execute next
● N-processor systems require the scheduler to choose up

to N threads to execute
● Aside: processes vs. threads – use interchangeably

● Main question: how do we choose the next thd to run?

When is CPU Scheduling done?

● CPU scheduling occurs when

1) A process is created and is put in a ready state

2) A process voluntarily yields the CPU

3) A process switches from running to waiting state
● e.g. blocking on I/O

4) A process switches from running to ready state
● e.g. because it is interrupted and its timeslice expires

5) A process switches from waiting to ready state
● e.g. an interrupt signifies that I/O is complete

6) A process terminates

● Non-preemptive scheduling includes all but 4) and 5)

● Preemptive scheduling includes all of the above
● Characterized by interrupts that result in some process being moved

from running to ready state – being preempted

Dispatching

● Scheduler decides which thread to run next

● Dispatcher switches to that thread
● Switch register contents
● Change virtual address spaces if next process is different

than last
● Resume execution in user-space

● These overheads define the dispatch latency
● overhead!

Scheduling Goals/Criteria

● What should a scheduler try to
● Maximize?
● Minimize?

Scheduling Goals/Criteria

● CPU Utilization: % of time CPU is running thd
● Turnaround Time: life-time of a thread
● Waiting Time: time thd. spends in runqueue
● Response Time/Interactivity: time from beginning

of execution, to when process can output or input
● Fairness: Are threads treated comparably?

● Starvation: bounded turnaround time for all thds?

● Tradeoffs: Maximize which? Minimize which?

Scheduling Policies

● Goals of scheduler dictate
● Algorithm/policy used to select next thread
● Data structures used by algorithm

– e.g. ready-queue data structure

CPU Burst Histogram

First-Come, First-Serve Scheduling
● One of the simplest scheduling policies

● non-preemptive

Process Burst Time

 P1 24

 P2 3

 P3 3

● Suppose process arrive in order: P1, P2, P3

● The schedule is:

● Waiting time for P1 = 0; P2 = 24; P3 = 27

● Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS II

P1P3P2

63 300

Suppose the processes arrive in order: P2 , P3 , P1
● The schedule is:

● Waiting time for P1 = 6; P2 = 0; P3 = 3
● Average waiting time: (6 + 0 + 3)/3 = 3
● Much better than previous case
● Convoy effect short process behind long process

● Fairness/Starvation?
● Interactivity/Responsiveness?

Round Robin Scheduling

● Timesharing systems that wish to provide “fair”
distribution of CPU resources
● One thread cannot monopolize CPU

● FCFS with preemption
● Each thread executes a single timeslice (or

quantum) before it is preempted
● Preempted threads placed at end of runqueue
● Requires timer interrupt to measure timeslices and

preempt

Round Robin Scheduling II

● N threads in runqueue
● Time quantum of Q
● Fairness: each thread gets 1/n of the CPU, in chunks of

size Q
● No thread waits for more than (N-1)Q time units before

next quantum
● Size of Q?

● Q == infinity is FCFS
● Q == 0; is this possible?
● Best fairness?
● Best throughput? (what overheads are there?)

RR Example, Q = 3
Process Burst Time

P
1

6

P
2

3

P
3

1

P
4

7

● Compared to FIFO
● Turnaround time?
● responsiveness?

P
1

P
2

P
3

P
1

P
4

P
4

P
4

0 3 6 7 10 13 16 17

Quantum Effects Turnaround Time

Shortest Job First (SJF) Scheduling

● Consider each process' next CPU burst (job)
length
● use these to schedule the process with the shortest

next burst

● Preemptive SJF is optimal in that it minimizes
average waiting time for a set of processes

Shortest Job First II

Process Arrival Time Burst Time
P

1
0 7

P
2

2 4

P
3

4 1

P
4

5 4

● SJF (preemptive)

● Average waiting time = (9+1+0+2)/4 = 3
● Non-preemptive optimal?

P
1

P
2

P
3

P
4

P
1

P
2

0 2 4 5 7 11 16

Job Burst Length

● How do we know a job's burst time?
● Before it actually executes!

● Become fortune tellers?

● General strategy in systems: Predict the future
from past behavior
● Is this a good idea? Does it really work?

Determine Job Burst Length

● Take average of process' past burst lengths
● Do we want to keep an exact average?

● Weighted Moving Average:

● Measured length of nth burst = t
n

● Predicted value for burst n = τ
n

● Then for a weight, α, where 0 ≤ α ≤ 1:

τ
n+1

 = αt
n
 + (1-α)τ

n

Job Length Prediction Using WMA

Weighted Moving Average III

τ
n+1

 = αt
n
 + (1-α)τ

n

● If α → 0, then τ
n+1

= τ
0

● Recent job burst lengths aren't counted

● If α → 1, then τ
n+1

= t
n

● Only the most recent job length counts

● Expand the formula:

● Exponentially decrease the influence of older measurements

 τ
n+1

= α t
n
 + (1-α) α t

n-1
 + …

 + (1-α)j α t
n-j

 + …

 + (1-α)n+1 τ
0

Priority Scheduling

● priority associated with each thread
● Scheduler selects thread with highest priority
● Both preemptive and non-preemptive variants

● Problem → starvation
● Low priority processes may never execute

● One solution → aging
● As a thread uses more execution time, dynamically

decrease its priority

Multilevel Queue Scheduling

● Ready-queue partitioned into separate queues
● Each queue has its own scheduling policy

● I/O-bound/interactive task queue – RR
● CPU-bound/background/batch queue – FCFS

● Scheduling done between queues
● Fixed priority – some queues have higher priority

– Possible starvation
● Proportional allocation – background gets 20% CPU

Multilevel Queue Scheduling II

Multilevel Feedback Queuing

● How make thread ↔ queue mapping?

● Want interactive/I/O bound threads in higher priority queues

● Threads can move between different queues
● Aging to avoid starvation

● Multilevel feedback queuing parameters:
● # of queues
● Scheduling algorithm for each queue
● Policy to promote a thread to higher queues
● Policy to demote a thread to lower queues
● Entry queue for new threads

Multilevel Feedback Example

● Three queues – in order of decreasing priority

● Q
0
: RR with a timeslice of 8 time units

● Q
1
: RR with a timeslice of 16 time units

● Q
2
: FCFS

● New Jobs arrive in Q
0
, until they expend 8 time units,

demote to Q
1
...

● Thread promoted when placed in “runqueue” after
waiting on I/O

● Starvation???

Multilevel Feedback Example II

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

