

csci 3411: Operating Systems

Disk Scheduling

Gabriel Parmer

Slides evolved from Silberschatz

Layered Architecture

File Descriptor/UNIX API

File System

I/O Scheduling

Disk

Buffer Cache

Magnetic Media (Disk)

Ewww, Yuck!
Moving Parts!
How Barbaric.

Magnetic Media II

● Blocks – granularity of I/O as seen by OS
● Multiple of sector size

– Block size == page size is convenient (i.e. 4KB)

● Accessed by OS as 1d array of blocks

● Disks can process I/O requests in parallel
● Many I/O requests for blocks can be pending at a

given time

Disk I/O Management

● Disks controllers typically interact with the CPU
● CPU can request block transfers to/from memory

using DMA
● Interrupts triggered when blocks arrive in memory,

or when they are copied to disk
● Familiar?
● Why didn't Linux until very recently include an

equivalent to NAPI for disks?

Disk Scheduling

● Oses goal is to maximize disk's bandwidth,
minimize latency

● OS encourages concurrency
● Multiple threads each making disk requests
● Each filesystem request can cause multiple disk

requests
– Multiple index blocks (ls), multiple data blocks for

sequential access (cat)

Disk Scheduling II

● In what order should the OS issue these
concurrent disk requests to disk?
● Consider disk physical characteristics (seek time)
● Elevator analogy

● Goals
● Performance (bandwidth/latency)
● Fairness (between different processes making reqs)

– Starvation
● Performance/Fairness often at odds

I/O Buffer Request Queues

File Descriptor/UNIX API

File System

I/O Scheduling

Disk

Buffer Cache

First-Come, First Served

● Head movement: 640 cylinders

Shorted Seek Time First (SSTF)

● Head moves across 236 cylinders

Scan (Elevator) Scheduling

C-Scan (circular scan)

C-Look Scheduling

Additional Techniques

● Which algorithm is best when there is one
outstanding request?
● Better use disk when there are multiple outstanding

requests
– Motivates Anticipatory scheduling
– A generally beneficial technique?

So wait, which should I use?

● Which is best?
● Throughput
● Latency
● Fairness

● Expected workload?
● Low Throughput?
● High throughput?

– Sustained or bursty?
● Interactive?

● Which do I use???
● Too hard to decide,
● I give up

● Recurring theme
● No one algorithm best

for all situations
● What can do we???

Disks are barbaric, what about SSDs

● Solid State Disks (aka
Flash drives)
● Organized like memory:

Random access array
– Random vs. Sequential access
– Implications on disk scheduling algorithms?

● Reads lightening fast!
● Writes not so much, but still better than disks!

– Generally only sequential write is slower than disks

● OMGFTWBBQ – filesystems can be stupid now!
● right?

1 http://arstechnica.com/hardware/news/2009/11/biography-solid-state-disk.ars

1

Solid State Disks: Different Pain

● What's the same
● I/O still relatively very expensive: Minimize

– Buffer cache

– Indexes should minimize number of accesses

● Different medium, different constraints
● Write once, erase operation on granularity of many blocks (512K

erases vs 4K blocks)
● Limited number of erases per cell – Requires write leveling

● Minimize writes, cluster data changed often
● More info: http://www.anandtech.com/printarticle.aspx?i=3531

Phase-Change Memory (PCM)

● PCM and beyond...

● Trend towards faster random access
nonvolatile storage

● Will speeds meet that of RAM?
● Where will the filesystem be in such a case?
● Most likely, speeds will lag behind that of RAM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

