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UNIX Process System Calls

● fork – create a new process identical to this one, 
but in a new virtual address space (VAS)
● Return “child” process id
● exec system call – load a new program into this VAS

● exit(ret) – stop this process
● ret = wait(child_id) – parent can wait for child to 

exit

retIdentical VAS



  

Process Creation: fork()
● Parent process may fork() a child process
● Parent can wait(): stop executing till child exit()s
● Parent can kill() its children

● Process hierarchy
● Which is the first process? 
● Where does a “shell” fit in?
● When does  a “shell” wait()?
● What does cntl-C in a “shell” do?



  

Process Creation: fork() II

● fork() creates a copy of the parent's address space 
for the child
● Copying all memory can be expensive!

● Often intention is to execute new program
● exec() or execve() system calls load program from disk 

into current process
● The way to run a new program

● So why copy all memory?
● vfork() –  stop parent's execution till we exec() 
● COW – copy on write memory sharing



  

Process Termination: exit()

● Release current process' resources back to the 
system, discontinue execution

● Takes argument: child return value
● same as returning integer from main function

● Process might stick around with status/return 
value until parent wait()'s
● wait() returns the status of the child process
● “zombie” process – new process state



  

C Example of Fork Usage
int main()
{
      pid_t  pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
  fprintf(stderr, "Fork Failed");
  exit(­1);
}
else if (pid == 0) { /* child process: execute “ls” */
  execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

              int status;
         /* parent will wait for the child to complete */
  wait(&status); /* or wait_pid(pid, &status, 0) */
  printf ("Child Complete");
  exit(0);
}

     return 0;
}



  

Process Cooperation

● fork/exit/wait provide simple cooperation

● Need other means for process coordination? 
● Can you think of situations where this would be 

useful?
● Is all IPC via fork/wait?



  

Process Cooperation II

● Concurrency – execution order of two 
processes is not predetermined
● Multiple concurrently executing apps
● Coordination between I/O bound processes

– e.g. bittorrent, video streaming

● Parallelism – on multi-processor systems, two 
processes can execute at the same time 
● How can a single application utilize multicore 

machines?



  

Inter-Process Communication (IPC)

● Exchange information/data between procs
● Process A: int send(int pid, void *msg, int len)
● Process B: int recv(int pid, void *msg, int len)

● Data transfer models
● Shared memory
● Message passing

● Synchronization models
● blocking/synchronous
● non-blocking/asynchronous



  

Message Passing

Process A Process B

kernel kernel

copy

Switch virtual
Address spaces

copy

int send(B, void *msg, int len)

int recv(A, void *msg, int len)



  

Shared Memory

Physical memoryProcess A Process B

kernel kernel

Shared memory

Shared memory



  

Message Passing vs. Shared Mem

● Message passing
● Must copy data
● Must involve kernel
● Easy to implement

● Shared memory
● Copying data optional
● Parallel processes can avoid invoking kernel



  

IPC Synchronization: Blocking OPs

● Blocking/Synchronous 
operations (send, 
recv)
● Process put on 

process 
communication queue

● Data transferred only 
when other process is 
also sends or recvs

● .. then placed back 
into runqueue

1) Proc A: recv(m)

2) Kernel: remove from 
runqueue, placed on 
comm queue

3) Kernel: switch to B

4) Proc B: send(m)

5) Kernel: move A to 
runqueue

6) Kernel: later switch to A



  

IPC Synchronization: Nonblocking

● Nonblocking/ 
Asynchronous Ops
● send and recv don't 

block the process

● No data to recv?
● return 0 (bytes read)

● Proc B sends in inf 
loop, Proc A never 
recvs.  Problem?

● Proc A: recv(m)
● If data to be read, 

return it
● Else return 0, 

continue computation

● Proc B: send(m)
● Add data to queue to 

be read (later) by A
● If cannot add to 

queue, return 0



  

IPC Synchronization: Buffering

● Buffering
● Communication channel can buffer N items

– Write N items to channel → nonblocking and data sent
– Write N+1 items → block OR return 0 (blocking vs. non)

● Communication channel has M items (M <= N)
– Read M items → nonblocking and data read
– Read M+1 items → block OR return 0 (blocking vs. non)

● N = 0 → normal blocking



  

Blocking vs. Nonblocking: Example

● Handing in homework to Prof.

● Need timestamp

1) Take homework to Prof's office, knock

2) “block” waiting for Prof. to arrive or open door

3) Prof. opens door, takes message, you unblock/leave

● Don't need timestamp

1) Take homework to Prof's office

2) Slide HW under door and leave

● 10,000 students, 1 prof on vacation.  What happens to office?

● Blocking/Nonblocking applies to I/O requests too!



  

Threads: Alternative for 
Concurrency/Parallelism

● Each processes has a flow of control
● The sequential execution through the processes' 

code

● Each of these is a thread which consists of
● Register state (including instruction counter)
● Execution stack

● A process can have multiple threads
● Multi-threaded application
● Share data, code, process resources



  

Threads II



  

Kernel Threads
● Scheduled by the kernel

● Only execute in kernel!

● Each has its own execution state (blocked, 
running, ready)
● Migrates between system queues (run, I/O)

user

kernel



  

One-to-one/User-Kernel Threads
● Scheduled by the kernel

● Executes at user-level, make syscalls to call kernel
● Kernel thd ctxt switch cheaper than proc switch, why?

● Each thread backed by kernel thread
● blocking/context switching

user

kernel



  

User Threads
● Kernel unaware of their existence
● Cooperative switching between 

threads
● Threads must yield to allow others to 

execute
– Why are they cooperative?
– What enables kernel threads to not need 

to be cooperative?

● Context switches lightening fast!
● Don't need to switch modes to kernel

● What happens when one user 
thread requests blocking I/O?

● Support parallelism?

user

kernel



  

One to one

Method used by Java, Pthreads



  

Many to one

● Method used by
● ruby, ocaml, lua

● You can write your 
own threading library!



  

Many to many

● Kernel threads 
created on demand 
while there are 
runnable user threads 

● I/O bound user 
threads tend to use a 
whole kernel thread

● CPU bound user 
threads share a 
single kernel thread



  

Design of a Facebook Webserver

● A thread reads and writes from the network
● Receives requests from clients for home/wall
● Writes to the clients the response (i.e. home html)

● Question:  how does the webserver retrieve 
and calculate what the response html should 
be?
● Must perform blocking Disk I/O
● Perform calculations to format the data
● Given html to network thread to send back to client



  

Facebook Webserver: Goals

● Throughput: maximize number of clients served 
per second
● Minimize cost of processing each content request

● Reliability: if one part of the system fails, will the 
rest fail?
● Reliability: fault isolation



  

Facebook Webserver: naïve 
approach

● Single thread
● reads/writes to 

network
● Reads from disk
● Performs all 

calculations to format 
html

● Problems/Benefits?
● Throughput?
● Reliability?
● Parallelism?

kernel

Network I/O
and Disk I/O

1 to 1 threading



  

Facebook Webserver: Other 
Possible Approaches

● Multi-process server
● Networking proc. Uses IPC 

to deliver requests to 
“worker” processes

● Workers compute and do 
disk I/O

● Return result to network 
process

● blocking/nonblocking IPC?

● Problems/Benefits?
● throughput/reliability/parallelism

Disk I/O
Network I/O Disk I/O

IPC



  

Facebook Webserver: Other 
Possible Approaches

Disk I/O
Network I/O Disk I/O

● Multi-threaded process
● Network thd communicates 

with thds for computation and 
disk I/O

● Thread type?
– User threads
– Kernel threads

● Problems/Benefits?
● Throughput?
● Reliability?
● Parallelism?



  

Best Approach?

● So which approach is BEST?
● You know the answer

● Best facebook web-server for what?
● Simplicity?
● Reliability?
● Throughput?
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