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Page Replacement

● Use memory as a cache for disk

● Page replacement
● Find a victim frame in memory
● Swap it out – transfer it to disk to free that memory 

for other uses

● Swapping is the act of moving active memory 
back and forth from disk
● Also called paging in page-based systems
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How do we Choose a Victim Frame?

● Going to disk is expensive
● Want to swap as infrequently as possible

● Find frame that is least likely to be referenced in the near 
future

● Optimization: consider frames that already exists on disk, and 
haven't been modified in RAM!
● How is this more efficient?
● Page tables include modified bit (set by hardware when a store is 

made to the page)

● Today: Algorithms for finding victim frame
● Questions so far?



  

Page Replacement Algorithms

● Goal: lowest page fault rate
● Remember – 1/1000 memory accesses going to disk → 

40x slower EAT

● Evaluate algorithms for a given string of references 
made by program execution
● For simplicity, memory references will refer to page 

numbers of virtual address

● We need an algorithm to determine the frame to page 
out to disk
● Any algorithms come to mind???



  

FIFO Page Replacement

● Are the page fault rate and number of frames 
available correlated?  In what way?



  

Page Faults Versus Number of Frames



  

FIFO

● Memory/page reference sequence:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

● 3 Frames?
● 4 Frames?
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● Memory/page reference sequence:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5



  

Belady's Anomaly



  

Optimal Page Replacement

● Replace frame whose next reference is furthest in the future

● FIFO yields 15 page faults vs. 9 for optimal
● Lets do better!  Ideas?



  

Caching Based on Historical Behavior

● Use past behavior to predict future

● Fundamental assumptions for effective caching
● Spacial Locality
● Temporal Locality

● Why does FIFO perform badly?



  

Memory Reference Trace



  

LRU Page Replacement

● Least Recently Used – evict the frame that was 
accessed furthest into the past
● Takes advantage of temporal locality
● Uses past to predict future



  

LRU Page Replacement II

● Reference string:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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LRU Implementation I

● Use system-wide counter
● Each memory reference increment counter
● Each page has a time of use field

– Time of use field updated with counter value on access

● Which page should we replace??  Which is 
least recently used?

● Problems/limitations with this approach?



  

LRU Implementation II

● Using a linked list to track references
● Upon reference, frame placed at top of list
● Which is the least recently used frame?

● Problems/limitations with this approach?



  

LRU Approximation

● Previous approaches require hardware 
assistance
● Memory references in the many millions/second so 

hardware must manage list/counter

● Limited hardware support requires 
approximation
● Page tables include reference bit

– Set by hardware when page is referenced (like modified)
– Basic idea: replace pages that haven't been referenced
– Loses ordering information



  

Clock (Second Chance) Algorithm

● Similar to FIFO, but considers referenced bit for 
each page
● If bit == 0, replace page
● If bit == 1, clear bit and check next page

– Give page a second chance to stay in memory

● Worst case: all pages are referenced
● Cycle through all pages

● Closest to not frequently used (NFU)



  

Clock Page Replacement Algorithm



  

Thrashing I

● When paging activity overwhelms normal 
execution

● Suppose process includes 2 pages: P1, P2
● Access to P2 brings it into memory and swaps P1 

to disk
● What happens if P1 is access shortly thereafter?



  

Thrashing II



  

Thrashing III

● Decrease degree of Multiprogramming

● Should one process that uses many pages 
cause all processes to slow down due to 
thrashing?
● Are there other options?



  

Global vs. Local Replacement

● Global replacement
● Page replacement algorithm considers all frames in the 

system for replacement
– i.e. across all processes

● Local replacement
● Consider only pages of the process that requires a page 

to be swapped in
● Pages allocated separately to different processes

– Priority based, proportional, ...

● What are the Pros/Cons of each of these?



  

Locality of Reference

● 90:10 rule
● 90% of its time, a program executes 10% of its 

code
● 90% of the data accesses are to 10% of the data-

structure memory locations
● Why?

● Implication:
● We can achieve a good hit rate (low page fault rate) 

if we keep that 10% of pages in memory



  

Memory Reference Trace



  

Working Set

● A processes working set is the set of most actively 
referenced pages at a given point in time
● Can change
● Subset of total memory possibly requested by process

● Thrashing: ∑
forall i

 WSS
i
 > M

● M = total memory in system

● WSS
i
 = working set size for process i



  

Working Set II

● OS monitors working set of each process
● Allocate enough frames to fit the working set

● If there are spare frames
● New processes can begin

● If OS cannot accommodate WSS of all 
processes
● Suspend process to disk



  

Monitoring WSS

● How does the OS monitor the WSS of each 
process?  (Esp. since WSS varies with time!)
● Allocate frames to process if high page fault freq.
● Take frames from process if low page fault freq.
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