

csci 3411: Operating Systems

Virtual Memory

Gabriel Parmer

Slides adapted from Silberschatz and West

Safety, Liability, and Software

● Consumer protection from engineering products
● I'm not talking about skynet...

● Consumer protection from software?

● Fundamentally different?

Virtual Memory

All problems in computer science can be solved by another level of
indirection

– Butler Lampson

● Indirection – don't access the thing directly, ask something where
you can access the thing

● OS/Hardware provide virtual address spaces
● Separation of application's view of memory, and actual memory

● Map virtual addresses to physical addresses

● Page tables provide this indirection
● “Where can I find the [physical] memory for this [virtual] memory access?”

● Benefits of a virtual ↔ physical address separation

Process Virtual Address Space (VAS)

● Illusion of resource
usage monopoly
● VAS abstraction

● Protection
● Fault isolation

– Because humans
mess up

● Security

Shared Memory

● Firefox:
● Virtual Memory used: 754MB
● Shared Pages: 38MB (that's about 40MB saved!)

Process Creation: fork()

● Remember:
● Process is an executing program
● fork() system call creates a copy of a process, and

resumes execution in both child and parent

● How is this implemented?

● Opportunities for optimization?

Process Creation II

● fork() implementation options

1) Copy all memory for a process, create a new page-
table, start child process

2) Don't copy any memory upon fork, instead
1) Ensure that memory cannot be modified

2) Copy memory lazily only when the process modifies
(writes to) it

● Child and parent still effectively have copies of address space

COW: Before P1 Modifies Page C

COW II

Holy COW!
● Use page table support for read-only access on individual

pages
● Bits in page table for read, write, execute, valid/invalid

– If a read-only page is written to, trap to kernel

● Mark all pages in both parent's and child's page-tables as read-
only

● When memory write is made, copy only pages being written to
lazily
– Copy-On-Write (COW)

● fork() is now faster! Or is it???

● In which cases is fork() faster? Slower?
● Does it hurt, or help interactivity?
● Common fork use cases...

Program Execution: exec()

● Remember
● exec() will stop execution in the current process and

begin executing a program on disk

● How is this implemented?
● Room for optimization?

● Hint:
– Firefox

● virtual memory used: 754MB
● memory resident (backed by frames): 410MB

Demand Paging
● exec(): Must load a program from disk into memory
● Options

1) Load program all at once
1)Pull all of program from disk into memory

2)Load program into virtual memory of process

2) Demand paging
1)Create an initially empty virtual address space

● Page table entries are marked invalid

2)As faults occur, load program from disk into virtual memory on
demand

● Benefit: load only that memory of program needed now
● Speed up program loading/interactivity (less mem/I/O)

Demand Paging III

Performance of Demand Paging

● Page Fault Rate 0 ≤ p ≤ 1.0
● if p = 0 no page faults
● if p = 1, every reference is a fault

● Effective Access Time (EAT)
● EAT = (1 – p) x memory access

 + p (page fault overhead
 + swap page in

 + restart overhead)

Demand Paging Example

● Memory access time = 200 nanoseconds
● Average page-fault service time = 8 milliseconds

● EAT = (1 – p) x 200 + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000
 = 200 + p x 7,999,800

● If one access out of 1,000 causes a page fault, then
● EAT = 8.2 microseconds
● This is a slowdown by a factor of 40

Handling a Page Fault

Virtual Memory

● Lets use this to do something really clever!
● Storage hierarchy: remember, we want GBs of storage, all as fast

to access as registers
– We want to make memory look as large as disk, and as fast as registers

● Virtual Address space can be larger than system memory
● Not all memory in the process is resident (backed by real memory)

● Only memory in use by a program must actually be in
physical main memory
● Where can we put the memory not currently in use by a process?

Low Memory Situations

● General System Goal: high resource utilization
● Requires multiprogramming/concurrency

– Increases memory usage

● What happens if we want to allocate memory and
there is none?
● Normal memory allocation request for a process
● Page reference requires allocation due to

– COW

– Demand paging

● Can we do something here, or do we just need to kill
off a process?

Disk: Part of the Storage Hierarchy

⇒

Page Replacement

● Use memory as a cache for disk

● Page replacement
● Find a victim frame in memory
● Swap it out – transfer it to disk to free that memory

for other uses

● Swapping is the act of moving active memory
back and forth from disk
● Also called paging in page-based systems

Page Replacement II

Page Replacement III

How do we Choose a Victim Frame?

● Going to disk is expensive
● Want to swap as infrequently as possible

● Find frame that is least likely to be referenced in
the near future

● Optimization: consider frames that already exists
on disk, and haven't been modified in RAM!
● How is this more efficient?
● Page tables include modified bit

● Algorithms for finding victim frame

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

