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Today: File System Implementation

● We discussed 
● abstractions for organizing persistent storage
● interfaces for programming the storage

● Today: How do we make these abstractions 
and interfaces efficient
● Best utilize the capacity of the persistent storage

– Throughput (MB/sec to/from the storage)
– Latency to retrieve/store data
– Space utilization: minimize fragmentation in storage



  

Magnetic Media (Disk)

Ewww, Yuck! 
Moving Parts!
How Barbaric.



  

Magnetic Media II

● Blocks – granularity of I/O as seen by OS
● Multiple of sector size

– (block size = page size) is convenient (i.e. 4KB)

● Accessed by OS as 1d array of blocks

● Disks can process I/O requests in parallel
● Many I/O requests for blocks can be pending at a 

given time



  

Magnetic Media III

● Disks are slow!
● ~10ms latency to access a block1

– Versus 0.0002ms to access to memory
– Versus 0.000001ms to access to register

● Minimize frequency of disk access!

1 http://www.anandtech.com/printarticle.aspx?i=3403



  

Caching!

● Paging (page cache) treats disk as extension of the 
storage hierarchy
● When we didn't have enough memory, write out to disk

● Buffer cache holds file's data, treats memory as a 
cache for disk data
● Minimize frequency of slow disk accesses, so cache file 

data in memory
● When read/writes are made to files, cache the file's data

– Further accesses to that file will check if it is in cache
– Memory accesses instead of disk accesses



  

Disks: Not just slow, Complex

● Seeks between cylinders are expensive
● Random vs. sequential access

● Sequential access1,2 – platter rotation
● 80MB/s bandwidth
● 0.16ms latency

● Random access2 – head seeks
● 0.5MB/s bandwidth
● 10ms latency
● All sorts of fail 1 http://www.anandtech.com/printarticle.aspx?i=3403

2 http://it.anandtech.com/printarticle.aspx?i=3532



  

Major Filesystem Questions

● How can we track
● Where different files are on disk
● Where the directory structure is stored

● Where free space is on disk to satisfy allocations
● extending/creating files/directories

● How can we do this while compensating for the 
physical characteristics of disks?



  

Files → Disk Blocks

● File – Logical storage unit
● Sequence of bytes from 0 → FILE_SIZE

● Disk
● Essentially large array of bits 0 → VERY_BIG

● Many files on disk
● Analogy: many processes with virtual memory share single 

physical memory

● How do we map from a location in a file, to a location on 
disk?
● Similar to: How do we map from an address in a virtual address 

space into a physical address?
● But we have no MMU/hardware support



  

Contiguous Allocation

● Directory entry has
● Each file described by a <start, length> pair 

– Where is the location of the 100th byte of a file?
– Similar to segmentation



  

Contiguous Allocation II



  

Contiguous Benefits/Problems?

● File Access: Random/Sequential access?
● Disk Access: Seeks vs. rotation?

● Allocating files?  What size?
● First-fit, best-fit

● Growing files?
● Didn't have this with memory mgmt!

● Fragmentation?
● compaction/defragmentation



  

Linked Allocation

● File represented as a linked list of blocks

● Each block holds both
● Data
● Block number of next block in file

● Directory contains
● A file's <start, end> blocks



  

Linked Allocation II



  

Linked Benefits/Problems?

● Space usage for links?
● Fragmentation?
● Random/Sequential Access?
● Seeks vs. Rotation?
● Block allocation?



  

Not so FAT

● File Allocation Table (FAT)
● Special section of disk

– Has one entry per block
– Entry maps trivially to data block 

on disk
● Linked list maintained between 

these entries
– Instead of linked list in data blocks

● Rest of disk contains data-
blocks



  

FAT Benefits/Problems?

● Space usage?

● Number of disk accesses to read
● One data block?
● Two data blocks?

● Sequential/Random Access?

● Seeks vs. Rotation?



  

Indexed Allocation

● Directory includes block location of index
● Index is an array entries containing the 

locations of the blocks of that file
● Like a single-level page-table



  

Indexed Allocation II



  

Indexed Allocation III

● Block size = 100B, index holds 10 entries
● File can be 100 * 10 = 1000B long
● Which block contains file offset 365?

● Block size = 212B, index holds 28 entries
● File can be 212 * 28 = 2(12+8) = 220 bytes long
● To find the block containing the 0xBEEF offset in 

the file
– Values larger than 212 = 0xB000
– Look for entry number 0xB = 11 in the index to find 

the block
– Desired data at 0x0EEF offset into block



  

Indexed Allocation Benefits/Probs?

● File Size?
● Can support larger file sizes by linking together indices

– linked indices

● One entry in an index is the location of the next index

● Space overhead?
● Space used – One block index with N entries

– file w/ 1 block? File with N blocks?

● How many disk accesses must we make to retrieve data blocks?

● Seeks vs. Rotation?  

● Random Access within file?

● Fragmentation/Block Allocation?



  

Multilevel Index

● Like multilevel page-tables
● An index block contains entries of locations of

● other index blocks which contain entries of locations 
 of
– File data

Single level index

Multi-level index



  

Multilevel Index Pros/Cons?

● How many disk accesses must we make to 
retrieve data blocks?
● Sequential access, random access?

● File size?
● M entries per index
● N levels of index nodes
● How many blocks can be addressed?



  

Combined Index Scheme

● Index contains 
● N direct references to data blocks
● M indirect (or single indirect) references to second level 

indices
– That each refer to data blocks

● X double indirect references to second lvl indexes
– That refer to third level indexes

– That refer to data blocks

● Y triple indirect references to second level indexes
– That refer to third level indexes

– That refer to fourth level indexes

– That refer to data blocks



  

UFS/ext2/... Indices



  

Combined Index Pros/Cons?

● File size (blocks with W entries, 4K per block)?
● N direct references to data blocks
● M single indirect entries
● X double indirect entries
● Y triple indirect entries
● Z entries per “multilevel” index

● Random/Sequential Access?
● Space overhead?



  

Extents

● Technique can be added to each of the preceding 
data-structures

● Rotation vs. seek benefit of contiguous allocation
● None of the other methods had that benefit!!!

● Don't just refer to blocks (index or data) in index
● Index entry: <base, length> pair

– instead of just <base>

● Can read length blocks without seeks!

● Can complicate random access
● Makes index entries larger to store length



  

inodes

● Both file contents and directory structure are stored 
using these techniques
● Directory data blocks include data about subdirectories

● UNIX/Linux in-memory data structure used for 
tracking the location of on-disk objects
● Individual inodes represent either files or directories
● Each inode has a unique identifier

– ls -i
– Often the location on disk that inode is located at

● Includes location of that file's/directory's blocks



  

Data structures including inodes

file
offset/position
*dentry
permissions

dentry
– name
– permissions
– children
– siblings 

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

home

bin

root

foo.txt

bar.txt

file

fd

inode

inode

inode
inode

inode

inode

inode
– id
– block 
   location
   info
– type (file,
   directory)



  

Perspective
● How many disk accesses can it take to open 

/root/bar.txt?
● Disks satisfy about 100 serial accesses per second

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

home

bin

root

foo.txt

bar.txt

file

fd

inode

inode

inode
inode

inode

inode



  

Free Space Tracking

● A file/directory is created or grows when written 
to

● How do we find free blocks to allocate to it?



  

Free Space Tracking: Linked List

● Space consumption?
● # disk access to find N blocks?
● Promote sequential access

● Easy to allocate sequential 
blocks?

● Is the freelist always “sorted”?

● Optimization: extents of free 
blocks



  

Free Space Tracking: Bitmaps

bitmap

0 0 1 1 1 0

● Space consumption?
● # disk accesses for N blocks?
● Sequential access?

● Find contiguous blocks easily?
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