
  

csci3411: Operating Systems

Lecture 3: System structure and Processes

Gabriel Parmer

Some slide material from Silberschatz and West



  

System Structure
● System Structure – How different parts of 

software

1) Are separated from each other (Why?)

2) Communicate

● How does a system use 
● dual mode
● virtual address spaces

● Implications on
● Security/Reliability
● Programming style/Maintainability



  

Monolithic System Structure
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Microkernel System Structure

● Moves functionality from the kernel to “user” space
● Communication takes place between user servers 

using inter-process communication (IPC)
● Benefits:

● Easier to add functionality
● More reliable (less code is running in kernel mode)
● More secure

● Detriments: performance!  (why?)
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Virtual Machines I

● Do you know what these are?
● What is the structure of VMs?



  

Virtual Machines II

● A virtual machine host (the kernel) provides an 
interface identical to the underlying bare 
hardware

● Other guest kernels execute in user-mode
● The API for virtual machines is a copy of the 

machine!



  

Virtual Machines III

             (a) non-virtual machine       (b) virtual machine
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Virtual Machine: Benefits

●  Fundamentally, multiple operating systems 
share the same hardware

●  Protected from each other
●  Some sharing of files 
●  Communicate with each other via networking
●  Useful for development, testing
●  Consolidation of many low-resource use 
systems onto fewer busier systems



  

CPU/Memory Abstraction

● Hardware provides
● Sequential execution
● Interrupts

● OS should provide
● Multiple flows of sequential execution (diff apps)
● Each app should have its own memory “space”
● Protection between these applications

● Security
● Fault isolation



  

Processes

● An executable program (seen in ls)
● passive collection of code and data; kept in file

● UNIX Process: active entity that includes (seen 
in ps)
● Registers (instruction counter, stack pointer, etc..)
● Execution stack
● Heap
● Data and text (code) segments

load sections
into memory

set ip to 
prog. start

compiler
.c file .o/.exe

loader OS
exec

process

programsource



  

Process in Memory

malloc, free

int global_variable;

int main(void) { return 0; }

char *s = malloc(10);
printf(”stk: %p\n”, &s);
printf(“malloc: %p\n”, s);
printf(”global: %p\n”, &global_variable);
printf(”fn: %p\n”, main);
→
stk: 0xBC87B240
malloc: 0x1070B4F0
global: 0x004C72A0
fn: 0x000BC240

empty



  

OS Support for Process Memory

● OS uses HW to provide virtual 
address space (VAS)
● Each process thinks it has all 

memory
● OS abstraction!!!

● Provides protection between 
processes

● Only subset of that address 
space is populated by actual 
memory



  

OS Support for Process Memory II

●  Kernel must manage virtual 
address spaces

● Create mapping between virtual 
and actual memory

● Switch between apps == switch 
between VAS

● Only mode 0 can switch VAS!



  

Process Control Block (PCB)

● Kernel, per-process, data-structure includes:
● CPU registers (including instruction counter)
● Scheduling state (priority)
● Memory management information (amount of 

memory allocated, virtual address space mapping, 
stack location)

● CPU accounting info (exec time at user/kernel level)
● File info (open files)
● Process state



  

Process States
● As process executes, the kernel changes its state

● Many processes in system

● If one is in running, what states are the others in?

● Give an example of why a process would go from 
running → waiting

● Why would running + interrupt → waiting

registers loaded/
executing



  

Process Queues

● Process/Job queue – all processes in system
● Scheduling runqueue – procs in ready state

● Waiting to execute
● Scheduler chooses next process to run

● Device queues – processes waiting for I/O 
completion (interrupts)
● Typically one queue per device

● Processes migrate between queues



  

Process Migration between Queues



  

Process Scheduling

● Choose which process to dispatch next given
● Process priority (compared to other ready/runnable 

processes)
● Remaining process timeslice (CPU allocation)

● Two general types of processes

1) CPU bound: most time on CPU, not waiting for I/O

2) I/O bound: short bursts of CPU usage, most time 
spent waiting on I/O

● What keeps a single CPU-bound process from  
monopolizing the CPU?



  

Timer Interrupts

● Interrupt from on-processor time keeping 
device
● e.g. 100 times a second in Linux, every 10 

milliseconds

● Allows kernel to “keep time”
● Track amount of execution of different processes
● Schedule accordingly

● Process' timeslice typically a multiple of a timer 
interrupt's inter-arrival time



  

Single CPU → Many Processes

● Scheduler decides which process to run next
● Dispatcher actually switches from the current 

process, to the next (chosen by the scheduler)
● Ready state → running state

● Context switch time is overhead; should be 
minimal

● What is involved in a context switch?  What 
needs to be saved and restored?



  

Single CPU → Many Processes II



  

Context Switch Implementation

struct thread *current, *next;
switch_regs(current, next)

switch_regs:
/* save first thread's registers */
mov %a, current->regs.a
…
mov %sp, current->regs.sp
mov post_switch, current->regs.ip

/* load next thread's registers! */
mov next->regs.a, %a
…
mov next->regs.sp, %sp
jmp next->regs.ip

post_switch:
ret

%a is the first register
%sp is the stack pointer



  

Process Operations

● Creation (fork)
● Termination (exit)
● Coordination (wait)



  

Process Creation: fork()
● Parent process may fork() a child process
● Parent may share system resources with child

● Open files

● Parent and child execute concurrently
● Parent can wait() for children to finish execution
● Parent can kill() its children

● Process hierarchy
● Which is the first process? Where does a “shell” fit 

in?



  

Process Creation: fork() II

● fork() creates a copy of the parent's address 
space for the child

● Copying all memory can be expensive!

● Often intention is to execute new program
● exec() or execve() system calls load program 

from disk into current process

● So why copy all memory?
● COW – copy on write memory sharing
● vfork() –  stop parent's execution till we exec() 



  

Process Termination: exit()

● Release current process' resources back to the 
system, discontinue execution

● Takes argument: status/return value
● Same as returning integer from main function

● Process might stick around with status/return 
value until parent wait()'s

● wait() returns the status of the child process
● “zombie” process – new process state



  

fork/join style (or fork/wait)



  

C Example of Fork Usage
int main()
{
      pid_t  pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
  fprintf(stderr, "Fork Failed");
  exit(­1);
}
else if (pid == 0) { /* child process: execute “ls” */
  execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

              int status;
         /* parent will wait for the child to complete */
  wait(&status); /* or wait_pid(pid, &status, 0) */
  printf ("Child Complete");
  exit(0);
}

     return 0;
}
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