ECE 2140 Experiment 10 Half-Adder on Gate Array Logic

Modified for Spring 2012

Equipment and Parts Required

- 1 GAL (16V8 or equivalent)
- 1 DC Power Supply
- 1 Digital Voltmeter

1. Write a Verilog program for a half-adder

The code will be provided this time. In future labs, you will have to write your own.

```
module half_adder(x,y, sum, carry);
input x;
input y;
output sum;
output carry;

assign sum = x ^ y;
assign carry = x & y;
endmodule
```

2. Compile the Verilog code using ispLEVER

Follow the instructions posted on the course website to compile Verilog. (http://www.ece.seas.gwu.edu/~ece140/GAL ispLEVER.pdf)

In your lab report, describe the detailed steps to compile your source code in ispLEVER.

3. Label the pins used for your 16V8 GAL after you compile & synthesize

Make sure to include this in your lab report.

4. Program the GAL chip using the JEDEC file created in step 2

Refer to the instructions on the course website (look at Step 3, "Programming the IC Chip") (http://www.seas.gwu.edu/~ecelabs/appnotes/PDF/dataio.pdf))

Describe the procedure to program the GAL chip in your lab report.

5. Experiment with your programmed GAL chip, and fill out the following truth table

X (Volts)	Y (Volts)	Sum (Volts)	Carry (Volts)
0	0		
0	5		
5	0		
5	5		

6. What are the pros and cons of using programmable logic devices such as the GAL chip?