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Deadlocks:Synchronization Gone Wild

● A set of blocked processes each
● Hold a resource (critical section, using device, mem)
● Wait to acquire a resource held by another of the 

processes in the set
● Can cause starvation

● An example:
thread 1 thread 2
wait(s1) wait(s2)
wait(s2) wait(s1)
process() process()
signal(s2) signal(s1)
signal(s1) signal(s2)



  

Traffic and Resource Contention

one-way
roads

traffic



  

Traffic and Resource Contention

one-way
roads

traffic

Contended
Resources



  

Traffic and Resource Contention

one-way
roads

traffic

Contended
Resources



  
Image Source: http://www.glommer.net/blogs/?p=189



  

System Model

● Different resource types R
1
, R

2
, R

3
, …

● CPU, Devices, Memory, Data-structures

● Each resource type R
i
 has W

i
 instances

● Amount of memory, multiple CPUs, counting semaphore

● Each process uses a resource as follows:

request()

use()

release() 



  

Deadlock Characterization

Deadlock can arise if 4 conditions hold simultaneously

1) Mutual Exclusion: single processes uses resource

2) Hold and Wait: process holding at least one resource is waiting to acquire 
additional resources held by other processes

3) No Preemption: a resource can be released only voluntarily by the process 
holding it after use

4) Circular wait: there exists a set {P
0
, P

1
, … , P

n
} of waiting processes such 

that P
0
 is waiting for a resource held by P

1
, P

1
 is waiting for a resource that 

is held by P
2
, ..., and P

n
 is waiting for a resource that is held by P

0
.



  

Resource Allocation Graph

● G = (V, E)
● Two types of V:

● P = {P
0
, P

1
, … , P

n
}, processes in the system

● R = {R
1
, R

2
, … , R

n
}, resource types in the system

● Each edge in set E is either:

● A directed request edge: P
i
 → R

j

● A directed assignment edge: R
j
 → P

i



  

Resource Allocation Graph II

● Process:

● Resource Type with 4 instances: 

● P
i
 requests instance of R

j
:

● Call wait(semaphore)
● Call malloc(10)

● P
i
 is assigned an instance of R

j
:

● wait(semaphore) returns
● malloc(10) returns a pointer

Pi

Rj

Pi

Rj



  

Example Resource Allocation Graph

Is there a deadlock?



  

Example Resource Alloc. Graph II

Is there a deadlock?



  

Example Resource Alloc. Graph III

Is there a deadlock?



  

Conditions for Deadlock

● If a graph contains no cycles, no deadlock!

● If graph contains cycle:
● If one instance per resource type → deadlock
● If several instances per resource type, deadlock is 

possible but not certain



  

Traffic Resource Allocation Graph

System Model



  

Methods for Handling Deadlocks

● Ensure system will never enter a deadlock state
● Prevention versus Avoidance

● Allow deadlocks to happen, then recover
● Detection and Recovery

● Ignorance, luck, and crossed fingers
● Most systems take this approach



  

Deadlock Prevention

Prevent any of the 4 conditions for deadlock
● Mutual Exclusion: can't compromise here
● Hold and Wait: guarantee that when process 

requests a resource, it holds no others
● Processes allocated all its resources before it 

begins execution and requests resources only when 
it has none

→ low resource utilization and starvation possible



  

Deadlock Prevention II

● No Preemption: If a process holds a resource, and makes 
a request for another that cannot be satisfied, release all 
currently held resources
● Resources added list of resources process is waiting for
● Process restarted when it can acquire all these resources

● Circular Wait: Impose a total ordering on resources
● Ensure that processes request resources in increasing order
● Informally, this is a pervasively used technique



  

Deadlock Avoidance

● Dynamically observe pattern of resource 
allocation given system state and decide if its 
safe to allocate resources
● Each process declares maximum number of 

resources of each type it will need (a-priori)
● Deadlock avoidance algorithm dynamically 

examines resource allocation state; ensure no 
circular wait condition

● Resource allocation state defined by the number of 
available and allocated resources and the maximum 
demands of processes



  

Deadlock Avoidance Algorithms

● Single instance of all system resource types
● Avoid cycles in resource-allocation graph

● Multiple instances of resource types
● Dijkstra's Banker's Algorithm



  

Required Notion: Safe State

● System in Safe State if there exists a sequence         
<P

1
, P

2
, ..., P

n
> of all processes such that for each P

i
, 

the resources that P
i
 can still request can be satisfied by 

currently available resources and resources held by all 
P

k
, k < i

● Thus:

● If P
i
 can't currently access all its resources, it can wait for all 

P
k
 to complete

● When P
i
 terminates, we know that P

i+1
 can run

● Safe state sufficient condition to avoid deadlock! 



  

Safe State?

● Assume in this case 
that
● Maximum resources 

required = all held and 
requested resources



  

Banker's Algorithm

● High level:
● When a resource request is made, ensure that the 

allocation will result in a safe state, or
● Wait for resources until a safe state is possible
● While other processes compute and eventually 

release their resources

● Good resource utilization
● Processes concurrently execute that use 

“complementary” resources
● Considers both worst case, and actual allocations



  

Banker's Algorithm II

● System has n processes, m resource types

● available[j] = k, there are k instances of resource j available
● vector of length m

● max[i, j] = k, P
i
 will request at most k instances of R

j

● n x m matrix

● allocation[i, j] = k, P
i
 is currently allocated k instances of R

j

● n x m matrix

● need[i, j] = k, P
i
 may require k more instances of R

j
 to complete its task

● n x m matrix

● need[i,j] = max[i,j] - allocation[i,j]



  

Safety Algorithm
finished[n] = {false, …}  // is a process finished executing?
track_avail[m] = available  // copy allocation vector

while (1) {
next = i where 

finished[i] = false && (need[i, j]
 
 <= track_avail[j] forall j)

if (next doesn't exist) {
if (finished[i] == true forall i) {

return system is in safe state
} else {

return system is NOT in a safe state
}

}
/* Process “next” ran successfully.  
 * Return its resources to the system */
finished[next] = true
track_avail[j] += allocation[next, j] forall j

} 



  

Resource Request Algorithm
request[i,j] = k // P

i
 is requesting k instances of R

j

if (request[i,j] > need[i, j] forall j) {
Error!  P

i
 requested more than it said it would!

}
while (request[i,j] < available[j] forall j) {

P
i
 must block and wait until more resources become available

}

available[j] -= request[i,j] forall j
allocation[i,j] += request[i,j] forall j
need[i,j] -= request[i,j] forall j

if (system is safe) {
Resources allocated to P

i

} else {
Undo changes to available, allocation, and need, and P

i
 waits

}



  

Banker's Algorithm Example

● Processes P
0
 through P

4
 and 3 resource types: A(10), B(5), C(7)

● System state at time t
0

Allocation Max Need Available
A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Safe State: <P
1
, P

3
, P

4
, P

2
, P

0
>

Other Safe States???



  

Example: P
1
 Requests (1, 0, 2)

● Check that Request ≤ Available (i.e. (1,0,2) ≤ (3,3,2) ⇒ true)

● Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> is a 
Safe State

● Can request for (3,3,0) by P4 be granted?

● Can request for (0,2,0) by P0 be granted?

Allocation Need Available
A B C A B C A B C 

P0 0 1 0             7 4 3 2 3 0
P1 3 0 2             0 2 0 
P2 3 0 2             6 0 0 
P3 2 1 1             0 1 1
P4 0 0 2             4 3 1 



  

Deadlock Detection
● Periodically check to see if system is deadlocked

● Doesn't consider maximum resources required: practical

● Single instance resources:

Resource-Allocation Graph Corresponding wait-for graph



  

Deadlock Recovery

● Process Termination
● Abort all deadlocked processes
● Abort deadlocked processes one at time, till resolved
● In which order???
● OOM killer in Linux
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