

csci 3411: Operating Systems

Memory Management II

Gabriel Parmer

Slides adapted from Silberschatz and West

<ubergeek-analogy>

Each Process has its Own Little World

● Virtual Address Space
● Private memory
● Process can manage it's own memory

– Ask kernel for more if needed

Picture from “The Matrix”, Warner Bros. Pictures

If virtual address spaces provide a virtual world,
What is the world, “of the real”

The Matrix, Warner Bros. Pictures

The MatrixMatrix, 1999, Warner Bros. PicturesThe MatrixMatrix, 1999, Warner Bros. Pictures

csci3411 == red pill ?

</ubergeek-analogy>

Virtual vs. Physical Address Space

● The memory processes can access is restricted
● A subset of actual memory
● Memory a process can access controlled by OS

● Virtual/Logical Address – address of memory
generated by the process on CPU

● Physical Address – offset into the physical RAM
of memory to access

● What converts virtual addresses into physical???

MMU: Memory Management Unit

● Addresses generated by program → virtual
● MMU: translation to physical
● Level of indirection

MMU does: f(virtual) → physical
● f(virtual, ?) → physical

What if the MMU was between cache ↔ memory?

MMU

cache

ALUs/
regs virtual

physical

Mem

Process' Physical Memory

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

● Contiguous allocation of physical memory to processes?
● What if a process doesn't use all of its allocation
● What if it uses more

● Hard to predict exactly how much mem to alloc

MMU Example:
Protection + Contiguous Allocation

Contiguous vs. Non-contiguous

Physical memory Virtual address space

kernel

Paging

● Physical memory allocated to process can be non-
contiguous

● Divide physical memory into fixed sized frames
● Size is power of 2, x86: two page sizes 4K, 4M

● Virtual memory divided into pages (same size)
● Track free frames
● When process requests memory, allocate to it a

number of frames
● Internal fragmentation

● MMU translates between pages to frames

Address Translation Scheme
● Address generated by CPU (virtual) divided into

● Page number (p) – used as an index into a page
table which contains the base address of each page
in physical memory

● Page offset (d) – combined with base address to
define the physical memory address that is set to
the memory unit

● Logical Address space 2m, page size 2n

 MMU: f(vp) → p + dp d

m - n n

Page number Offset in page

Example: 8B pages
● 23 = 8 → 3 bits represent < 8
● 13 = 1101 (least significant = right)

● 101 = 5 = offset into page
● 1 = page number (2nd page)

● 26 = 11010
● 010 = 2 = offset into page
● 11 = 3 = page number (4th page)

● C code for getting page/offset?

0

MAX

13

26

pages

MMU and Paging

● Virtual address split into pages
● Page access translated into physical frames

● Non-contiguous phys
allocation

● On-demand page
allocation

● Level of indirection

MMU

cache

ALUs/
regs virtual

physical

Mem

Paging Hardware (MMU)

● OS controls page tables

Page Table Translation

Protection via Page Tables

● What happens if a
memory access is
made to a virtual
address marked as
invalid or not
present?

Shared Memory

Physical memoryProcess A Process B

kernel kernel

Shared memory

Shared memory

Page Table Implementation

● Page tables kept in main memory
● Page Table Base Register (PTBR) contains address

of current page table
● cr3 register on x86

● Privileged instruction to modify the PTBR
● Why?

● PTBR holds a virtual or physical address?
● How many memory accesses for each load/store?

Translation Lookaside Buffer (TLB)
● Cache holding N page → frame mappings

● Associative memory, part of MMU
● Must provide translation every cycle
● Reduces number of memory accesses

● What does the hardware do on a cache miss?

Frame # (physical)Page # (virtual)

16 4

7 2

18 16

1 7

...

7 ??? 2

6 ???

TLB + Paging

Memory Access Performance

● M = memory access time
● Without TLB, memory access time = 2M

● Effective Access Time (EAT):
● Hit ratio = α, is the % of time page found in TLB
● TLB search time = δ
● EAT = α (M + δ) + (1-α)(2M + δ)

= M(2-α) + δ

EAT Example

● Hit ratio of 80%
● Memory (cache) access = 100ns
● TLB search = 20ns
● TLB hit = 120ns, miss = 220ns
● EAT = 0.8*120 + 0.2*220 = 140ns

● 40% slowdown over single memory access
● Compared to a 100% slowdown for memory access

always via page-table

HW vs. SW page-table traversal

● Does hardware contain logic for traversing a
specific format of page tables?
● HW page-table traversal

● SW traversal of page tables:
● TLB miss → translation fault

– kernel handler activated
– Software parses the page tables
– Tells HW what translation to put in the TLB

● Tradeoffs?

Page Table Structures

● So far, size of a single page table = # pages in
virtual address space
● 32 bit, 4K pages = 220 pages → page-table entries

– 4MB memory......per-process

● Typical Practical Structures
● Hierarchical Page Tables
● Hashed Page Tables
● Inverted Page Tables

Two Level Page Tables

● 32 bit virtual address space, 4K (212) page size
● Page offset, d = 212

● 220 addressable pages

– Outer Page Table: p
1
 number of entries (often size of page)

– Second Level of Page Table: p
2
 number of entries (often size of page)

– size(p
1
)+ size(p

2
) = 20, references 220 addresses

● Always saves memory? When?

Two Level, Hierarchical Page Table

Hashed Page Table

● Hash table stores
virtual → physical
translations

● Chaining used to
resolve conflicts

● Trade-off between
size of hash table
● Large: more memory,

faster

● Worst case
overhead?

Inverted Page Table
● Page table is array

indexed by physical
frames
● Entries contain

– process id
– virtual address

● Linear search finds
entry with matching
virtual and pid

● One page-table for
all processes

● Trade-offs?

Segmentation

● Program units are not
page sized!

● Collection of
arbitrarily sized
segments
● Arrays/data-structures
● Functions
● stack

Segmentation II

● virtual/logical address consists of
● Segment number, and offset

● Segment table translates to physical addresses
● List of <base, limit> pairs

– Base: start of segment in physical memory
– Limit: maximum size of segment

● Segment-table base register

Segmentation IV

Segmentation III

Example Architecture: x86

● Some architectures use both segmentation and
paging
● x86

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

