cscl 3411: Operating Systems

Memory Management

Gabriel Parmer

Slides evolved from Silberschatz and West



Memory

 Memory/Storage Hierarchy

size speed managed by
Registers <1K 1 cyc ?
Cache <16M 3-50 ?
Memory <64G 150-500 OS - today
Disk >100G forever OS

 We want everything to be as fast as reqgisters

...but as large as disks!
 Why can't we have this, but how can we try anyway?



Memory Management

« Memory = array of bits from 0 - MAX_MEM

 Can programs execute with this simple
memory?

...SO0 aren't we done?

 How should the OS manage memory

* Problems with memory as an array split between
processes?



Each Process has its Own Little World

Picture from “The Matrix”, Warner Bros. Pictures

 Virtual Address Space
 What does this mean? Address Space? Virtual?
 What benefits does this provide?

e Hint: “The matrix is control”



Process Memory Layout

max

stack

hole
heap malloc, free
data int global_variable;
text int main(void) { return O; }




Processes' Memory

« Stack — grows down (on x86 at least)

« What manages the stack? Uses its memory, and grows it?
« Heap

« malloc, free — how are these implemented? syscalls?

« Memory allocation/deallocation is difficult
 Efficiency
« Good usage of memory (minimal waste)
 Where do you keep the data-structures to describe memory?



Memory Allocation Algorithms

malloc

malloc malloc malloc

free free

= mi

malloc




Memory Allocation Algorithms

malloc heap

11

malloc malloc malloc

11

free free

11

malloc

— How do we track the free “holes™?
— When free is called, how do we know how large
the memory chunk to free Is?




How do we track the “holes”

I heap

T 1

1 |
N |
e B

i
—

truct f list
AR — A freelist I1s born!

— Linked list...
— of free memory




free(mem): size of mem??

« When free is called, how does the system know how large
the memory chunk to free was?

I I heap

1 B
1 B T
I B

struct header{ — structure directly before allocated
memory to track size

}



Allocation Algorithms

e Gilven a freelist

* First fit — allocate the first hole that is big enough

e Best fit — allocate the hole that results in the smallest
hole after allocation

* More Iintelligent freelists

» Power-of-two allocator — multiple freelists, one for
each power of 2

- When allocation required, round allocation request amount
up to the nearest power of 2

- Take from that freelist
e Tradeoffs? WRT what metrics?




Allocation Algorithms: Goals

» Efficiency
* Low asymptotic AND constant-time costs
* Minimize wasted memory — Fragmentation

« External Fragmentation

- “Holes” left after allocation when freelist chunk is larger
than allocation amount

* Internal Fragmentation

- Difference between the amount of allocation requested,
and that size of the allocation made

e e.g. most allocation algorithms won't allocate less than ~16B

» Evaluate the allocation algorithms



Kernel Memory Allocation

* Physical memory = big array of bytes
« Often really chunks of some larger size = 4K
 How can we allocate these chunks?
 Memory requests can be > 4K

e Bitmap
» An array of bits, one per 4k chunk

e 1: allocated, O: free
e Allocation: Scan for N chunks



Buddy Allocation

« Power of 2 allocator

« Start with a given amount of memory
« Assume 4K alloc granularity

« For arequest

_ recursively break up memory (div 2)
_ Till we have chunk of smallest size

« Difficult to provide higher-order
allocations

« Coalesce unallocated siblings

« Downsides/Benefits?

« Used to allocate orders of pages
for user or kernel Ivl

physically contiguous pages

256 KB
128 KB 128 KB
Ay AR
64 KB 64 KB
B, B
32 KB| |32 KB




Buddy Allocation |

* Implementation

physically contiguous pages

256 KB

|

128 KB 128 KB
e e A

%

b
684 KB
64

P64 KB
B,

R

L‘

. 256K
e Freelists?
_ 128 |
— Cost of allocation?
: 64
— Cost of coalescing? HBL
: 2
« Other options? T
- Free: how find allocation 1e
size? 8
e Can't store meta-data in 4
memory chunk (= pow 2)
- Bitmaps?

« Cost of allocation
» Cost of coalescing
e« Memory wasted?

32 KB
R

allocated




Slab Allocation

Goals:

 Allocation of exact memory size needed
- Larger/smaller than page
« Fast allocation/deallocation

Allocate slabs of memory using buddy allocation

Caches consist of one or more slabs

« Tracks allocated objects
e One cache per object type/size: huge limitation!

Objects are the actual used memory



Slab Allocation I

kernel objects caches slabs

_ / -
3 KB T
objects

~~. physical
= contiguous
=T pages

7 KB /
objects T




Slab Allocation Il
 E.g.: Object is 3K, Slab size is 12K

e Cache tracks 4 (12/3) objects per slab

« Every 4 objects allocated — ask buddy alloc for slab
 When all objects in slab are freed, free slab

 When allocate object, which slab should we use?

* Freelist of objects, or caches?
« Most full? Empty? In between?
* Temporal/spatial locality of caches?

« Fragmentation with slab? (e.g. slab is 16K)
 What's best slab size? Larger/Smaller? Tradeoffs?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

