

csci 3411: Operating Systems

Memory Management

Gabriel Parmer

Slides evolved from Silberschatz and West

Memory

● Memory/Storage Hierarchy
size speed managed by

Registers <1K 1 cyc ?
Cache <16M 3-50 ?
Memory <64G 150-500 OS → today
Disk >100G forever OS

● We want everything to be as fast as registers

...but as large as disks!
● Why can't we have this, but how can we try anyway?

Memory Management

● Memory = array of bits from 0 → MAX_MEM

● Can programs execute with this simple
memory?

...so aren't we done?

● How should the OS manage memory
● Problems with memory as an array split between

processes?

Each Process has its Own Little World

● Virtual Address Space
● What does this mean? Address Space? Virtual?

● What benefits does this provide?
● Hint: “The matrix is control”

Picture from “The Matrix”, Warner Bros. Pictures

Process Memory Layout

malloc, free

int global_variable;

int main(void) { return 0; }

hole

Processes' Memory

● Stack – grows down (on x86 at least)
● What manages the stack? Uses its memory, and grows it?

● Heap
● malloc, free – how are these implemented? syscalls?

● Memory allocation/deallocation is difficult
● Efficiency
● Good usage of memory (minimal waste)
● Where do you keep the data-structures to describe memory?

Memory Allocation Algorithms

heap

mallocmallocmalloc

malloc

freefree

malloc

Memory Allocation Algorithms

heap

mallocmallocmalloc

malloc

freefree

– How do we track the free “holes”?
– When free is called, how do we know how large
 the memory chunk to free is?

malloc

How do we track the “holes”

heap

– A freelist is born!
– Linked list...
– of free memory

int size_of_hole;
struct free_list *next;

struct free_list {

}

free(mem): size of mem?

heap

● When free is called, how does the system know how large
the memory chunk to free was?

struct header {

int memory_chunk_size;

}

– structure directly before allocated
 memory to track size

Allocation Algorithms

● Given a freelist
● First fit – allocate the first hole that is big enough
● Best fit – allocate the hole that results in the smallest

hole after allocation

● More intelligent freelists
● Power-of-two allocator – multiple freelists, one for

each power of 2
– When allocation required, round allocation request amount

up to the nearest power of 2
– Take from that freelist

● Tradeoffs? WRT what metrics?

Allocation Algorithms: Goals

● Efficiency
● Low asymptotic AND constant-time costs

● Minimize wasted memory – Fragmentation
● External Fragmentation

– “Holes” left after allocation when freelist chunk is larger
than allocation amount

● Internal Fragmentation
– Difference between the amount of allocation requested,

and that size of the allocation made
● e.g. most allocation algorithms won't allocate less than ~16B

● Evaluate the allocation algorithms

Kernel Memory Allocation

● Physical memory = big array of bytes
● Often really chunks of some larger size = 4K

● How can we allocate these chunks?
● Memory requests can be > 4K

● Bitmap
● An array of bits, one per 4k chunk
● 1: allocated, 0: free
● Allocation: Scan for N chunks

Buddy Allocation
● Power of 2 allocator

● Start with a given amount of memory

● Assume 4K alloc granularity

● For a request

– recursively break up memory (div 2)

– Till we have chunk of smallest size

● Difficult to provide higher-order
allocations
● Coalesce unallocated siblings

● Downsides/Benefits?

● Used to allocate orders of pages
for user or kernel lvl

Buddy Allocation II

● Implementation
● Freelists?

– Cost of allocation?

– Cost of coalescing?

● Other options?
– Free: how find allocation

size?
● Can't store meta-data in

memory chunk (!= pow 2)

– Bitmaps?
● Cost of allocation
● Cost of coalescing
● Memory wasted?

256K

128

64

16

8

32

4

allocated

Slab Allocation

● Goals:
● Allocation of exact memory size needed

– Larger/smaller than page

● Fast allocation/deallocation

● Allocate slabs of memory using buddy allocation
● Caches consist of one or more slabs

● Tracks allocated objects
● One cache per object type/size: huge limitation!

● Objects are the actual used memory

Slab Allocation II

Slab Allocation III
● E.g.: Object is 3K, Slab size is 12K
● Cache tracks 4 (12/3) objects per slab

● Every 4 objects allocated → ask buddy alloc for slab

● When all objects in slab are freed, free slab
● When allocate object, which slab should we use?

● Freelist of objects, or caches?
● Most full? Empty? In between?
● Temporal/spatial locality of caches?

● Fragmentation with slab? (e.g. slab is 16K)
● What's best slab size? Larger/Smaller? Tradeoffs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

