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Today: Scheduling

● Basis for multiprogrammed/multithreaded OSes

● Scheduling:
● Given a runqueue of threads that are runnable/ready
● Select one of those threads to execute next
● N-processor systems require the scheduler to choose up 

to N threads to execute
● Aside: processes vs. threads – use interchangeably 

● Main question: how do we choose the next thd to run?



  

When is CPU Scheduling done?

● CPU scheduling occurs when

1) A process is created and is put in a ready state

2) A process voluntarily yields the CPU

3) A process switches from running to waiting state
● e.g. blocking on I/O

4) A process switches from running to ready state
● e.g. because it is interrupted and its timeslice expires

5) A process switches from waiting to ready state
● e.g. an interrupt signifies that I/O is complete

6) A process terminates

● Non-preemptive scheduling includes all but 4) and 5)

● Preemptive scheduling includes all of the above
● Characterized by interrupts that result in some process being moved 

from running to ready state – being preempted



  

Dispatching

● Scheduler decides which thread to run next

● Dispatcher switches to that thread
● Switch register contents
● Change virtual address spaces if next process is different 

than last
● Resume execution in user-space

● These overheads define the dispatch latency
● overhead!



  

Scheduling Goals/Criteria

● What should a scheduler try to 
● Maximize?
● Minimize?



  

Scheduling Goals/Criteria

● CPU Utilization: % of time CPU is running thd
● Turnaround Time: life-time of a thread
● Waiting Time: time thd. spends in runqueue
● Response Time/Interactivity: time from beginning 

of execution, to when process can output or input
● Fairness: Are threads treated comparably?

● Starvation: bounded turnaround time for all thds?

● Tradeoffs: Maximize which? Minimize which?  



  

Scheduling Policies

● Goals of scheduler dictate
● Algorithm/policy used to select next thread
● Data structures used by algorithm

– e.g. ready-queue data structure



  

CPU Burst Histogram



  

First-Come, First-Serve Scheduling
● One of the simplest scheduling policies

● non-preemptive

Process     Burst Time

    P1    24

       P2    3

       P3             3 

● Suppose process arrive in order: P1, P2, P3

● The schedule is:

● Waiting time for P1 = 0; P2 = 24; P3 = 27

● Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300



  

FCFS II

P1P3P2

63 300

Suppose the processes arrive in order:  P2 , P3 , P1 
● The schedule is:

● Waiting time for P1 = 6; P2 = 0; P3 = 3
● Average waiting time:   (6 + 0 + 3)/3 = 3
● Much better than previous case
● Convoy effect short process behind long process

● Fairness/Starvation?
● Interactivity/Responsiveness?



  

Round Robin Scheduling

● Timesharing systems that wish to provide “fair” 
distribution of CPU resources
● One thread cannot monopolize CPU

● FCFS with preemption
● Each thread executes a single timeslice (or 

quantum) before it is preempted
● Preempted threads placed at end of runqueue
● Requires timer interrupt to measure timeslices and 

preempt



  

Round Robin Scheduling II

● N threads in runqueue
● Time quantum of Q
● Fairness: each thread gets 1/n of the CPU, in chunks of 

size Q
● No thread waits for more than (N-1)Q time units before 

next quantum
● Size of Q?

● Q == infinity is FCFS
● Q == 0; is this possible?
● Best fairness?
● Best throughput? (what overheads are there?) 



  

RR Example, Q = 3
Process Burst Time
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● Compared to FIFO
● Turnaround time?
● responsiveness?
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Quantum Effects Turnaround Time



  

Shortest Job First (SJF) Scheduling

● Consider each process' next CPU burst (job) 
length
● use these to schedule the process with the shortest 

next burst

● Preemptive SJF is optimal in that it minimizes 
average waiting time for a set of processes



  

Shortest Job First II

Process Arrival Time Burst Time
P
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● SJF (preemptive)

● Average waiting time = (9+1+0+2)/4 = 3
● Non-preemptive optimal?
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Job Burst Length

● How do we know a job's burst time?
● Before it actually executes!

● Become fortune tellers?

● General strategy in systems: Predict the future 
from past behavior
● Is this a good idea?  Does it really work?



  

Determine Job Burst Length

● Take average of process' past burst lengths
● Do we want to keep an exact average?

● Weighted Moving Average:

● Measured length of nth burst = t
n

● Predicted value for burst n = τ
n
 

● Then for a weight, α, where 0 ≤ α ≤ 1:

τ
n+1

 = αt
n
 + (1-α)τ

n



  

Job Length Prediction Using WMA



  

Weighted Moving Average III

τ
n+1

 = αt
n
 + (1-α)τ

n

● If α → 0, then τ
n+1 

= τ
0

● Recent job burst lengths aren't counted

● If α → 1, then τ
n+1 

= t
n

● Only the most recent job length counts

● Expand the formula:

● Exponentially decrease the influence of older measurements

 τ
n+1 

= α t
n
 + (1-α) α t

n-1
 + …

                + (1-α)j α t
n-j

 + …

                + (1-α)n+1 τ
0



  

Priority Scheduling

● priority associated with each thread
● Scheduler selects thread with highest priority
● Both preemptive and non-preemptive variants

● Problem → starvation
● Low priority processes may never execute

● One solution → aging
● As a thread uses more execution time, dynamically 

decrease its priority



  

Multilevel Queue Scheduling

● Ready-queue partitioned into separate queues
● Each queue has its own scheduling policy

● I/O-bound/interactive task queue – RR
● CPU-bound/background/batch queue – FCFS

● Scheduling done between queues
● Fixed priority – some queues have higher priority

– Possible starvation
● Proportional allocation – background gets 20% CPU



  

Multilevel Queue Scheduling II



  

Multilevel Feedback Queuing

● How make thread ↔ queue mapping?

● Want interactive/I/O bound threads in higher priority queues

● Threads can move between different queues
● Aging to avoid starvation

● Multilevel feedback queuing parameters:
● # of queues
● Scheduling algorithm for each queue
● Policy to promote a thread to higher queues
● Policy to demote a thread to lower queues
● Entry queue for new threads 



  

Multilevel Feedback Example

● Three queues – in order of decreasing priority

● Q
0
: RR with a timeslice of 8 time units

● Q
1
: RR with a timeslice of 16 time units

● Q
2
: FCFS

● New Jobs arrive in Q
0
, until they expend 8 time units, 

demote to Q
1
...

● Thread promoted when placed in “runqueue” after 
waiting on I/O

● Starvation???



  

Multilevel Feedback Example II
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