

csci 3411: Operating Systems

File Systems

Gabriel Parmer

Slides evolved from Silberschatz

Today: File System Implementation

● We discussed
● abstractions for organizing persistent storage
● interfaces for programming the storage

● Today: How do we make these abstractions
and interfaces efficient
● Best utilize the capacity of the persistent storage

– Throughput (MB/sec to/from the storage)
– Latency to retrieve/store data
– Space utilization: minimize fragmentation in storage

Magnetic Media (Disk)

Ewww, Yuck!
Moving Parts!
How Barbaric.

Magnetic Media II

● Blocks – granularity of I/O as seen by OS
● Multiple of sector size

– (block size = page size) is convenient (i.e. 4KB)

● Accessed by OS as 1d array of blocks

● Disks can process I/O requests in parallel
● Many I/O requests for blocks can be pending at a

given time

Magnetic Media III

● Disks are slow!
● ~10ms latency to access a block1

– Versus 0.0002ms to access to memory
– Versus 0.000001ms to access to register

● Minimize frequency of disk access!

1 http://www.anandtech.com/printarticle.aspx?i=3403

Caching!

● Paging (page cache) treats disk as extension of the
storage hierarchy
● When we didn't have enough memory, write out to disk

● Buffer cache holds file's data, treats memory as a
cache for disk data
● Minimize frequency of slow disk accesses, so cache file

data in memory
● When read/writes are made to files, cache the file's data

– Further accesses to that file will check if it is in cache
– Memory accesses instead of disk accesses

Disks: Not just slow, Complex

● Seeks between cylinders are expensive
● Random vs. sequential access

● Sequential access1,2 – platter rotation
● 80MB/s bandwidth
● 0.16ms latency

● Random access2 – head seeks
● 0.5MB/s bandwidth
● 10ms latency
● All sorts of fail 1 http://www.anandtech.com/printarticle.aspx?i=3403

2 http://it.anandtech.com/printarticle.aspx?i=3532

Major Filesystem Questions

● How can we track
● Where different files are on disk
● Where the directory structure is stored

● Where free space is on disk to satisfy allocations
● extending/creating files/directories

● How can we do this while compensating for the
physical characteristics of disks?

Files → Disk Blocks

● File – Logical storage unit
● Sequence of bytes from 0 → FILE_SIZE

● Disk
● Essentially large array of bits 0 → VERY_BIG

● Many files on disk
● Analogy: many processes with virtual memory share single

physical memory

● How do we map from a location in a file, to a location on
disk?
● Similar to: How do we map from an address in a virtual address

space into a physical address?
● But we have no MMU/hardware support

Contiguous Allocation

● Directory entry has
● Each file described by a <start, length> pair

– Where is the location of the 100th byte of a file?
– Similar to segmentation

Contiguous Allocation II

Contiguous Benefits/Problems?

● File Access: Random/Sequential access?
● Disk Access: Seeks vs. rotation?

● Allocating files? What size?
● First-fit, best-fit

● Growing files?
● Didn't have this with memory mgmt!

● Fragmentation?
● compaction/defragmentation

Linked Allocation

● File represented as a linked list of blocks

● Each block holds both
● Data
● Block number of next block in file

● Directory contains
● A file's <start, end> blocks

Linked Allocation II

Linked Benefits/Problems?

● Space usage for links?
● Fragmentation?
● Random/Sequential Access?
● Seeks vs. Rotation?
● Block allocation?

Not so FAT

● File Allocation Table (FAT)
● Special section of disk

– Has one entry per block
– Entry maps trivially to data block

on disk
● Linked list maintained between

these entries
– Instead of linked list in data blocks

● Rest of disk contains data-
blocks

FAT Benefits/Problems?

● Space usage?

● Number of disk accesses to read
● One data block?
● Two data blocks?

● Sequential/Random Access?

● Seeks vs. Rotation?

Indexed Allocation

● Directory includes block location of index
● Index is an array entries containing the

locations of the blocks of that file
● Like a single-level page-table

Indexed Allocation II

Indexed Allocation III

● Block size = 100B, index holds 10 entries
● File can be 100 * 10 = 1000B long
● Which block contains file offset 365?

● Block size = 212B, index holds 28 entries
● File can be 212 * 28 = 2(12+8) = 220 bytes long
● To find the block containing the 0xBEEF offset in

the file
– Values larger than 212 = 0xB000
– Look for entry number 0xB = 11 in the index to find

the block
– Desired data at 0x0EEF offset into block

Indexed Allocation Benefits/Probs?

● File Size?
● Can support larger file sizes by linking together indices

– linked indices

● One entry in an index is the location of the next index

● Space overhead?
● Space used – One block index with N entries

– file w/ 1 block? File with N blocks?

● How many disk accesses must we make to retrieve data blocks?

● Seeks vs. Rotation?

● Random Access within file?

● Fragmentation/Block Allocation?

Multilevel Index

● Like multilevel page-tables
● An index block contains entries of locations of

● other index blocks which contain entries of locations
 of
– File data

Single level index

Multi-level index

Multilevel Index Pros/Cons?

● How many disk accesses must we make to
retrieve data blocks?
● Sequential access, random access?

● File size?
● M entries per index
● N levels of index nodes
● How many blocks can be addressed?

Combined Index Scheme

● Index contains
● N direct references to data blocks
● M indirect (or single indirect) references to second level

indices
– That each refer to data blocks

● X double indirect references to second lvl indexes
– That refer to third level indexes

– That refer to data blocks

● Y triple indirect references to second level indexes
– That refer to third level indexes

– That refer to fourth level indexes

– That refer to data blocks

UFS/ext2/... Indices

Combined Index Pros/Cons?

● File size (blocks with W entries, 4K per block)?
● N direct references to data blocks
● M single indirect entries
● X double indirect entries
● Y triple indirect entries
● Z entries per “multilevel” index

● Random/Sequential Access?
● Space overhead?

Extents

● Technique can be added to each of the preceding
data-structures

● Rotation vs. seek benefit of contiguous allocation
● None of the other methods had that benefit!!!

● Don't just refer to blocks (index or data) in index
● Index entry: <base, length> pair

– instead of just <base>

● Can read length blocks without seeks!

● Can complicate random access
● Makes index entries larger to store length

inodes

● Both file contents and directory structure are stored
using these techniques
● Directory data blocks include data about subdirectories

● UNIX/Linux in-memory data structure used for
tracking the location of on-disk objects
● Individual inodes represent either files or directories
● Each inode has a unique identifier

– ls -i
– Often the location on disk that inode is located at

● Includes location of that file's/directory's blocks

Data structures including inodes

file
offset/position
*dentry
permissions

dentry
– name
– permissions
– children
– siblings

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

home

bin

root

foo.txt

bar.txt

file

fd

inode

inode

inode
inode

inode

inode

inode
– id
– block
 location
 info
– type (file,
 directory)

Perspective
● How many disk accesses can it take to open

/root/bar.txt?
● Disks satisfy about 100 serial accesses per second

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

home

bin

root

foo.txt

bar.txt

file

fd

inode

inode

inode
inode

inode

inode

Free Space Tracking

● A file/directory is created or grows when written
to

● How do we find free blocks to allocate to it?

Free Space Tracking: Linked List

● Space consumption?
● # disk access to find N blocks?
● Promote sequential access

● Easy to allocate sequential
blocks?

● Is the freelist always “sorted”?

● Optimization: extents of free
blocks

Free Space Tracking: Bitmaps

bitmap

0 0 1 1 1 0

● Space consumption?
● # disk accesses for N blocks?
● Sequential access?

● Find contiguous blocks easily?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

