
  

csci 3411: Operating Systems

Memory Management II

Gabriel Parmer

Slides adapted from Silberschatz and West



  

<ubergeek-analogy>

Each Process has its Own Little World

● Virtual Address Space
● Private memory
● Process can manage it's own memory

– Ask kernel for more if needed

Picture from “The Matrix”, Warner Bros. Pictures



  

If virtual address spaces provide a virtual world,
What is the world, “of the real”

The Matrix, Warner Bros. Pictures



  

The MatrixMatrix, 1999, Warner Bros. PicturesThe MatrixMatrix, 1999, Warner Bros. Pictures

csci3411 == red pill ?



  

</ubergeek-analogy>



  

Virtual vs. Physical Address Space

● The memory processes can access is restricted
● A subset of actual memory
● Memory a process can access controlled by OS

● Virtual/Logical Address – address of memory 
generated by the process on CPU

● Physical Address – offset into the physical RAM 
of memory to access

● What converts virtual addresses into physical???



  

MMU: Memory Management Unit

● Addresses generated by program → virtual
● MMU: translation to physical
● Level of indirection

MMU does: f(virtual) → physical
● f(virtual, ?) → physical

What if the MMU was between cache ↔ memory?

MMU

cache

ALUs/
regs virtual

physical

Mem
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● Contiguous allocation of physical memory to processes?
● What if a process doesn't use all of its allocation
● What if it uses more

● Hard to predict exactly how much mem to alloc



  

MMU Example: 
Protection + Contiguous Allocation



  

Contiguous vs. Non-contiguous

Physical memory Virtual address space

kernel



  

Paging

● Physical memory allocated to process can be non-
contiguous

● Divide physical memory into fixed sized frames
● Size is power of 2, x86: two page sizes 4K, 4M

● Virtual memory divided into pages (same size)
● Track free frames
● When process requests memory, allocate to it a 

number of frames
● Internal fragmentation

● MMU translates between pages to frames



  

Address Translation Scheme
● Address generated by CPU (virtual) divided into

● Page number (p) – used as an index into a page 
table which contains the base address of each page 
in physical memory

● Page offset (d) – combined with base address to 
define the physical memory address that is set to 
the memory unit

● Logical Address space 2m, page size 2n

                                                                                                                        MMU: f(vp) → p + dp d

m - n n

Page number    Offset in page



  

Example: 8B pages
● 23 = 8 → 3 bits represent < 8
● 13 = 1101  (least significant = right)

● 101 = 5 = offset into page
● 1 = page number (2nd page)

● 26 = 11010
● 010 = 2 = offset into page
● 11 = 3 = page number (4th page)

● C code for getting page/offset?

0

MAX

13

26

pages



  

MMU and Paging

● Virtual address split into pages
● Page access translated into physical frames

● Non-contiguous phys
allocation

● On-demand page
allocation

● Level of indirection

MMU

cache

ALUs/
regs virtual

physical

Mem



  

Paging Hardware (MMU)

● OS controls page tables



  

Page Table Translation



  

Protection via Page Tables

● What happens if a 
memory access is 
made to a virtual 
address marked as 
invalid or not 
present?



  

Shared Memory

Physical memoryProcess A Process B

kernel kernel

Shared memory

Shared memory



  

Page Table Implementation

● Page tables kept in main memory
● Page Table Base Register (PTBR) contains address 

of current page table
● cr3 register on x86

● Privileged instruction to modify the PTBR
● Why?

● PTBR holds a virtual or physical address?
● How many memory accesses for each load/store?



  

Translation Lookaside Buffer (TLB)
● Cache holding N page → frame mappings

● Associative memory, part of MMU
● Must provide translation every cycle
● Reduces number of memory accesses

● What does the hardware do on a cache miss?

Frame # (physical)Page # (virtual)

16 4

7 2

18 16

1 7

...

7 ??? 2

6 ???



  

TLB + Paging



  

Memory Access Performance

● M = memory access time
● Without TLB, memory access time = 2M

● Effective Access Time (EAT):
● Hit ratio = α, is the % of time page found in TLB
● TLB search time = δ
● EAT = α (M + δ) + (1-α)(2M + δ)

= M(2-α) + δ



  

EAT Example

● Hit ratio of 80%
● Memory (cache) access = 100ns
● TLB search = 20ns
● TLB hit = 120ns, miss = 220ns
● EAT = 0.8*120 + 0.2*220 = 140ns

● 40% slowdown over single memory access
● Compared to a 100% slowdown for memory access 

always via page-table



  

HW vs. SW page-table traversal

● Does hardware contain logic for traversing a 
specific format of page tables?
● HW page-table traversal

● SW traversal of page tables:
● TLB miss → translation fault

– kernel handler activated
– Software parses the page tables
– Tells HW what translation to put in the TLB

● Tradeoffs?



  

Page Table Structures

● So far, size of a single page table = # pages in 
virtual address space
● 32 bit, 4K pages = 220 pages → page-table entries

– 4MB memory......per-process

● Typical Practical Structures
● Hierarchical Page Tables
● Hashed Page Tables
● Inverted Page Tables



  

Two Level Page Tables

● 32 bit virtual address space, 4K (212) page size
● Page offset, d = 212

● 220 addressable pages

– Outer Page Table:                  p
1
 number of entries (often size of page)

– Second Level of Page Table: p
2
 number of entries (often size of page)

– size(p
1
)+ size(p

2
) = 20, references 220 addresses

● Always saves memory?  When?



  

Two Level, Hierarchical Page Table



  

Hashed Page Table

● Hash table stores 
virtual → physical 
translations

● Chaining used to 
resolve conflicts

● Trade-off between 
size of hash table
● Large: more memory, 

faster

● Worst case 
overhead?



  

Inverted Page Table
● Page table is array 

indexed by physical 
frames
● Entries contain

– process id
– virtual address

● Linear search finds 
entry with matching 
virtual and pid

● One page-table for 
all processes

● Trade-offs?



  

Segmentation 

● Program units are not 
page sized!

● Collection of 
arbitrarily sized 
segments
● Arrays/data-structures
● Functions
● stack



  

Segmentation II

● virtual/logical address consists of
● Segment number, and offset

● Segment table translates to physical addresses
● List of <base, limit> pairs

– Base: start of segment in physical memory
– Limit: maximum size of segment

● Segment-table base register 



  

Segmentation IV



  

Segmentation III



  

Example Architecture: x86

● Some architectures use both segmentation and 
paging
● x86
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