

csci3411: Operating Systems

Lecture 3: System structure and Processes

Gabriel Parmer

Some slide material from Silberschatz and West

System Structure
● System Structure – How different parts of

software

1) Are separated from each other (Why?)

2) Communicate

● How does a system use
● dual mode
● virtual address spaces

● Implications on
● Security/Reliability
● Programming style/Maintainability

Monolithic System Structure

Word BrowserExcel

Operating System
(File System, Networking,

Memory Mgmt, Scheduling, ...)

Hardware (CPU, Memory, Peripherals
– hard drive, NIC, GPU)

Kernel
- most trusted
- must work

“User-Level”
System
Call

open(...)

● Includes Unix/Windows/OSX

Monolithic System Structure

Word BrowserExcel

Operating System
(File System, Networking,

Memory Mgmt, Scheduling, ...)

Hardware (CPU, Memory, Peripherals
– hard drive, NIC, GPU)

Kernel
- most trusted
- must work

“User-Level”
System
Call

open(...)

● Includes Unix/Windows/OSX

Windows 95
Windows 98

Windows XP
Windows Vista

0

10

20

30

40

50

60

Millions of Lines
of Code

When's the last time you tried
to get 50 MLOC to work???

Microkernel System Structure

● Moves functionality from the kernel to “user” space
● Communication takes place between user servers

using inter-process communication (IPC)
● Benefits:

● Easier to add functionality
● More reliable (less code is running in kernel mode)
● More secure

● Detriments: performance! (why?)

App
File

System Memory
Management

Networking

User level

Kernel level

open(...)

IPC <10 KLOC

Virtual Machines I

● Do you know what these are?
● What is the structure of VMs?

Virtual Machines II

● A virtual machine host (the kernel) provides an
interface identical to the underlying bare
hardware

● Other guest kernels execute in user-mode
● The API for virtual machines is a copy of the

machine!

Virtual Machines III

 (a) non-virtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

System
call

hypercallidentical

Virtual Machine: Benefits

● Fundamentally, multiple operating systems
share the same hardware

● Protected from each other
● Some sharing of files
● Communicate with each other via networking
● Useful for development, testing
● Consolidation of many low-resource use
systems onto fewer busier systems

CPU/Memory Abstraction

● Hardware provides
● Sequential execution
● Interrupts

● OS should provide
● Multiple flows of sequential execution (diff apps)
● Each app should have its own memory “space”
● Protection between these applications

● Security
● Fault isolation

Processes

● An executable program (seen in ls)
● passive collection of code and data; kept in file

● UNIX Process: active entity that includes (seen
in ps)
● Registers (instruction counter, stack pointer, etc..)
● Execution stack
● Heap
● Data and text (code) segments

load sections
into memory

set ip to
prog. start

compiler
.c file .o/.exe

loader OS
exec

process

programsource

Process in Memory

malloc, free

int global_variable;

int main(void) { return 0; }

char *s = malloc(10);
printf(”stk: %p\n”, &s);
printf(“malloc: %p\n”, s);
printf(”global: %p\n”, &global_variable);
printf(”fn: %p\n”, main);
→
stk: 0xBC87B240
malloc: 0x1070B4F0
global: 0x004C72A0
fn: 0x000BC240

empty

OS Support for Process Memory

● OS uses HW to provide virtual
address space (VAS)
● Each process thinks it has all

memory
● OS abstraction!!!

● Provides protection between
processes

● Only subset of that address
space is populated by actual
memory

OS Support for Process Memory II

● Kernel must manage virtual
address spaces

● Create mapping between virtual
and actual memory

● Switch between apps == switch
between VAS

● Only mode 0 can switch VAS!

Process Control Block (PCB)

● Kernel, per-process, data-structure includes:
● CPU registers (including instruction counter)
● Scheduling state (priority)
● Memory management information (amount of

memory allocated, virtual address space mapping,
stack location)

● CPU accounting info (exec time at user/kernel level)
● File info (open files)
● Process state

Process States
● As process executes, the kernel changes its state

● Many processes in system

● If one is in running, what states are the others in?

● Give an example of why a process would go from
running → waiting

● Why would running + interrupt → waiting

registers loaded/
executing

Process Queues

● Process/Job queue – all processes in system
● Scheduling runqueue – procs in ready state

● Waiting to execute
● Scheduler chooses next process to run

● Device queues – processes waiting for I/O
completion (interrupts)
● Typically one queue per device

● Processes migrate between queues

Process Migration between Queues

Process Scheduling

● Choose which process to dispatch next given
● Process priority (compared to other ready/runnable

processes)
● Remaining process timeslice (CPU allocation)

● Two general types of processes

1) CPU bound: most time on CPU, not waiting for I/O

2) I/O bound: short bursts of CPU usage, most time
spent waiting on I/O

● What keeps a single CPU-bound process from
monopolizing the CPU?

Timer Interrupts

● Interrupt from on-processor time keeping
device
● e.g. 100 times a second in Linux, every 10

milliseconds

● Allows kernel to “keep time”
● Track amount of execution of different processes
● Schedule accordingly

● Process' timeslice typically a multiple of a timer
interrupt's inter-arrival time

Single CPU → Many Processes

● Scheduler decides which process to run next
● Dispatcher actually switches from the current

process, to the next (chosen by the scheduler)
● Ready state → running state

● Context switch time is overhead; should be
minimal

● What is involved in a context switch? What
needs to be saved and restored?

Single CPU → Many Processes II

Context Switch Implementation

struct thread *current, *next;
switch_regs(current, next)

switch_regs:
/* save first thread's registers */
mov %a, current->regs.a
…
mov %sp, current->regs.sp
mov post_switch, current->regs.ip

/* load next thread's registers! */
mov next->regs.a, %a
…
mov next->regs.sp, %sp
jmp next->regs.ip

post_switch:
ret

%a is the first register
%sp is the stack pointer

Process Operations

● Creation (fork)
● Termination (exit)
● Coordination (wait)

Process Creation: fork()
● Parent process may fork() a child process
● Parent may share system resources with child

● Open files

● Parent and child execute concurrently
● Parent can wait() for children to finish execution
● Parent can kill() its children

● Process hierarchy
● Which is the first process? Where does a “shell” fit

in?

Process Creation: fork() II

● fork() creates a copy of the parent's address
space for the child

● Copying all memory can be expensive!

● Often intention is to execute new program
● exec() or execve() system calls load program

from disk into current process

● So why copy all memory?
● COW – copy on write memory sharing
● vfork() – stop parent's execution till we exec()

Process Termination: exit()

● Release current process' resources back to the
system, discontinue execution

● Takes argument: status/return value
● Same as returning integer from main function

● Process might stick around with status/return
value until parent wait()'s

● wait() returns the status of the child process
● “zombie” process – new process state

fork/join style (or fork/wait)

C Example of Fork Usage
int main()
{
 pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed");
 exit(­1);
}
else if (pid == 0) { /* child process: execute “ls” */
 execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

 int status;
 /* parent will wait for the child to complete */
 wait(&status); /* or wait_pid(pid, &status, 0) */
 printf ("Child Complete");
 exit(0);
}

 return 0;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

