System Architecture and Structure

Gabriel Parmer
csci3411: Operating Systems

Lecture 2

Some content modified from Silberschatz etal, and West

More Administrative Detalls

Piazza.com — join ASAP
C linked list — homework due in a week.

« Homework is really about setting up your environment...
« vmware/virtualbox

Labs today in Tompkins 211

Blackboard for homework

« Posting — Thursday night
« Submission — Saturday by Noon

System Architecture and Structure

e How does hardware interact with
the OS?

« How do applications and the OS
interact?

« OS goals

« provide desirable abstractions to
applications

« while controlling the hardware
0 « OS implementation/org styles

/O Management/Communication

- Each device controller is in charge of a device type
- Each device controller has a buffer/control regs

- Protocol: To get a byte of data from a device o

e |/Ois from the device to local buffer of
controller

« CPU sets registers in controller with command
to read e.g. character from keyboard

- CPU waits while data is moved from
mouse keyboard printer monitor
controller buffer to memory . 5

- /0 devices and the CPU can execute concurrently \ /

o But CPU must actively wait as data is : :
y ik USB controller HEphes

transferred...byte...by...byte oY controllr adapter

« Better way???

memory

Interrupts

 Transfer control (instruction pointer) to interrupt
service routine (ISR)

ISR identified by address in interrupt vector

Interrupt architecture (HW) must save address
of the interrupted instruction

After servicing interrupt, CPU resumes
execution at previously interrupted address

What about other registers?

Where are they saved?

 Transfer control (instruction pointer) to interrupt

Interrupts

service routine (ISR)

- ISR identified by address in interrupt vector
Interrupt architecture (HW) must save address

of the interrupted instruction

After servicing interrupt, CPU resumes
execution at previously interrupted add

What about other registers?

Where are they saved?

Execution
Stack
Grows
Down (x86)

foo

bar

resSsS oh

int foo(void) {
bar();

}
void bar(void) {

// interrupt triggered here

CPU/Device Interaction: Interrupts

CPU user
process
executing

I/O interrupt U
processing

l/O idle

device
transferring

I/O transfer e transfer
request done request done

Direct Memory Access

- CPU

« Sets up (large) buffers in memory before 1/0O
« Asks device controller to transfer into buffer
« Receives single interrupt for whole buffer of data

e Device controller

« When device I/O complete (transferred to controller's local
buffers), transfer/copy data directly into memory

« Send interrupt when transfer complete
« Avoids CPU work for data-movement

« What if transferred data is always a single byte?

Direct Memory Access and Interrupts

« Keyboard device doesn't cause many interrupts

 Interrupt per key press: say 100 interrupts/second

« ISR overhead of 1 microseconds - 1/10000" CPU
time

* How about a networking card?
« 1 GB/second

Polling vs. Interrupts

« Polling: CPU repeatedly checks status of I/O

» Read a device controller register
« Has an I/O request finished, or not?

 If /O has completed, CPU reads it into memory

* Frequency of polling impacts latency and
throughput of 1/0O

« S0 should we simply poll at the highest possible
frequency?

 [s polling ever better than interrupts?

Example: Polling vs. Interrupts |

« Office hours — one professor, multiple students
« Explanation to group of students takes 10 min
* Professor can do one of two things:

1) Have students knock (interrupt); tell them to wait,
or come in — 1 minute/interrupt

2) Have students wait outside; Prof checks (polls) if
students waiting every 10 minutes — 1 minute/check

Example: Polling vs. Interrupts Il

« Normal office hours: 0.5 students/hour
o Pre-test: 12 students/hour
o Ask students to write a new OS: 60 students/hour

« Which policy is best for each?

« Minimize amount of time prof spends on polling/ints
« Minimize amount of time students spend waiting

* Not a perfect analogy, but you get the gist

OS Services

user and other system programs

GUI batch command line

user interfaces

system calls
program 11O file o resource .
; : communication : accountin
execution operations systems allocation 9
error pro;icglon
detection _ security
services

operating system

hardware

Interrupts, exceptions, and traps —
OH MY

« Interrupts thus far: Device — kernel
« Software-triggered events

 Application state saved (as for interrupt) and can be
resumed
« Exceptions

- Program faults (divide by zero, general protection fault,
segmentation fault)

— Not requested by executing application
« Traps/Software Interrupts

- Requested by application by executing specific instruction: sysenter
or int %d on x86

System Calls

« Wait, hardware support for calling the kernel?

« Why can't | just call it directly (function call)?

MSDOS: No Structure/Protection

Al 4

application program

&
resident system program ’

MS-DOS device drivers

System Call w/ Dual-Mode HW

user process
user mode
user process executing — calls system call return from system call | | (Mode bit=1)
\ 7
it 7
: 7
kernel trap return
- mode bit =0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Timesharing systems: 1) protection applications from each
other, and 2) kernel from applications (why the latter?)
* Mode bit == 0
e Access kernel memory segments
» Protected instructions
« Access I/O: instructions to read/write to device control
reqgisters (in/out on x86)
« Sensitive instructions
* What happens to the registers, and stack?

Syscall Mechanics

printf(“print me!”)
write(1, “print me!”)

put syscall number for write (4), file
descriptor (1), and pointer to “print
me!” into registers

sysenter: mode bit = 0

user

> Change to kernel stack node

cernel

Call address in syscall tbl at index 4 oq4e
Execute write system call
sysexit: mode bit = 1

> Restore application registers

#include <stdio.h>
int main ()

{

printf ("Greetings");

return O;

}

standard C library

Qrite ()

write ()
system call

)

Abstraction for syscalls: APIs

* Application Programmer Interfaces (APIs)

« Hide the details of how a syscall is carried out
POSIX (UNIX, Linux)

Win32 (Windows)

Net (Windows XP and later)

Cocoa (OS X)

APIs (cont

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe ()
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

Backup slides

Unix System Design

« UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two

separable parts
e Systems programs

« The kernel (mode bit = 0)

« everything below the system-call interface and above the
physical hardware
o file system, CPU scheduling, memory management, and

other operating-system functions; a large number of
functions for one level

Unix System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

g | handling swapping block 1/O page replacement

< character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Microkernel System Structure

Moves as much from the kernel into “user’ space

Communication takes place between user modules using
message passing

Benefits:
o Easier to extend a microkernel

« Easier to port the operating system to new architectures
« More reliable (less code is running in kernel mode)
« More secure

Detriments:
« Performance overhead of user space to kernel space
communication

Virtual Machines

* Do you know what these are?
 What is the structure of VMs?

Virtual Machines (cont)

« Virtual machines treat hardware and the operating system kernel
as though they were all hardware

o A virtual machine host (the kernel) provides an interface identical
to the underlying bare hardware

« The operating system host creates the illusion that a process has
Its own processor and memory

« Each guest provided with a (virtual) copy of underlying computer
« The API for virtual machines is a copy of the machine!

Virtual Machines (cont)

processes

¥

kernel

hardware

(a)

programming/
»~ interface

(a) Nonvirtual machine (b) virtual machine

processes

processes

processes

kernel

kernel

kernel

VM1

VM2

VM3

virtual-machine
implementation

hardware

(b)

Virtual Machine: Benefits

« Fundamentally, multiple execution environments (different operating
systems) can share the same hardware

 Protect from each other
« Some sharing of file can be permitted, controlled

« Communicate with each other, other physical systems via
networking

« Useful for development, testing

« Consolidation of many low-resource use systems onto fewer busier
systems

Followup

« Read chapters 1 and 2 in the book
» Follow chapters on webpage

« Course updates, lecture slides (when available)
available on course's webpage accessible from

www.seas.gwu.edu/~gparmer/

http://www.seas.gwu.edu/~gparmer/

Storage Hierarchy

y
| registers
o]

—
cache
£) Il
[l 2
main memory
£ Il
Ll v

electronic disk

0 |
I v

magnetic disk

S
—v

optical disk

f

|
—v

magnetic tapes

Storage Hierarchy: Attributes

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB > 16 MB > 16 GB > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-0.5 0.5-25 80 - 250 5,000.000
Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20 —150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

Goal:

* We want all accesses to be as fast as registers

e ...and also have the storage size of disk!

Caching

 Important principle, performed at many levels in a computer

« Information in use copied from slower to faster storage
temporarily

« Faster storage (cache) checked first to determine if information

IS there
o If it is, information used directly from the cache (fast)

« If not, data copied to cache and used there

« Cache smaller than storage being cached
« Cache management important design problem

« Cache size and replacement policy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

