THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 2115: Engineering Electronics Laboratory

Tutorial \#5:

Designing a Common-Emitter Amplifier

BACKGROUND

There are two popular types of Common-emitter amplifiers:

1. Common-Emitter Amplifier without Emitter Degeneration

- Sometimes called grounded emitter or simply common-emitter
- This is the type you built in Lab 6

2. Common-Emitter Amplifier with Emitter Degeneration

- Sometimes called common-emitter with emitter resistor
- There are three possible configurations of this circuit:
i. Non-bypassed emitter resistor
ii. Bypassed emitter resistor with series external emitter resistor
iii. Bypassed emitter resistor with parallel external emitter resistor

Figure 1 - CE without Emitter Degeneration

Figure 3 - CE with Emitter Degeneration Series Resistor

Figure 2 - CE with Emitter Degeneration (no bypass cap)

Figure 4 - CE with Emitter Degeneration Parallel Resistor

The two forms of the common-emitter amplifier and their various configurations have their own advantages and disadvantages when compared to one another. From the perspective of this tutorial, we will concentrate on the way "gain" is controlled for each of the circuits. No matter the configuration, for any common-emitter amplifier, the input signal is always through the base terminal, the output is always taken from the collector terminal, and the emitter is always "common" to both the input and output.

For Type 1 (CE without emitter degeneration) from Figure 1, the bypass capacitor $\mathbf{C}_{\mathbf{B} 1}$ shorts the emitter to ground for high frequency signals, hence the name "grounded emitter." This amplifier is discussed in Sedra p.427-431. The voltage gain of this amplifier (when no load is present) is $A_{v}=-g_{m} R_{C}$. The designer can only control the value of R_{c}, and to some extent g_{m}, to control the voltage gain of the amplifier. This is the type you built in Lab 6 during the common-emitter portion of the lab.

For Type 2a (CE with emitter degeneration - non-bypassed emitter resistor) shown in Figure 2, there is no bypass capacitor. The emitter terminal is "common" to both the input and output through the resistor connected to the emitter $\left(R_{E}\right)$. The emitter resistor $\left(R_{E}\right)$ serves to give bias stability to the circuit. This amplifier is discussed in Sedra p.432-435. The gain of this amplifier when no load is present is $A_{v}=-\alpha \frac{R_{C}}{r_{e}+R_{E}}$ or more simply $A_{v} \approx-\frac{R_{C}}{r_{e}+R_{E}}$. The designer can now use R_{C} and R_{E} to control the voltage gain of the amplifier.

For Type 2b (CE with emitter degeneration - bypassed emitter resistor with series emitter resistor) shown in Figure 3, the bypass capacitor shorts the resistor $\mathrm{R}_{\mathrm{E} 1}$ to ground for high frequency signals. The emitter terminal is "common" to both the input and output through the resistor $\left(\mathrm{R}_{\mathrm{E} 1}\right)$. The emitter resistor $\left(\mathrm{R}_{\mathrm{E} 1}\right)$ serves to give bias stability to the circuit. This amplifier is not discussed in Sedra. The gain of this amplifier when no load is present is $A_{v} \approx-\frac{R_{C}}{r_{e}+R_{E 1}}$. The designer typically leaves R_{C} and uses $\mathrm{R}_{\mathrm{E} 1}$ to control the voltage gain of the amplifier.

For Type 2c (CE with emitter degeneration - bypassed emitter resistor with parallel emitter resistor) shown in Figure 4, the bypass capacitor shorts the resistor $R_{E 1}$ to ground for high frequency signals. Typically, $R_{E 1}$ is much smaller than R_{E}, making it so R_{E} is bypassed by comparison to $R_{E 1} . R_{E 1}$ is an easier "path to ground" than for AC signals. The emitter terminal is "common" to both the input and output through the resistor $\left(\mathrm{R}_{\mathrm{E} 1}\right)$. This amplifier is not discussed in Sedra. The gain of this amplifier when no load is present is $A_{v} \approx-\frac{R_{C}}{r_{e}+R_{E 1}}$. The designer typically leaves R_{C} and uses $\mathrm{R}_{\mathrm{E} 1}$ to control the voltage gain of the amplifier. The advantage of this design is that $\mathrm{R}_{\mathrm{E} 1}$ serves no purpose in the DC biasing of the amplifier, so the designer only sets the value of $\mathrm{R}_{\mathrm{E} 1}$ after the DC bias has been determined for the amplifier.

Students are encouraged to use any of the common-emitter amplifier configurations shown above in labs and projects. Type 2 will be covered in this tutorial because it is stable, easiest to bias, and the gain can be adjusted without affecting its DC bias.

INSTRUCTIONS

Designing a Common-Emitter Amplifier with Emitter Degeneration Parallel Emitter Resistor

Problem: Design a common-emitter amplifier using the 2 N3904 transistor that meets the following specs:

- $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
- $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$
- A_{V} (unloaded) $=-50 \mathrm{~V} / \mathrm{V}$
- $\mathrm{R}_{\text {in }}=4 \mathrm{k} \Omega$
- $R_{L}=1 \mathrm{k} \Omega$
- $\mathrm{V}_{\text {in }}=10 \mathrm{mV} @ 10 \mathrm{kHz}$

Figure 1.1 - Complete Common-Emitter Amplifier

Figure 1.2 - Common-Emitter Amplifier (DC Only)

1. Begin with the skeleton of the amplifier we would like to design shown in Figure 1.1.
a. Our goal as designers will be to determine values for $R_{C}, R_{E}, R_{E 1}, R_{B 1}, R_{B 2}, C_{C 1}, C_{C 2}$, and $C_{B 1}$ based on the specs given. We begin by determining the values of $R_{C}, R_{E}, R_{B 1}$, and $\mathrm{R}_{\mathrm{B} 2}$ to provide DC bias to the transistor. Then, we view the circuit from an AC perspective to determine the size of $R_{E 1}$ to set the 'gain' for the amplifier.
b. From a DC perspective, the amplifier looks like the circuit in Figure 1.2. This is because the impedance of $\mathrm{C}_{\mathrm{C} 1}, \mathrm{C}_{\mathrm{C} 2}$, and $\mathrm{C}_{\mathrm{B} 1}$ at $\mathrm{DC}(\approx 0 \mathrm{~Hz})$ is nearly infinite. So, the capacitors look like open circuits at DC. This is why $R_{E 1}$ disappears from the circuit.
c. Figure 1.2 looks just like what we did in Lab 6, except we are now solving the problem in reverse.
2. Determine the value of $\mathbf{R}_{\mathbf{C}}$.
a. Because we take the output voltage from V_{C}, we start with the equation for V_{C} :

$$
V_{C}=V_{C C}-I_{C} R_{C}
$$

b. The maximum output voltage we can have when $\mathrm{I}_{\mathrm{C}}=0 \mathrm{~mA}$ is $30 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{Cc}}\right)$. The minimum output voltage we can have when I_{C} is at its highest, which makes $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$. We want the $A C$ signal that comes out to "swing" symmetrically around the mid-point ($1 / 2 \mathrm{~V}_{\mathrm{CC}}$).

$$
\text { We set } V_{C}=\frac{1}{2} V_{C C}=\frac{1}{2} 30 \mathrm{~V}=\mathbf{1 5 V}
$$

c. Since I_{C} is given as $2 m A$, we can use Ohm's Law to determine R_{C} :

$$
\boldsymbol{R}_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=\frac{30 V-15 \mathrm{~V}}{2 m A}=\mathbf{7 . 5 k} \boldsymbol{\Omega}
$$

3. Determine the "Q" point of the transistor.
a. From the test bench we created in Lab 5 to characterize the 2N3904 transistor, we perform a parametric sweep simulation to obtain the IV curve for the transistor. We sweep V_{CE} from 0 to $\mathrm{V}_{\mathrm{CC}}(30 \mathrm{~V})$. I have swept current I_{B} from 0 to 20 uA , in steps of 2.3uA. I used trial and error until I was able to get a curve to tell me what I_{B} was when $I_{C}=2 \mathrm{~mA}$ and $V_{C E}=15 \mathrm{~V}$.

Figure 1.3 - BJT Test Circuit

Figure 1.4 - IV Curve (I_{C} vs. V_{CE}) for the 2N3904 BJT

In the specs, we were told $I_{C}=2 \mathrm{~mA}$. We determined that $\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}$ in the last step. That is our "quiescent value" or \mathbf{Q} value. From the IV curve, we can see that the 2N3904 transistor will supply $\sim 2 \mathrm{~mA}$ of current when the base current is set to $\mathrm{I}_{\mathrm{B}}=11.9 \mu \mathrm{~A}$. With this information, we can determine I_{E}, $R_{B 1}, R_{B 2}$, and R_{E}. So far we know:

Figure 1.5 - DC Bias State for the 2N3904
4. Find R_{E}, V_{E}, and V_{B}.
a. As a rule of thumb for this type of common-emitter amplifier, we make $R_{E} 10 \%$ of R_{C}.

$$
\boldsymbol{R}_{\boldsymbol{E}}=10 \% R_{C}=0.1 * 7.5 \mathrm{k} \Omega=\mathbf{7 5 0 \Omega}
$$

b. From Ohm's Law, we can find V_{E} and V_{B} :

$$
\begin{aligned}
& V_{E}=I_{E} R_{E}=2.0119 \mathrm{~mA} * 750 \Omega \approx \mathbf{1 . 5 V} \\
& \boldsymbol{V}_{\boldsymbol{B}}=V_{E}+V_{B E}=1.5 \mathrm{~V}+0.7 \mathrm{~V} \approx \mathbf{2 . 2 V}
\end{aligned}
$$

5. Use $\mathbf{V}_{\mathrm{cc}}, \mathbf{V}_{\mathrm{B}}, \mathbf{I}_{\mathrm{B}}$, and $\mathbf{R}_{\text {in }}$ to find $\mathbf{R}_{\mathrm{B} 1}$ and $\mathbf{R}_{\mathrm{B} 2}$.
a. Our goal is to deliver $\mathbf{1 1 . 9 u A}$ to the base of the transistor. $\mathbf{R}_{\mathbf{B} 1}$ and $\mathbf{R}_{\mathbf{B} 2}$ must be properly sized to achieve this goal.
b. We generate three equations to find $\mathbf{R}_{\mathbf{B} 1}$ and $\mathbf{R}_{\mathbf{B} 2}$.
c. Since $\mathbf{R}_{\mathbf{B} 1}$ and $\mathbf{R}_{\mathbf{B 2}}$ are in parallel (as we learned from Lab 6's tutorial), we know:

Figure 1.6 - Finding Thévenin Equivalent

The Thévenin Voltage $\left(\mathrm{V}_{\mathrm{BB}}\right)$ is:

$$
\begin{equation*}
V_{B B}=\left(\frac{R_{B 2}}{R_{B 1}+R_{B 2}}\right) V_{C C} \tag{1}
\end{equation*}
$$

The Thévenin Resistance $\left(R_{B}\right)$ is:

$$
\begin{equation*}
R_{B}=R_{B 1} \| R_{B 2}=\frac{R_{B 1} R_{B 2}}{R_{B 1}+R_{B 2}} \tag{2}
\end{equation*}
$$

d. Using the Thévenin equivalent resistance (R_{B}) for $\mathrm{R}_{\mathrm{B} 1}$ and $\mathrm{R}_{\mathrm{B} 2}$ (as we did in Lab 6), we know our circuit can be redrawn to look like this:

Using Ohm's Law:

$$
\begin{gather*}
I_{B}=\frac{V_{B B}-V_{B}}{R_{B}} \\
V_{B B}=I_{B} R_{B}+V_{B} \tag{3}
\end{gather*}
$$

Figure 1.7 - Redrawn with Thévenin Equivalent
e. In Equations 1-3, we know $\mathbf{V}_{\mathbf{c c}}, \mathbf{I}_{\mathbf{B}}$, and $\mathbf{V}_{\mathbf{B}}$, but we do not know $\mathbf{R}_{\mathbf{B} 1}, \mathbf{R}_{\mathbf{B} 2}, \mathbf{R}_{\mathbf{B}}$, or $\mathbf{V}_{\mathbf{B B}}$. Therefore, we have four unknowns, but only three equations. We need to find the value of one of these variables to solve for them all. We can use the given spec value for $R_{\text {in }}(D C)$ to find the value of R_{B}.
f. From the Thévenin equivalent figure above, we can see that:

$$
\begin{equation*}
R_{i n}=R_{B} \| R_{i b} \tag{4}
\end{equation*}
$$

g. $R_{i b}$ is the input resistance looking into the base of the transistor. Since only R_{E} is attached to the emitter at $D C$ (because $R_{E 1}+C_{B 1}$ appears as an infinite load at $D C$), we can use the value found in Sedra on $p .457$ for R_{ib} :

$$
R_{i b}=(\beta+1)\left(r_{e}+R_{E}\right)
$$

We know from Sedra (p. 407), that:

$$
r_{e}=\frac{V_{T}}{I_{E}}=\frac{26 \mathrm{mV}}{2.0119 m A} \approx \mathbf{1 3 \Omega}
$$

This makes R_{ib} :

$$
\begin{aligned}
\boldsymbol{R}_{i b} & =(\beta+1)\left(r_{e}+R_{E}\right) \\
& =(171)(13 \Omega+750 \Omega) \\
& \approx \mathbf{1 3 0} \boldsymbol{k} \boldsymbol{\Omega}
\end{aligned}
$$

h. Using R_{ib} and R_{in}, from Equation 4, we can solve for \mathbf{R}_{B} :

$$
R_{B}=\frac{R_{\text {in }} R_{i b}}{R_{i b}-R_{i n}} \approx 3.9 \mathrm{k} \Omega
$$

i. With R_{B} found, we can use Equations 1-3 and some algebra to find $R_{B 1}$ and $R_{B 2}$:

$$
\begin{aligned}
& R_{B 1}=51.8 k \Omega \\
& R_{B 2}=4.2 k \Omega
\end{aligned}
$$

j. All the biasing resistors, currents, and voltages have now been found!
6. Use $\mathbf{R}_{\mathbf{E} 1}$ to set the gain for the common-emitter amplifier.
a. The gain for this type of common-emitter amplifier is (with no load attached):

$$
A_{V}(\text { unloaded })=-\left(\frac{R_{C}}{r_{e}+R_{E}| | R_{E 1}}\right)
$$

b. The specs require A_{V} (unloaded) to be equal to -50 , so with some algebra, we can solve for $\mathbf{R}_{\mathrm{E} 1}$:

$$
R_{E 1}=168 \Omega
$$

7. Determine the gain when the load is attached.
a. The gain for this type of common-emitter amplifier is (with load attached):

$$
A_{V}(\text { loaded })=-\left(\frac{R_{C} \| R_{L}}{r_{e}+R_{E} \| R_{E 1}}\right) \approx-6
$$

8. Set values for $\mathbf{C}_{\mathbf{C} 1}, \mathbf{C}_{\mathrm{C} 2}$, and $\mathbf{C}_{\mathrm{B} 1}$.
a. The impedance of a capacitor is $Z_{C}=\frac{1}{j 2 \pi f C}$. We can use this knowing that we want $\mathbf{C}_{\mathbf{C} 1}$, $\mathrm{C}_{\mathrm{C} 2}$, and $\mathrm{C}_{\mathrm{B} 1}$ to all look like "shorts" at 10 kHz (the input frequency), and select a value that we have in the ECE 2115 kit.
