

csci 3411: Operating Systems

Synchronization

Gabriel Parmer

Slides evolved from Silberschatz and West

Steve Jobs, 1955-2011, RIP
● "I read a study that measured the efficiency of locomotion for various species

on the planet. The condor used the least energy to move a kilometer. Humans
came in with a rather unimpressive showing about a third of the way down the
list....That didn't look so good, but then someone at Scientific American had the
insight to test the efficiency of locomotion for a man on a bicycle and a man on
a bicycle blew the condor away.

That's what a computer is to me: the computer is the most remarkable tool that
we've ever come up with. It's the equivalent of a bicycle for our minds."

● “We think the Mac will sell zillions, but we didn’t build the Mac for anybody
else. We built it for ourselves. We were the group of people who were going to
judge whether it was great or not. We weren’t going to go out and do market
research. We just wanted to build the best thing we could build."

Synchronization Motivation

● Multithreaded applications: threads share
● ...the same virtual address space
● ...share the same data-structures

● Concurrently executing threads
● ...have unknown execution order w.r.t. each other
● ...can access data-structures in unpredictable order

● How does a system make this work!?

Linked List...of Students
struct student_node {

struct student_node *next = NULL
char *name

}
struct slist { struct student_node *first=NULL }

list_add(list, new):
tmp = list->first
list->first = new
new->next = tmp

list_rem_first(list):
tmp = list->first
if (tmp):

list->first = tmp->next
tmp->next = NULL

return tmp

list_find(list, name):
while (n = list->first; n ; n = n->next):

if (n->name == val) return n
return NULL

1) Adding while adding?
2) Adding while finding?
3) Adding while removing?
4) Removing while finding?

Producer/Consumer Problem
Producer:

while(1) {
struct item i = produce_item();

while (count == BUFFER_SIZE)
;

buffer[in] = i;
in = (in + 1) % BUFFER_SIZE;
count++;

}

Consumer:

while(1) {
struct item i;

while (count == 0)
;

i = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

consume_item(i);
}

Synchronization Motivation

● count++ is really

tmp = count;

tmp = tmp+1;

count = tmp;

● count-- is

tmp = count;

tmp = tmp – 1;

count = tmp

Synchronization Motivation

● count++ is really

tmp = count;

tmp = tmp+1;

count = tmp;

● count-- is

tmp = count;

tmp = tmp – 1;

count = tmp

mov count_mem_addr, %reg0
add %reg0, $1
mov %reg0, count_mem_addr

mov count_mem_addr, %reg0
sub %reg0, $1
mov %reg0, count_mem_addr

Synchronization Motivation

● Initially, say count = 1
● If two threads execute “count++” and “count--”

concurrently
● What is count?

Synchronization Motivation

mov count_mem_addr, %reg0
add %reg0, $1
mov %reg0, count_mem_addr
mov count_mem_addr, %reg0
sub %reg0, $1
mov %reg0, count_mem_addr

mov count_mem_addr, %reg0
mov count_mem_addr, %reg0
add %reg0, $1
mov %reg0, count_mem_addr
sub %reg0, $1
mov %reg0, count_mem_addr

mov count_mem_addr, %reg0
mov count_mem_addr, %reg0
sub %reg0, $1
mov %reg0, count_mem_addr
add %reg0, $1
mov %reg0, count_mem_addr

? ? ?
What is count in each case?

Principle of Synchronization

● The buffer in the producer/consumer is inconsistent
without an accurate “count”

● Arbitrary interleavings of the execution of concurrent
threads when accessing shared data can lead to
inconsistency
● Otherwise known as race conditions
● We used “count”, could be e.g. pointers in a linked list

● Threads accessing data must cooperate to access
data one at a time using some method that enforces
this synchronization

Synchronization in the Kernel

● Operating system kernels must worry about
synchronization
● Interrupts made kernel code concurrent

– Normal kernel code:
count++

– Interrupt service routine (ISR):
count--

● Ouch.
● Threads...everywhere!

Critical Sections

● Segments of code that access shared data
● Only one thread of control at a time can execute in

a critical section
● Put another way: Critical sections require mutually

exclusive access

● Main problem: How can the system provide
mutually exclusive access to shared data?
● In a manner that is easy to program

Critical Section Solution Criteria

1) Mutual exclusion – No two threads can
concurrently access in the critical section (CS)

2) Progress – threads wishing to enter an
“unoccupied” CS cannot be indefinitely prevented
from doing so

3) Arbitrary interleaving – no assumptions regarding
relative speeds of thread execution can be made

4) Bounded Waiting – the number of times other
threads enter the CS before a specific thread is
chosen must be bounded

First Naive Attempt

● “CS_occupied” initialized to false

while (1) {
normal_processing();
while (CS_occupied) ;
CS_occupied = true;
critical_section_code();
CS_occupied = false;

}
Satisfy all critical
section properties?

First Real Attempt: Two Threads

● Alternation between threads
● Thread id i is “current” thread, j is “other” thread
● “turn” initialized to i

while(1) {
normal_processing();
while (turn != i);
critical_section_code();
turn = j;

} Problems?

Second Attempt: Peterson's Alg.

// is a thread trying to enter a CS:
boolean flag[2] = {false, false};
int turn = i; // either i or j

while(1) {
normal_processing();
flag[i] = true;
turn = j;
while ((flag[j] == true) && (turn == j)) ;
critical_section();
flag[i] = false;

}

Second Attempt: Peterson's Alg.
boolean flag[2] = {false, false};
int turn = 0;
i = pthreads_self(); // thread library function
j = other_thread_id(); // our function
if (!turn) turn = i;

while(1) {
normal_processing();
flag[i] = true;
turn = j;
while ((flag[j] == true) && (turn == j)) ;
critical_section();
flag[i] = false;

}

Second Attempt: Peterson's Alg.

// i = red, j = blue
while(1) {

normal_processing();
flag[i] = true;
turn = j;
while ((flag[j] == true)

&& (turn == j)) ;
critical_section();
flag[i] = false;

}

// j = blue, i = red
while(1) {

normal_processing();
flag[j] = true;
turn = i;
while ((flag[i] == true)

&& (turn == i)) ;
critical_section();
flag[j] = false;

}

boolean flag[2] = {false, false};
int turn = i;

More than Two Threads: Bakery Alg.

● Bakery algorithm (or the DMV alg.):
● Get a ticket
● If you have the lowest ticket, you're served next!
● But two customers can have the same number...

– Use ID to break ties
– Thread 1 proceeds before thread 2 as 1<2
– Threads must be numerically identified

Bakery Algorithm II

● Shared data structures (for n threads):

● Notation:
● (a,b) < (c,d) if (a<c) || ((a==c) & (b<d))

● max(a
0
, ..., a

n-1
) = largest value in {a

0
, ..., a

n-1
}

boolean choosing[n] = {false, ...};
int number[n] = {0, ...};
int i = pthread_self();

Bakery Algorithm III
while(1) {

choosing[i] = true;
number[i] = max(number[0], ..., number[n-1]) + 1;
choosing[i] = false;
for (j = 0 ; j < n ; j++) {

while(choosing[j]) ;
while((number[j] != 0) &&

 (number[j], j) < (number[i], i)) ;
}
critical_section();
number[i] = 0;
additional_processing();

}

...so wait, lets get this straight...

● I have to have two arrays of the size of the
maximum number of threads for every CS???

● Hardware, please come save us!

1) Disable interrupts while in critical sections
● Prevents preemption!
● Should user-level processes be able to do this?
● Work on multiprocessors?

2) atomic instructions
● Prevent preemption while executing instruction

Test & Set

● Functionally identical to

● But all carried out atomically!

boolean test_and_set(boolean *memory_location)
{

boolean b = *memory_location;
*memory_location = true;

return b;
}

Mutual Exclusion via Test & Set

while(1) {
while(test_and_set(&lock)) ;
critical_section();
lock = false;

normal_processing();
}

● lock shared across threads, initially set to false
● Problems with this solution??? (4 criteria)

Semaphores

● Mechanism for synchronization
● Semaphore, s, is an integer and a set of operations
● Conceptually, atomic operations are:

● wait(s): while(s <= 0) ; s--;
● signal(s): s++;

● As above implementation requires atomicity, how
could it really be implemented?
● What is the code for this???
● Other option on uniprocessors?

Semaphores II

● Binary semaphore:
● mutex
● s = 1

● Counting semaphore:
● s initialized to any integer value
● Can initialize s to any positive value
● What do positive values of s mean?

semaphore_t mutex; // binary sem, s = 1
while(1) {

normal_processing();
wait(&mutex);
critical_section();
signal(&mutex);

}

Semaphores III

● Higher-level sync primitives built using lower-
level ones

atomic Semaphores Monitors
instuctions

How can we implement semaphore's
wait and signal using atomic
instructions???

Semaphores IV

● Busy waiting:
● while(s <= 0) ; s--;
● Is this a good strategy if

– Critical sections are long?
– Critical sections are short?
– “spin locks” are common (ubiquitous)!

● Where are they useful?

Blocking Semaphores

● Blocking Semaphores: wait queue associated w/ semaphore
● Block – place thd invoking wait onto semaphore's waiting queue

● Wakeup – remove one thd from wait queue, place into runqueue

– How do we decide which thread to remove?

● What do positive and negative values of s mean?
● Counting semaphore implementation:

wait(s) {
s--;
if (s < 0) {

waitq_enqueue(curr_thd);
block_calling_thd();

}
}

signal(s) {
s++;
if (s <= 0) {

t = waitq_dequeue();
wakeup_thd(t);

}
}

Some Issues with Semaphores

● Starvation
● LIFO ordered wait-queues
● What should the “correct” queueing policy be?

● Priority Inversion
● Example
● Must consider in real-time systems!

● Deadlocks
● Example
● Next lecture!

Monitors

● Higher-level abstraction that eases programming burden of
thread synchronization

● Monitor includes set of data-structures and associated
procedures (fns) to modify structures

● Fns can only access data-structures and arguments

● Mutual exclusion within monitor (via bin. semaphore)
● functions are atomically executed
● Results in data-structure mutual exclusion

Monitors II

Monitors III

monitor name {
//data structures...
void fnA(...) {…}
void fnB(...) {…}
void initialization_fn(...) {…}

}
● What if one of the functions wants to wait for some

condition to happen...
● e.g. wait for data to arrive in ring-buffer, user to press key,...
● Condition variables – associated with specific monitor

– wait_cv(cv) – block on cv queue, release monitor semaphore

– signal_cv(cv) – unblock thd on cv queue, place in monitor q

This look familiar
to anyone?

Monitors IV

Monitors V

● Example usage
● Threads making blocking I/O

bool IO_ready = false;
int nblked = 0;
mutex_t IO_mux;
cv_t IO_blklist;

wait_for_IO(void) {
wait(IO_mux);
if (!IO_ready) {

nblked++;
wait_cv(IO_blklist, IO_mux);

}
signal(IO_mux);

}

Problem???

signal_IO(void) {
wait(IO_mux);
if (nblked) {

signal_cv(IO_blklist);
nblked--;

}
signal(IO_mux);

}

Monitors V

● Example usage
● Threads making blocking I/O

bool IO_ready = false;
mutex_t IO_mux;
cv_t IO_blklist;

wait_for_IO(void) {
wait(&IO_mux);
if (!IO_ready) {

...
}
signal(&IO_mux);

}

bool IO_ready = false;
mutex_t IO_mux;
cv_t IO_blklist;

wait_for_IO(void) {
wait(IO_mux);
while (!IO_ready) {

...
}
signal(IO_mux);

}

Important exercise:
Implement condition variables
using mutexes!

Dining Philosophers

Dining Philosophers II

● Each philosopher is in one of three states
● thinking, hungry, or eating

● hungry: tries to acquire chopsticks, one at a time
● Only if both chopsticks are not used, can be they

both be picked up
● Transition into eating state
● Later, philosopher places both chopsticks on table,

transitions to thinking state

Dining Philosophers Solution I
mutex chopstick[5];
int right(int i) { return (i+1)%5; }
int left(int i) { return (i+4)%5; }

while (1) {
wait(chopstick[i]);
wait(chopstick[right(i)]);
eat_and_be_jolly();
signal(chopstick[i]);
signal(chopstick[right(i)]);
think_deep_thoughts();

}

Problems?

Dining Philosophers Solution II

while (1) {
pickup(i);
eat_and_be_jolly();
put_down(i);
think_deep_thoughts();

}

Dining Philosophers Solution III
monitor DP {

enum {THINKING, HUNGRY, EATING} state[5];
condition_var_t eat_time[5]; //condition → time to eat

void pickup(int i) {
state[i] = HUNGRY;
time_to_eat?(i);
if(state[i] != EATING)

wait(eat_time[i]);
}

void put_down(int i) {
state[i] = THINKING;
time_to_eat?(right(i));
time_to_eat?(left(i));

}

void time_to_eat?(int i) {
if ((state[right(i)] != EATING) &&
 (state[i] == HUNGRY &&
 (state[left(i)] != EATING)) {

state[i] = EATING;
signal(eat_time[i]);

}
}

Remember: mutex held while
executing all fns in the monitor!

Amdahl's law

● Parallelism speeds up multi-threaded
computation

● ...but critical sections force mutual exclusion →
sequential execution.

● Amdahl's law:
● parallelization speedup limited by sequential code
● Example:

– 5% of your code's execution is in a critical section
– infinite processors: maximum 20x speedup

Readers/Writers

● If a data-structure is read often, and written
infrequently
● Concurrent reads allowed!
● Writes wait for all reads to complete before

reading/writing the data

Readers/Writers II

Reader:
wait(mutex);
read_num++;
if (read_num == 1)

wait(write_mut);
signal(mutex);

read_data_struct();

wait(mutex);
read_num--;
if (read_num == 0)

signal(write_mut);
signal(mutex);

Writer:
wait(write_mut);

read_data_struct();
write_data_struct();

signal(write_mut);

semaphore mutex = 1, write_mut = 1;
int read_num = 0;

Downsides to this
approach?

The View from Up High

● Why not just do this?

int main(void) {
wait(&big_lock);
compute();
signal(&big_lock);

}

● Necessary evil
Race conditions

No concurrency

Correct programs

Deadlock

In
cr

ea
s e

d
E

xe
cu

tio
n

S
yn

ch
ro

ni
za

tio
n

BadGood

My Recent Errors

wake_me_later = 1;
thd->state = TASK_STATE_INTERRUPTABLE;
schedule(); //will place into wait queue

TIMER IRQ:

if (wake_me_later) {
thd->state = TASK_STATE_RUNNABLE;
wake_up(thd);
wake_me_later = 0;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

