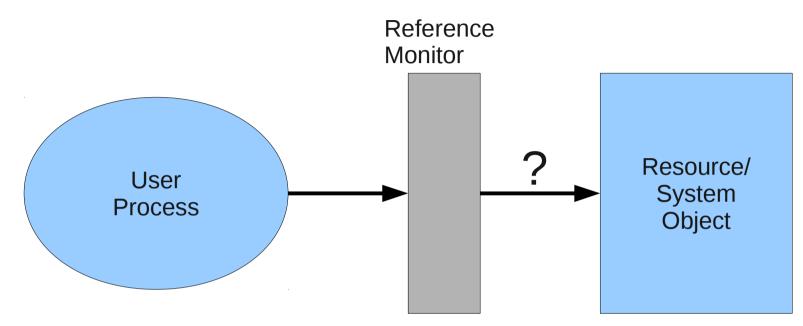
csci 3411: Operating Systems

Protection


Gabriel Parmer

Slides evolved from Silberschatz and Stanton

Protection

- System consists of collection of resources
 - Physical resources
 - Memory, Disk, and NIC
 - Virtual resources
 - Files, Processes, Semaphores
- System has a number of principals
 - Entities that access the system resources
 - Users, Processes, Threads
- Protection: ensure all resources accessed correctly, and only by those principals that are allowed to do so

Access Control

- System knows who the requester of the resource is (the principal)
- All accesses to resources go through the reference monitor
 - Can the requester access the resource or not?

Access Control II

- Reference monitor
 - Is trusted
 - Must be protected itself from principals
- How does the reference monitor decide if a principal should access a resource?
 - Guiding principles
 - Principle of least privilege (POLP)
 - Need to know
 - IITYIHTKY

Access Matrix

	File 1	File 2	File 3	Network	Printer
User 1	read	write	-	-	print
User 2	write	execute		receive, send	-
User 3	-	-		receive, send	-
User 4	read, execute	write	-	send	-

 Principal *i* allowed to perform operation *op* on resource *j* if *op* ∈ *AM(i,j)*

Access Matrix II

- Mechanism
 - How does the reference monitor ensure that all executed operations are allowed by the access matrix?
- Policy
 - How are the specific access rights for objects placed into the access matrix?
- General Goal: Make a general mechanism that can support the largest variety of useful policies

Protection Mechanisms: Table

- Global Table Access matrix stored as large table in memory and on disk
 - Size = # principals * # resources
 - # users in engineering?
 - # files on a file system?
 - Principals can include processes
 - Must add principal when process is forked
 - Remove principal when process exits

Protection Mechanisms: ACLs

	File 3
User 1	-
User 2	write
User 3	-
User 4	-

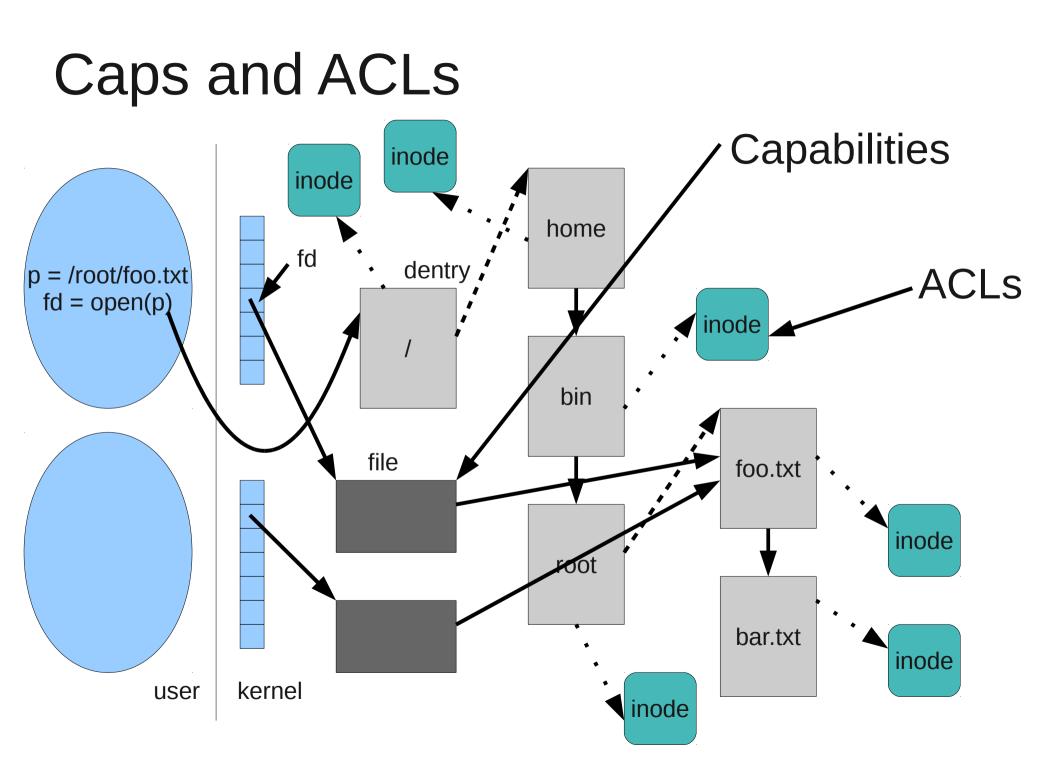
- Corresponds to access matrix columns
- Access Control Lists (ACLs)
 - Each resource has a list associated with it (metadata)
 - For files, ACLs stored in filesystem
 - Every time a principal attempts an operation on a resource, check if ACL gives access

Protection Mechanisms: Capabilities

	File 1	File 2	File 3	Network	Printer
User 2	write	execute		receive, send	-

- Capabilities correspond to access matrix rows
- Access rights for resources associated with specific principals
 - User 2 has a capability to write to File 1
 - Ownership of a capability for an operation to a resource is designation of right to access
 - Reference monitor simply checks for presence of capability
 - Capabilities cannot be directly accessible/modifiable trusted

ACLs and Capabilities


- Bolt Bus vs. DC2NY
 - Ticket as proof of entry
 - Don't even need to know passenger name
 - Different levels of access
 - List of passengers
 - Accessed for each arriving passenger
- DC2NY has two employees/bus; Bolt Bus, one
 - Which uses ACLs, which capabilities?

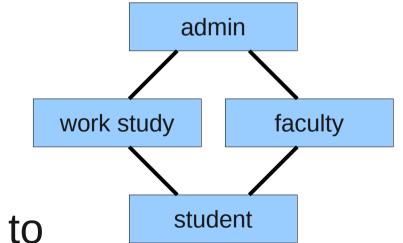
ACLs and Caps: Comparison

- Reference Monitor
 - ACLs: checking lists can be time-consuming
 - Caps: presence of cap designates access fast!
- Delegation give access rights to other principal
 - ACLs: access/modify ACL
 - Caps: pass capabilities to other principals at runtime
- Revocation remove previously granted rights
 - ACLs: remove principal's access from ACL
 - Caps: Difficult (track all capabilities, level of indirection,)

Often Complementary Mechanisms

- Drink bracelet at concerts
 - To get bracelet, expensive check of "list"/wallet
 - Once have bracelet, cheap verification of age
- open vs. read/write
 - open traverses filesystem, checking access
 - File descriptor denotes ability to access the file
 - Capability that precludes expensive access control checks

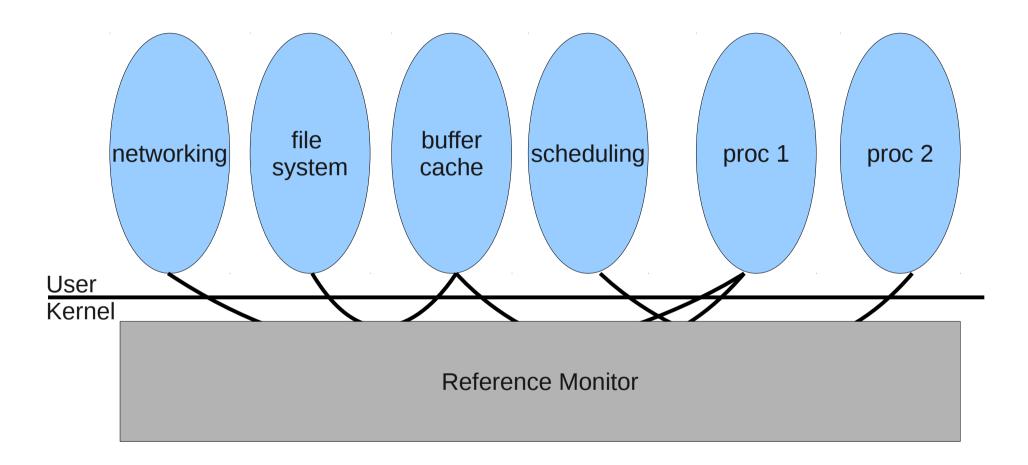
Policies: Bell-LaPadula


- Information flow: if we treat data as if it went to all places in the system permitted, does anyone see it who shouldn't?
 - Assume: my password is written on my desk
 - Qi has a key to my office
 - Elizabeth has access to Chonti's desk
- Bell-LaPadula specifies
 - Classification of data and users into levels
 - How information can flow between the users based on the levels of the data

Bell-LaPadula Confidentiality

- Assume: *C*(*x*) is the classification level of resource or user *x*
- Simple Security Property:
 - For user u, resource x, u may read x if $C(x) \le C(u)$
- *-Property:
 - A principal with read access to x may write y if $C(x) \le C(y)$

Policies: Role Based Access Control


- Role set of users
 - Assign access permissions to roles, not users
 - Users get all permissions from the rule their in
 - Partial order of roles
 - Role gets permissions of all roles below
 - Only list new permissions at a level
- Roles meant to correspond to natural concepts in an organization

Secure OSes

- Must ensure integrity of the reference monitor
 - Must be implemented somewhere, typically in kernel
 - Must ensure integrity of the whole kernel!
 - Trusted Code Base (TCB) all code on the system that must be trusted to ensure correctness of protection mechanisms and policies

Secure Oses II

Questions

- Can the user be a good reference monitor?
 - User Account Protection (UAP)
 - App stores installation process
- Can Windows/Linux/OS X every be secure?
- Why don't we separate all system resources so no users can access the same resources?
 - How about this separation for processes?
 - No information flow between users!