

csci 3411: Operating Systems

Threads and Communication

Gabriel Parmer

Slides evolved from Silberschatz and West

UNIX Process System Calls

● fork – create a new process identical to this one,
but in a new virtual address space (VAS)
● Return “child” process id
● exec system call – load a new program into this VAS

● exit(ret) – stop this process
● ret = wait(child_id) – parent can wait for child to

exit

retIdentical VAS

Process Creation: fork()
● Parent process may fork() a child process
● Parent can wait(): stop executing till child exit()s
● Parent can kill() its children

● Process hierarchy
● Which is the first process?
● Where does a “shell” fit in?
● When does a “shell” wait()?
● What does cntl-C in a “shell” do?

Process Creation: fork() II

● fork() creates a copy of the parent's address space
for the child
● Copying all memory can be expensive!

● Often intention is to execute new program
● exec() or execve() system calls load program from disk

into current process
● The way to run a new program

● So why copy all memory?
● vfork() – stop parent's execution till we exec()
● COW – copy on write memory sharing

Process Termination: exit()

● Release current process' resources back to the
system, discontinue execution

● Takes argument: child return value
● same as returning integer from main function

● Process might stick around with status/return
value until parent wait()'s
● wait() returns the status of the child process
● “zombie” process – new process state

C Example of Fork Usage
int main()
{
 pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed");
 exit(­1);
}
else if (pid == 0) { /* child process: execute “ls” */
 execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

 int status;
 /* parent will wait for the child to complete */
 wait(&status); /* or wait_pid(pid, &status, 0) */
 printf ("Child Complete");
 exit(0);
}

 return 0;
}

Process Cooperation

● fork/exit/wait provide simple cooperation

● Need other means for process coordination?
● Can you think of situations where this would be

useful?
● Is all IPC via fork/wait?

Process Cooperation II

● Concurrency – execution order of two
processes is not predetermined
● Multiple concurrently executing apps
● Coordination between I/O bound processes

– e.g. bittorrent, video streaming

● Parallelism – on multi-processor systems, two
processes can execute at the same time
● How can a single application utilize multicore

machines?

Inter-Process Communication (IPC)

● Exchange information/data between procs
● Process A: int send(int pid, void *msg, int len)
● Process B: int recv(int pid, void *msg, int len)

● Data transfer models
● Shared memory
● Message passing

● Synchronization models
● blocking/synchronous
● non-blocking/asynchronous

Message Passing

Process A Process B

kernel kernel

copy

Switch virtual
Address spaces

copy

int send(B, void *msg, int len)

int recv(A, void *msg, int len)

Shared Memory

Physical memoryProcess A Process B

kernel kernel

Shared memory

Shared memory

Message Passing vs. Shared Mem

● Message passing
● Must copy data
● Must involve kernel
● Easy to implement

● Shared memory
● Copying data optional
● Parallel processes can avoid invoking kernel

IPC Synchronization: Blocking OPs

● Blocking/Synchronous
operations (send,
recv)
● Process put on

process
communication queue

● Data transferred only
when other process is
also sends or recvs

● .. then placed back
into runqueue

1) Proc A: recv(m)

2) Kernel: remove from
runqueue, placed on
comm queue

3) Kernel: switch to B

4) Proc B: send(m)

5) Kernel: move A to
runqueue

6) Kernel: later switch to A

IPC Synchronization: Nonblocking

● Nonblocking/
Asynchronous Ops
● send and recv don't

block the process

● No data to recv?
● return 0 (bytes read)

● Proc B sends in inf
loop, Proc A never
recvs. Problem?

● Proc A: recv(m)
● If data to be read,

return it
● Else return 0,

continue computation

● Proc B: send(m)
● Add data to queue to

be read (later) by A
● If cannot add to

queue, return 0

IPC Synchronization: Buffering

● Buffering
● Communication channel can buffer N items

– Write N items to channel → nonblocking and data sent
– Write N+1 items → block OR return 0 (blocking vs. non)

● Communication channel has M items (M <= N)
– Read M items → nonblocking and data read
– Read M+1 items → block OR return 0 (blocking vs. non)

● N = 0 → normal blocking

Blocking vs. Nonblocking: Example

● Handing in homework to Prof.

● Need timestamp

1) Take homework to Prof's office, knock

2) “block” waiting for Prof. to arrive or open door

3) Prof. opens door, takes message, you unblock/leave

● Don't need timestamp

1) Take homework to Prof's office

2) Slide HW under door and leave

● 10,000 students, 1 prof on vacation. What happens to office?

● Blocking/Nonblocking applies to I/O requests too!

Threads: Alternative for
Concurrency/Parallelism

● Each processes has a flow of control
● The sequential execution through the processes'

code

● Each of these is a thread which consists of
● Register state (including instruction counter)
● Execution stack

● A process can have multiple threads
● Multi-threaded application
● Share data, code, process resources

Threads II

Kernel Threads
● Scheduled by the kernel

● Only execute in kernel!

● Each has its own execution state (blocked,
running, ready)
● Migrates between system queues (run, I/O)

user

kernel

One-to-one/User-Kernel Threads
● Scheduled by the kernel

● Executes at user-level, make syscalls to call kernel
● Kernel thd ctxt switch cheaper than proc switch, why?

● Each thread backed by kernel thread
● blocking/context switching

user

kernel

User Threads
● Kernel unaware of their existence
● Cooperative switching between

threads
● Threads must yield to allow others to

execute
– Why are they cooperative?
– What enables kernel threads to not need

to be cooperative?

● Context switches lightening fast!
● Don't need to switch modes to kernel

● What happens when one user
thread requests blocking I/O?

● Support parallelism?

user

kernel

One to one

Method used by Java, Pthreads

Many to one

● Method used by
● ruby, ocaml, lua

● You can write your
own threading library!

Many to many

● Kernel threads
created on demand
while there are
runnable user threads

● I/O bound user
threads tend to use a
whole kernel thread

● CPU bound user
threads share a
single kernel thread

Design of a Facebook Webserver

● A thread reads and writes from the network
● Receives requests from clients for home/wall
● Writes to the clients the response (i.e. home html)

● Question: how does the webserver retrieve
and calculate what the response html should
be?
● Must perform blocking Disk I/O
● Perform calculations to format the data
● Given html to network thread to send back to client

Facebook Webserver: Goals

● Throughput: maximize number of clients served
per second
● Minimize cost of processing each content request

● Reliability: if one part of the system fails, will the
rest fail?
● Reliability: fault isolation

Facebook Webserver: naïve
approach

● Single thread
● reads/writes to

network
● Reads from disk
● Performs all

calculations to format
html

● Problems/Benefits?
● Throughput?
● Reliability?
● Parallelism?

kernel

Network I/O
and Disk I/O

1 to 1 threading

Facebook Webserver: Other
Possible Approaches

● Multi-process server
● Networking proc. Uses IPC

to deliver requests to
“worker” processes

● Workers compute and do
disk I/O

● Return result to network
process

● blocking/nonblocking IPC?

● Problems/Benefits?
● throughput/reliability/parallelism

Disk I/O
Network I/O Disk I/O

IPC

Facebook Webserver: Other
Possible Approaches

Disk I/O
Network I/O Disk I/O

● Multi-threaded process
● Network thd communicates

with thds for computation and
disk I/O

● Thread type?
– User threads
– Kernel threads

● Problems/Benefits?
● Throughput?
● Reliability?
● Parallelism?

Best Approach?

● So which approach is BEST?
● You know the answer

● Best facebook web-server for what?
● Simplicity?
● Reliability?
● Throughput?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

