

csci 3411: Operating Systems

File System API/Filesystems

Gabriel Parmer

Slides evolved from Silberschatz

Operating Systems – Abstraction

● Make the system easier to use
● Abstract many of the details of the physical hardware

away
● Scheduling – illusion of exclusive execution
● Virtual Memory – illusion of exclusive memory access

● Need abstractions/interfaces for
● Interacting with devices (disks, terminals, keyboards)
● Interacting with other processes

● Emphasis: simple is beautiful, K.I.S.S.
● UNIX syscalls ~ 20-60, Windows syscalls ~ thousands

Abstraction of Disk

● Disk is a large array of bits – like memory
● Partitioned into sectors (usually 512 bytes)

– Unit of transfer to and from disk

● Non-volatile – data persists across reboots/powerdowns
– vs. memory?

● How do we share the disk between processes?
● Protection/Security

● How do we make the disk easy to use?
● While maintaining efficiency

Files/Directories

● Abstraction: Files
● Logical storage unit, collection of related data
● Generic storage – untyped sequence of bytes

– Binaries (executables, media, etc...)
– Ascii (text documents)
– Structured documents (HTML/XML)

● More structure == good, right?
– Why not store everything as XML?

● Abstraction: Directories
● Give an address/location to a file and group files

Files Conceptually Include...

● Name – human usable name
● Identifier (inode number) – unique identification
● Size – size in bytes

● fragmentation?

● Date/Time – creation time, access time
● Protection (UNIX)

● Owning user and group
● List of access rights (read, write, execute)

– For owner, other users in group, and all others

Naming of Files

● Naming: How do we refer to or address resources
● Files, devices, information about processes, …

– Also named: memory, threads, semaphores, etc...

● Directory hierarchy/namespace – goals:
● Efficiently locate and identify files
● Allow intuitive grouping of like files together
● Useful for both OS and users

Single-Level Directory

● Imagine if all files were in a single directory!

● No abstraction within the namespace
● No grouping of like files together
● Cannot have two files with the same name

– Only one index.html!

● Fast!!!
● Must only access a single directory entry (get file location, check

permissions)

● Gmail, memcached, cell phones, itunes, ...

Hierarchical Directory

● Intuitive grouping of files
● Serialized access of directories to access files

● permissions

● Files can share
names

● Can also be
used to
address
devices, etc...
● As you've

seen

Hierarchical Directory Interface

● How can we use/manipulate this namespace?
● mkdir(p)/rmdir(p) – create/remove a directory entry
● readdir(dir_id) – read a directory entry (retrieve the

files/directories it contains)
– dir_id = opendir(path)/closedir(dir_id)

● rename(p1, p2)

● creat(p) – create a file
● unlink(p) – remove/delete a file

● p is a path through the directory hierarchy (e.g. /a/b/c.txt)

Access/Manipulate Files
● Second namespace – per-proc File Descriptors

● read(fd,...) – retrieve contents of file sequentially
● write(fd,...) – modify contents of file sequentially

● seek(fd, off) – Change current file's position/offset
– Enables random access

● new_fd = dup(fd) – duplicate a file descriptor
● close(fd) – deallocate fd, signal we aren't using file

Interaction Between Namespaces

● Directory namespace must interact somehow with file
descriptor namespace
● Must be able to read/write files in the directory namespace!

● fd = open(p) – allocate fd associated with a path in the
directory namespace
● Locate p in the directory hierarchy
● Check user's permissions to p

● Why file descriptors at all!?
● read(p, ...)/write(p, …) instead?

File Descriptors: Unified Interface
for Accessing System Resources

● Polymorphic
● The same functions (read/write) used to

access/modify many different types of resources
● Large versatility of a small number of functions

– A single user program can behave differently depending
on what its file descriptors access

File Descriptors/File Operations

● cat midterm.txt | awk '{print $4;}' | sort
● Common language spoken between them all: text/ascii

user

kernel

fd = open(“midterm.txt”);
while (1) {

read(fd, buffer, 4096);
write(1, buffer, 4096);

}

read(0, buff, 4096);
//process
write(1, output, len);

read(0, buff, 4096);
//sort
write(1, output, len);

fd

Filesystem structures
Terminal output

File Descriptor Maps

cat awk sort

More File Descriptor Justifications

● Race conditions:

● Keep track of file offset

● Efficiency!
● Don't have to go through entire directory path every

time we read/write

read(“/blah”, ...);
unlink(“/blah”);
read(“/blah”, ...);
// FAIL

vs.
fd = open(“/blah”, ...);
read(fd, ...);
unlink(“/blah”);
read(fd, ...);

OS Datastructures for FS & fds

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

dentry
– name
– permissions
– children
– siblings

home

bin

root

foo.txt

bar.txt

OS Datastructures for FS & Fds

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

dentry
– name
– permissions
– children
– siblings

home

bin

root

foo.txt

bar.txt

file

file
offset/position
*dentry
permissions

fd

OS Datastructures for FS & Fds

p = /root/foo.txt
fd = open(p)

user kernel

/

dentry

dentry
– name
– permissions
– children
– siblings

home

bin

root

foo.txt

bar.txt

file

file
offset/position
*dentry
permissions

fd

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

