

csci 3411: Operating Systems

Virtual Memory II

Gabriel Parmer

Slides adapted from Silberschatz and West

Caching

Registers Cache
Memory/

RAM

Virtual Memory

Registers
Cache

Memory/
RAM Disk

Page Replacement

● Use memory as a cache for disk

● Page replacement
● Find a victim frame in memory
● Swap it out – transfer it to disk to free that memory

for other uses

● Swapping is the act of moving active memory
back and forth from disk
● Also called paging in page-based systems

Page Replacement III

How do we Choose a Victim Frame?

● Going to disk is expensive
● Want to swap as infrequently as possible

● Find frame that is least likely to be referenced in the near
future

● Optimization: consider frames that already exists on disk, and
haven't been modified in RAM!
● How is this more efficient?
● Page tables include modified bit (set by hardware when a store is

made to the page)

● Today: Algorithms for finding victim frame
● Questions so far?

Page Replacement Algorithms

● Goal: lowest page fault rate
● Remember – 1/1000 memory accesses going to disk →

40x slower EAT

● Evaluate algorithms for a given string of references
made by program execution
● For simplicity, memory references will refer to page

numbers of virtual address

● We need an algorithm to determine the frame to page
out to disk
● Any algorithms come to mind???

FIFO Page Replacement

● Are the page fault rate and number of frames
available correlated? In what way?

Page Faults Versus Number of Frames

FIFO

● Memory/page reference sequence:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

● 3 Frames?
● 4 Frames?

FIFO

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

5

1

2

4

510 page faults

4 3

● Memory/page reference sequence:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Belady's Anomaly

Optimal Page Replacement

● Replace frame whose next reference is furthest in the future

● FIFO yields 15 page faults vs. 9 for optimal
● Lets do better! Ideas?

Caching Based on Historical Behavior

● Use past behavior to predict future

● Fundamental assumptions for effective caching
● Spacial Locality
● Temporal Locality

● Why does FIFO perform badly?

Memory Reference Trace

LRU Page Replacement

● Least Recently Used – evict the frame that was
accessed furthest into the past
● Takes advantage of temporal locality
● Uses past to predict future

LRU Page Replacement II

● Reference string:
● 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

LRU Implementation I

● Use system-wide counter
● Each memory reference increment counter
● Each page has a time of use field

– Time of use field updated with counter value on access

● Which page should we replace?? Which is
least recently used?

● Problems/limitations with this approach?

LRU Implementation II

● Using a linked list to track references
● Upon reference, frame placed at top of list
● Which is the least recently used frame?

● Problems/limitations with this approach?

LRU Approximation

● Previous approaches require hardware
assistance
● Memory references in the many millions/second so

hardware must manage list/counter

● Limited hardware support requires
approximation
● Page tables include reference bit

– Set by hardware when page is referenced (like modified)
– Basic idea: replace pages that haven't been referenced
– Loses ordering information

Clock (Second Chance) Algorithm

● Similar to FIFO, but considers referenced bit for
each page
● If bit == 0, replace page
● If bit == 1, clear bit and check next page

– Give page a second chance to stay in memory

● Worst case: all pages are referenced
● Cycle through all pages

● Closest to not frequently used (NFU)

Clock Page Replacement Algorithm

Thrashing I

● When paging activity overwhelms normal
execution

● Suppose process includes 2 pages: P1, P2
● Access to P2 brings it into memory and swaps P1

to disk
● What happens if P1 is access shortly thereafter?

Thrashing II

Thrashing III

● Decrease degree of Multiprogramming

● Should one process that uses many pages
cause all processes to slow down due to
thrashing?
● Are there other options?

Global vs. Local Replacement

● Global replacement
● Page replacement algorithm considers all frames in the

system for replacement
– i.e. across all processes

● Local replacement
● Consider only pages of the process that requires a page

to be swapped in
● Pages allocated separately to different processes

– Priority based, proportional, ...

● What are the Pros/Cons of each of these?

Locality of Reference

● 90:10 rule
● 90% of its time, a program executes 10% of its

code
● 90% of the data accesses are to 10% of the data-

structure memory locations
● Why?

● Implication:
● We can achieve a good hit rate (low page fault rate)

if we keep that 10% of pages in memory

Memory Reference Trace

Working Set

● A processes working set is the set of most actively
referenced pages at a given point in time
● Can change
● Subset of total memory possibly requested by process

● Thrashing: ∑
forall i

 WSS
i
 > M

● M = total memory in system

● WSS
i
 = working set size for process i

Working Set II

● OS monitors working set of each process
● Allocate enough frames to fit the working set

● If there are spare frames
● New processes can begin

● If OS cannot accommodate WSS of all
processes
● Suspend process to disk

Monitoring WSS

● How does the OS monitor the WSS of each
process? (Esp. since WSS varies with time!)
● Allocate frames to process if high page fault freq.
● Take frames from process if low page fault freq.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

