

csci 3411: Operating Systems

Deadlocks

Gabriel Parmer

Slides evolved from Silberschatz and West

Deadlocks:Synchronization Gone Wild

● A set of blocked processes each
● Hold a resource (critical section, using device, mem)
● Wait to acquire a resource held by another of the

processes in the set
● Can cause starvation

● An example:
thread 1 thread 2
wait(s1) wait(s2)
wait(s2) wait(s1)
process() process()
signal(s2) signal(s1)
signal(s1) signal(s2)

Traffic and Resource Contention

one-way
roads

traffic

Traffic and Resource Contention

one-way
roads

traffic

Contended
Resources

Traffic and Resource Contention

one-way
roads

traffic

Contended
Resources

Image Source: http://www.glommer.net/blogs/?p=189

System Model

● Different resource types R
1
, R

2
, R

3
, …

● CPU, Devices, Memory, Data-structures

● Each resource type R
i
 has W

i
 instances

● Amount of memory, multiple CPUs, counting semaphore

● Each process uses a resource as follows:

request()

use()

release()

Deadlock Characterization

Deadlock can arise if 4 conditions hold simultaneously

1) Mutual Exclusion: single processes uses resource

2) Hold and Wait: process holding at least one resource is waiting to acquire
additional resources held by other processes

3) No Preemption: a resource can be released only voluntarily by the process
holding it after use

4) Circular wait: there exists a set {P
0
, P

1
, … , P

n
} of waiting processes such

that P
0
 is waiting for a resource held by P

1
, P

1
 is waiting for a resource that

is held by P
2
, ..., and P

n
 is waiting for a resource that is held by P

0
.

Resource Allocation Graph

● G = (V, E)
● Two types of V:

● P = {P
0
, P

1
, … , P

n
}, processes in the system

● R = {R
1
, R

2
, … , R

n
}, resource types in the system

● Each edge in set E is either:

● A directed request edge: P
i
 → R

j

● A directed assignment edge: R
j
 → P

i

Resource Allocation Graph II

● Process:

● Resource Type with 4 instances:

● P
i
 requests instance of R

j
:

● Call wait(semaphore)
● Call malloc(10)

● P
i
 is assigned an instance of R

j
:

● wait(semaphore) returns
● malloc(10) returns a pointer

Pi

Rj

Pi

Rj

Example Resource Allocation Graph

Is there a deadlock?

Example Resource Alloc. Graph II

Is there a deadlock?

Example Resource Alloc. Graph III

Is there a deadlock?

Conditions for Deadlock

● If a graph contains no cycles, no deadlock!

● If graph contains cycle:
● If one instance per resource type → deadlock
● If several instances per resource type, deadlock is

possible but not certain

Traffic Resource Allocation Graph

System Model

Methods for Handling Deadlocks

● Ensure system will never enter a deadlock state
● Prevention versus Avoidance

● Allow deadlocks to happen, then recover
● Detection and Recovery

● Ignorance, luck, and crossed fingers
● Most systems take this approach

Deadlock Prevention

Prevent any of the 4 conditions for deadlock
● Mutual Exclusion: can't compromise here
● Hold and Wait: guarantee that when process

requests a resource, it holds no others
● Processes allocated all its resources before it

begins execution and requests resources only when
it has none

→ low resource utilization and starvation possible

Deadlock Prevention II

● No Preemption: If a process holds a resource, and makes
a request for another that cannot be satisfied, release all
currently held resources
● Resources added list of resources process is waiting for
● Process restarted when it can acquire all these resources

● Circular Wait: Impose a total ordering on resources
● Ensure that processes request resources in increasing order
● Informally, this is a pervasively used technique

Deadlock Avoidance

● Dynamically observe pattern of resource
allocation given system state and decide if its
safe to allocate resources
● Each process declares maximum number of

resources of each type it will need (a-priori)
● Deadlock avoidance algorithm dynamically

examines resource allocation state; ensure no
circular wait condition

● Resource allocation state defined by the number of
available and allocated resources and the maximum
demands of processes

Deadlock Avoidance Algorithms

● Single instance of all system resource types
● Avoid cycles in resource-allocation graph

● Multiple instances of resource types
● Dijkstra's Banker's Algorithm

Required Notion: Safe State

● System in Safe State if there exists a sequence
<P

1
, P

2
, ..., P

n
> of all processes such that for each P

i
,

the resources that P
i
 can still request can be satisfied by

currently available resources and resources held by all
P

k
, k < i

● Thus:

● If P
i
 can't currently access all its resources, it can wait for all

P
k
 to complete

● When P
i
 terminates, we know that P

i+1
 can run

● Safe state sufficient condition to avoid deadlock!

Safe State?

● Assume in this case
that
● Maximum resources

required = all held and
requested resources

Banker's Algorithm

● High level:
● When a resource request is made, ensure that the

allocation will result in a safe state, or
● Wait for resources until a safe state is possible
● While other processes compute and eventually

release their resources

● Good resource utilization
● Processes concurrently execute that use

“complementary” resources
● Considers both worst case, and actual allocations

Banker's Algorithm II

● System has n processes, m resource types

● available[j] = k, there are k instances of resource j available
● vector of length m

● max[i, j] = k, P
i
 will request at most k instances of R

j

● n x m matrix

● allocation[i, j] = k, P
i
 is currently allocated k instances of R

j

● n x m matrix

● need[i, j] = k, P
i
 may require k more instances of R

j
 to complete its task

● n x m matrix

● need[i,j] = max[i,j] - allocation[i,j]

Safety Algorithm
finished[n] = {false, …} // is a process finished executing?
track_avail[m] = available // copy allocation vector

while (1) {
next = i where

finished[i] = false && (need[i, j]

 <= track_avail[j] forall j)

if (next doesn't exist) {
if (finished[i] == true forall i) {

return system is in safe state
} else {

return system is NOT in a safe state
}

}
/* Process “next” ran successfully.
 * Return its resources to the system */
finished[next] = true
track_avail[j] += allocation[next, j] forall j

}

Resource Request Algorithm
request[i,j] = k // P

i
 is requesting k instances of R

j

if (request[i,j] > need[i, j] forall j) {
Error! P

i
 requested more than it said it would!

}
while (request[i,j] < available[j] forall j) {

P
i
 must block and wait until more resources become available

}

available[j] -= request[i,j] forall j
allocation[i,j] += request[i,j] forall j
need[i,j] -= request[i,j] forall j

if (system is safe) {
Resources allocated to P

i

} else {
Undo changes to available, allocation, and need, and P

i
 waits

}

Banker's Algorithm Example

● Processes P
0
 through P

4
 and 3 resource types: A(10), B(5), C(7)

● System state at time t
0

Allocation Max Need Available
A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Safe State: <P
1
, P

3
, P

4
, P

2
, P

0
>

Other Safe States???

Example: P
1
 Requests (1, 0, 2)

● Check that Request ≤ Available (i.e. (1,0,2) ≤ (3,3,2) ⇒ true)

● Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> is a
Safe State

● Can request for (3,3,0) by P4 be granted?

● Can request for (0,2,0) by P0 be granted?

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Deadlock Detection
● Periodically check to see if system is deadlocked

● Doesn't consider maximum resources required: practical

● Single instance resources:

Resource-Allocation Graph Corresponding wait-for graph

Deadlock Recovery

● Process Termination
● Abort all deadlocked processes
● Abort deadlocked processes one at time, till resolved
● In which order???
● OOM killer in Linux

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

