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Abstract 
 
 
 
 
 
This project is to design a 4-bit ALU core which, if designed successfully, is supposed to 
be integrated into an IC used to control a new color touch pad display. Among several 
requirements imposed on the design, are the speed of clock signal that the ALU are to 
operate in being 30 MHz, the source voltage being 5 V … The design should be 
implemented with smallest layout area. Some other requirements involve the way we will 
simulate the design and the technology used to generate the layout. (using Hewlett-
Packard 0.5 um n-well technology) 
 
The project is given about three weeks ago. However, due to various reasons, it can’t be 
started until about two weeks prior to the due date. Among the reasons that make early 
initialization of the project impossible was the theoretical materials given in the lecture 
being not sufficient up to the point. 
 
However, althrough being started a little late, the project basically has been completed 
one week before the due date. Unfortunately, again due to some misunderstanding of the 
statement of the project by the author, especially of the meanings of the Carry and 
Overflow bit of a ALU, the author has to make some correction before it can be called a 
completed working project. And this is done just two day before the due date. 
 
In summary, the project has been successfully completed after three weeks of designing, 
simulation, testing, and documentation. All of the goals given by the project statement 
have been beautifully achieved with one exception of the layout area the definition of 
which is not very obvious so as how small is considered as small. However, according to 
the estimated number of MOSFETs that Pr. Can E. Korman told us, the number of 
MOSFETs used in this design is not a bad one at all. And hence, we can say the project is 
successful in terms of timeliness and good functionality of the design. 
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I- Project Introduction 
 
Project Requirements and Basic Goals 
 
The task is to design a 4-bit arithmetic logic unit (ALU) core which will be part of an IC 
to control a new color touch pad display. The primary emphasis of the project is on a 
working ALU design with minimum core layout area. 
Besides the specific technical requirements which are related to input/output 
characterizations and relationship that will be stated clearly in the next section, there are 
other requirements regarding to the technology used to implement the layout as well as 
the working environment in which the ALU must function correctly. These are: 
 
- The ALU must be able to operate at a 30 MHz clock and 5V-power source. (We are not 
responsible for the design of the clock). 
- All designs will employ the SCMOS logic gate library that is in TannerLB. 
- All layouts will employ the Hewlett Packard 0.5 µm n-well technology.  
 
Top Level Design and Input/Output Relationship 
 
Before going into details of the design, this section will give a more specific description 
of the requirement in terms of technical aspect by giving a clear statement of the 
input/output characterization and relationship. From that point, a sketch of top-level 
design will be derived based on that input/output characterization as well as other 
requirements which are relevant to this stage as stated by the project specifications. 
 
From the top-level, the design will be a circuit with three sets of inputs and two sets of 
outputs as shown in Figure 1.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in figure 1.1, the circuit accepts three 4-bit input vectors A, B, and S. More 
specifically, A and B are 4-bit data input vectors and S is a 4-bit command input vector. 
At the output end, the circuit will generate a 4-bit data result as well as two 1-bit status 

V
C

R3-R0A3-A0

B3-B0

4-bit ALU 

S3-S0

Figure 1.1.  Top-Level Design
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signals C and V representing the Carry bit and Overflow bit, respectively for the 
operations. 
The relationship between A, B, S, R, C, and V can be more specifically listed in the 
following table (Table 1.1) 
 
Hex. Code S3 S2 S1 S0 R Comments C V 

0 0 0 0 0 A A is outputted 0 0 

1 0 0 0 1 B shifted 1 bit left circular shift  0 0 

2 0 0 1 0 A - B Complement-Two Subtraction 0/1 0/1 

3 0 0 1 1 B B is outputted 0 0 

4 0 1 0 0 A + 1 Increment A 0/1 0/1 

5 0 1 0   A - 1 Decrement A 0/1 0/1 

6 0 1 1 0 B + 1 Increment B 0/1 0/1 

7 0 1 1 1 A + B Add A and B 0/1 0/1 

8 1 0 0 0 B - 1 Decrement B 0/1 0/1 

9 1 0 0 1 A OR B bit by bit OR 0 0 

A 1 0 1 0 A shifted 1 bit right circular shift 0 0 

B 1 0 1 1 A AND B bit by bit AND 0 0 

C 1 1 0 0 A XOR B bit by bit XOR 0 0 

D 1 1 0 1 Max(A, B) Select the maximum 0 0 

E 1 1 1 0 -B Complement-Two Negation 0 0 

F 1 1 1 1 - A Complement-Two Negation 0 0 

Table 1.1 Input/Output Relationship 

 
According to the input/output relationship listed in table 1.1, we can specify further the 
way we interprete the meaning of the data input vectors A and B, and the data output 
vector R respectively so that the corresponding operation is meaningful. This is 
straightforward. For those operations other than addition, subtraction, increment, and 
decrement (including Max (A,B)), A and B are considered as two sets of bits. For the 
rests, A, B, and R are 4-bit signed numbers. In such circumstances, their most significant 
bits (A3, B3, and R3) are sign bits. Also note that we will use complement-two 
representations for negative numbers or in cases that involve subtraction operation. 
 
One more thing important enough to be mentioned is that we can’t assume each bit of our 
data inputs and command inputs which are meaningful to the supposed operation will be 
available to the ALU simultaneously. Hence, it is appropriate to implement some kind of 
circuit that can synchronize the inputs; and make sure that our circuit is operating on the 
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correct data. At the output end, we will do the same thing so that our output will always 
contain meaningful data. 
 
Design Procedure with Block Diagrams to Get Input/Output Relationships 
 
Up to this point, the basic requirements and specifications of the problem have been well 
stated; and therefore, we are ready for the designing process. It is certain that, while the 
basic requirements will need to be perfectly met, we will probably impose some more 
specifications and requirements in order to improve and/or to facilitate our version of 
implementation. We will do this along our way to implement the circuit at any stage of 
our designing and/or testing processes. 
As the basic requirements and specifications of the problem suggest, the circuit will 
accepts three sets of inputs (A, B, and S) and giving the values of output (R,C, and V) 
accordingly. Also as stated, we always keep in mind that, whatever our approach  is, the 
meaningful input data of our top-level circuit will not come to our ALU at the same time. 
However, for the time being, we just assume that the synchronizing mechanism has been 
achieved; and our data and command inputs are already synchronized. So at the top-level 
without taking into account the synchronizing circuitry, we can model the rest of the 
circuit as of a logic function given as f = f(A, B, S) whereas f is the output vector that 
includes R, C, and V as a whole. More specifically, we can implement R, C, and V 
separately as follows: R = R(A, B, S), C = C(A, B, S), and V = V(A, B, S); and f = [R, C, 
V]. Doing so, we can approach the task by introducing an initial version of our design of 
R as given in figure 1.2 

 

R

S 

R1 

B A 

Operation 1 

R2

BA

Operation 2 …

R16

BA 

Operation 16

Data Selector 

Figure 1.2. Block diagram to implement data output vector R 
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C

BA

Logic function C 

V

BA

Logic function V

Figure 1.3. Block diagram for the circuitry of C 
and V functions 

As shown in Figure 1.2, our circuit can comprise 16 operation components , each of 
which performs one of the 16 operations given by the statement of the problem (see table 
1.1). Also from the figure, A, B, S, and R are all 4-bit vectors. The basic idea behind this 
scheme is that because we have 16 operations (each operation corresponds to a 
combination of 4-bit command input S – there are 16 of such combinations), we can 
implement each component as a separate combinational circuit receiving A and/or B as 
data inputs and giving 16 output vectors R1, R2, …, R16 respectively, in general sense, at 
the same time. Because there is only one out of these 16 data is meaningful at a time, the 
unique bit pattern of S will choose among these the unique correct output vector. 
Similarly, we can use the same approach to obtain the circuitry for C and V as shown in 
figure 1.3. After implementing each part individually, we can put them together giving 
the complete and integrated circuit as desired. 
 

Comment: We can see that the 
material from the two sections 
just described above is 
sufficient to implement the 
circuit in terms of logic 
functions. However, as stated 
from the beginning of the 
project statements, the layout 
with minimum core area is also 
desired so that the core can be 
appropriately integrated into a 
larger chip. It turns out that the 
described approach is not a 
good one by small area criteria. 
Also, from figure 1.2, if this 
approach is adopted, we will 

need a 4-bit 16:1 multiplexer so that we can select the correct data output at the output 
end of the ALU. However, this is very impractical because it may impose a heavy 
current-driving capability on the selector inputs. For that reason, we will adopt a more 
practical approach by modifying the initial version described above. In this approach, we 
will try to group our data into a smaller number of units by sharing some of the 
components among members of each group. This approach will help reduce the total area 
of the circuit in order to meet the minimum area layout requirement. In order to do so, we 
will begin with the basic functions which may be reuseable by other operations and more 
importantly, can’t be broken up into smaller pieces. The candicate operations for separate 
and independent implementation are: OR, AND, and XOR. The operations to output A or 
B, of course, can use either one of the above if appropriate inputs are applied; hence these 
operations are removed from the list. The interesting cases are the shift operations 
(having hex code 1, and A). Should this be implemented as independent module or not 
depends on how we choose to implement the functions. One option could be using a 4-bit 
register with a clock signal being implemented internally so that at the output end of the 
circuit, the ALU behaves just like a combinational logic circuit. We can use the same 
register with extra logic to perform the two shift operations. However, the added logic 
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circuit may increase the performance (adding delay time) of the operations as well as the 
total area of the ALU as a whole. Or, we can use two registers, each for one operation. If 
the latter one is adopted, then there is an even better solution: using fixed connection so 
that no registers nor logic circuits are needed by outputting directly. We will go back to 
this issue when we are done with other operations. Now, besides OR, AND, XOR, A, B, 
and the two shift operations, all the outputs of the other operations can be implemented 
sharing the adder circuitry except for the operation D (Max(A, B)). These are done in the 
following manner: 
 
Operation 7 (A + B) is clear. The adder will receive two input vectors A and B and 
generates the output vector A + B using regular addition performance. 
Operation E (0 minus B) is implemented by applying 0 at one input of the adder. The 
other input vector is B complemented and added 1. 
Operation F (0 minus A) is done in the similar fashion. 
Operation 4 (A + 1) is just like operation 7 except for one of the operands now being a 
constant 1. 
Operation 6 (B+1) is similar to the operation 4. 
Operations 5 and 8 (A – 1 and B – 1 respectively) are performed by adding the relevant 
operand (A or B) to –1 (The 4-bit complement-two of –1 is binarily represented as 1111). 
Operation 2 (A – B) is performed by first negating B and add this to A itself. 
 
The discussion above indicates that at least the outputs of the operations 2, 4, 5, 6, 7, 8, E, 
and F can be taken from the sum output of the adder. 
 
So far, we have 4 units whose outputs will be fed to the output end of the ALU: the 
circuit of the adder, and three circuits that performs the OR, AND, and XOR respectively. 
Also, we have at least one more unit that needs its output to be directed to the output end 
(at least one shift operation). Because the inputs of the Output Selector component shown 
in figure 1.2 now exceeds four. It may be attempted to use a 4-bit 8:1 multiplexer to do 
the task. 
 
The operation D itself, can be implemented using the XOR function which is assumably 
already built as an independent function. Depending on the comparison, either A or B is 
outputted. Again we can build this unit as one output unit or just by outputting A or B 
directly based on the outcome of the comparision. The first choice requires extra logic 
circuit to switch the outputs. The second one just outputs A or B directly; thus, requires 
two more vector inputs at the 4-bit 8:1 multiplexer giving the total inputs already used at 
the multiplexer to 6.  
 
Now, come back to the shift operations, because we still have two more 4-bit inputs 
available at the data selector component, we will choose the last option to implement the 
shift operations, that is, the one using fixed, direct connection of input to output. As 
discussed, this will need two vector inputs at the data selector component making the 
total numbers of inputs needed for the data selection component to be 8. 
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From the discussion above, we will have our modified block diagram shown in figure 
1.4, in which we also incorporated the logic circuit to implement C and V bits. Also, what 
not shown explicitly from the diagram is the synchronization mechamism to synchronize 
our inputs and outputs. 

Implementation of Design Using EDA Tools 
 
There are three main stages in implementing the circuit using EDA tools. 
 
- S-Edit will be used first to create the circuitry of the design including all modules 
together with the top module. We also use S-Edit to input values of some other 
parameters such as source voltage, and relevant information of the pulses, if any, so that 
it is ready for simulation. (For instance, the clock signal will have period of less than 
33.33 ns to emulate the condition of 30 MHz clock as required). 
- T-Spice will be used  to simulate the circuit. According to the requirement of the 
project, we will set the chanel length L = 0.5 µm through parameter l. 
- W-Edit will be used to view the waveforms of our output together with its 
corresponding inputs. 
 
 
II- Project Breakdown and Characterization of Each Sub-
Module 
 
Partitioning of Project into Smaller and Manageable Sub-Modules 
 

S C 

A3 

B2B1B0B3 A0A3A2A1

B A B 

B A

S 

B A 

A or B 

B A 

A and B

A 

A xor B

Half Comparator 

Adder 
Controller 

Figure 1.4. Modified Block Diagram of the Circuit 

Output Selector 

R 

Logic 
Logic 

B3

V 

Command 
Decoder 
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As shown in figure 1.4, the circuit composes of several modules. In this section, we will 
name each module and describe in detail their implementations. 

 
To make our circuit 
hierarchically structural, we 
will divide the circuit into 
following modules:  

- Command decoder 
module. 

- A AND B module. 
- A OR B module. 
- A XOR B and 

Comparision module. 
- Output Selector module. 
- Arithmetic module. 
- Carry and Overflow 

Logic module. 
 
Implementation of the 
Command Decoder module 
 
From our discussions so far, 
basically our circuit behaves 
like a function selector. So to 
facilitate this process, it is 
useful to have a command 
decoder module. The input of 
the module will be the 4-bit 
command vector S. It will have 
16 outputs, each of which 
corresponds to a unique 
combination of input bits out of 
16. The schematic of the 
command decoder is shown in 

figure 2.1. 
At the output end, although the module has 16 outputs, there is one and only one of them 
being active at a time (active high). We can use the outputs of the module to control other 
modules accordingly so as they will give the correct data flow from our inputs and 
outputs. The functionality of the module can be described using the following truth table 
(table 2.1) 
 
 
 
 
 
 

Figure 2.1 – 
Schematic of 
the Command 
Decoder 
module 
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S3 S2 S1 S0 Active-High Output 
0 0 0 0 P0 
0 0 0 1 P1 
0 0 1 0 P2 
0 0 1 1 P3 
0 1 0 0 P4 
0 1 0 1 P5 
0 1 1 0 P6 
0 1 1 1 P7 
1 0 0 0 P8 
1 0 0 1 P9 
1 0 1 0 P10 
1 0 1 1 P11 
1 1 0 0 P12 
1 1 0 1 P13 
1 1 1 0 P14 
1 1 1 1 P15 

Table 2.1. Truth Table describing the functionality of the Command 
Decoder module. 
 
Implementation of the A OR B module 
 
For the A OR B module the circuit is very straightforward. The module consists of 4 2-
input OR gates in parallel to OR A and B bit by bit.  

The schematic of the module is shown 
in Figure 2.2. 
This module will be used to perform the 
A OR B operation. Its output will be fed 
to the output selector. Based on the 
decoding of the command inputs, if P9 
is high, this output will be the output of 
the whole circuit (still need to be 
synchronize – we will describe this 
later). 
 
Implementation of the A AND B 
module 
 
Similar to what described in the 
previous section, the implementation of 
the A AND B module is shown in 

Figure 2.2- Schematic of the A OR B 
module 
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Figure 2.3.  The module consists of 4 2-input AND gates in parallel to AND A and B bit 
by bit. 
This module will be used to perform the A AND B operation. Its output will be fed to the 
output selector. Based on the decoding of the current command inputs, if P11 is currently 
high, the output of this module will be selected to be the output of the whole circuit. 

 
 
Implementation of the A XOR B 
and Comparision module 
 
This module includes two 
components. The first component 
is the 4-bit XOR logic function 
itself and pretty straightforward. 
The output of this component will 
be used by the second component 
named Half Comparator and also 
be fed to the output selector. In 
case P12 is currently active (or the 
current command is A XOR B), 
this output will be selected to be 
the output of the whole circuit. The 
schematic of the XOR component 

is shown in Figure 2.4. 
 
 
The second component of this 
module will be named Half 
Comparator used to compare the 
values of two unsigned numbers A 
and B. 
 This component will have 1-bit 
output called fA indicating whether 
A is greater than or equal to B in that 
case fA is 1 (and 0 if A is less than 
or equal to B). The schematic of this 
component is shown in Figure 2.5 
 
The algorithm used to compare two 
unsigned number A and B is as 
follows:  
Let D = D3D2D1D0 = A XOR B. 
If D3 is 1 and A3 = 1 then fA = 1 

(indicating that A is greater than B). If D3 is 1, and A3 = 0 then fA = 0 (indicating A is 
not greater than B). If D3 = 0, then we have to take a look at D2 and A2 and B2 in a similar 
manner. In case D3 = D2 = D1 = 0, we just look at the value of A0. It is safe to set fA to 1 

Figure 2.3 – Schematic of the A AND B 
module 

Figure 2.4 – Schematic of the XOR 
component of the XOR and comparision 
module 
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if A0 = 1 (A greater than 
or equal to B), and to 0 if 
A0 = 0 (A is less than or 
equal to B).  The output 
fA of this component will 
be used to control the data 
selector if in case the 
output P13 is high (current 
command code is D). If 
that is the case, A will be 
selected if fA is 1, 
otherwise B will be 
selected to be the output. 
 
Implementation of the 
Arithmetic module 
 
As stated above, several 
operations (P0, P2, P3, P4, 
P5, P6, P7, P8, P14, P15) 
will share this module to 
do their tasks. For this 
reason, this module will 
have extra control circuits 

or components to control the data flow so that the correct operation of the circuit is 
always guaranteed. The core of the module is the 4-bit Full Adder. For the time being, we 
just take a straightforward approach and use a linear full adder instead of employing a 
faster version. When we come to the testing stage, we may modify the circuit to meet the 
clock speed of 30 MHz as required. If the linear 4-bit Full Adder works well, we will 
keep our original design. 
As far as the inputs of the FA is concerned, we can construct the following table (Table 
2.2) 
As shown from the third column, we will need some kind of logic combination so that it 
allows various inputs to be entered the adder accordingly with the active command. 
Besides inputs for regular operands (A and B – entered the adder at the same time for 
operation with command code 2 and 7, others involve only one (either A or B but not 
both) and a constant (either 0 or 1 but not both). Also from the table we notice that, 
whenever there is an operation that involves a negation (negation, subtraction, 
decrementing) the negation involves only one operand or constant at a time. So the logic 
for the inputs of the FA at least will be implemented as follows: 
- Constants 0 and 1 will be fixed on the same side (because we will need only one of 
them at any instant). 
- Each side must have at least one route for regular inputs (operands of the operation). 
- One of the regular route allows negation for operations that involve negation. 
- A and B should be switcheable so that the adder will work equally well with A and B 
without knowing in advance which route A and/or B will enter the adder. 

Figure 2.5 – Schematic of the Half-
Comparator component of the XOR and 
Comparision module 
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Command Code Active Decoder Output Operation by the FA 

0 P0 A + 0 

2 P2 A - B 

3 P3 B + 0 

4 P4 A + 1 

5 P5 A - 1 

6  P6 B + 1 

7 P7 A + B 

8 P8 B - 1 

E P14 0 - B 

F P15 0 - A 

Table 2.2 Operations performed by the FA with respect to each command
 
From the discussion above, we can derive the block diagram for the Arithmetic module 
as shown in Figure 2.6. Before going any further, we need to make it clear that the 
control signals S0, S1, S2, and S3 shown in the Figure have local meaning only; that is, 
these signals don’t have anything to do with our global command input vector S. We 
simply take these notations for convenience. 
 
 
 
 
 
 
 D1 D0 

R
Co

Ci

S2
S3

S0

S1

4-bit Data Switch 

4-bit Full Adder

D1 or D1 
inverted 

0, 1, or D0 
Arithmetic 
Controller 

Figure 2.6 – Block Diagram for Arithmetic module 
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 Implementation of the 4-bit Full Adder is shown in Figure 2.7. 

 
We can implement the first input route using the following block diagram (shown in 
Figure 2.8). The component will be controlled by the Arithmetic Controller component 
using two control signals S1 and S2 as shown in the figure. If we like the 4-bit D0 to pass 
through the router, we will control S1 and S2 so that S1 = 1 and S2 = 0. If we want a 
constant 0 to appear at the FA’s inputs, we will set S1 = 0 and S2 = 0. Similarly, if a 
constant 1 is desired, S2 will be set to 1 regardless of the values of S1 and D0. In this case, 
we will choose S1 so that it is more convenient to implement the Arithmetic Controller. 
 

 
The schematics of the 
Arithmetic module is 
shown in Figure 2.9. 
The schematic of the 
second router is shown 
in Figure 2.10 (in figure 
2.19, it is named Data 
Selector). The second 
input router will be 
controlled by the 
Arithmetic Controller 
using control signal S3. 
If S3 = 1, its input will 
be fed to the second 
inputs of the FA. 
Otherwise, the inverts 
of its inputs will pass 
through the router to 

the second inputs of the FA. 
 

Figure 2.7 – Schematic of the 4-bit Full Adder 

F0 
S2 

S1 D0 

S1 AND D0

S2 OR F0 

To the first inputs of FA

Figure 2.8 – Block diagram to implement the first input 
router of the 4-bit FA. 



 

 19

To implement the 4-bit data switch, we will use two 4-bit 2:1 Multiplexers. The data 
switch component will be controlled by the Arithmetic Controller component using 
control signal S0. The implementation of the 4-bit data switch is shown in Figure 2.11. As 

shown from the figure, if S0 = 1, 
the 4-bit operand A will appear at 
the first 4-bit output  
and the 4-bit operand B will 
appear at the second output. If 
we want the operands to switch 
between the two outputs, we will 
set S0 = 0. The implementation of 
a 4-bit 2:1 Multiplexer used by 
this module is shown in Figure 
2.12. 
 
 
 
 
 Figure 2.10 – Schematic of the second input router 

of the 4-bit FA 

Figure 2.9 – The schematic of the Arithmetic module 
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Implementation of the Arithmetic 
Controller component (in figure 
2.19, it is named FA Controller) 
 
The duty of the Arithmetic 
Controller component is to control 
the Data Switch component, the 
input routers to the 4-bit FA, and the 
FA itself so that the correct operands 
and inputs are applied at the inputs 
of the FA corresponding to a certain 
operation which involves 
arithmetics.  It does so using five 
control signals: S0, S1, S2, S3, and Ci. 
The role of S0, S1, S2, and S3 have 
been described previously. The role 
of Ci is to set up the carry-in bit for 
the FA so that it works properly with 
a whole range of operations 
(addition, subtraction, which needs 
two’s complement form of the 
subtrand). The inputs of the 
Arithmetic Controller component are 

P0, P2, P3, P4, P5, P6, P7, P8, P14, P15. The relationship between inputs and  
 
 
 
 

0 1 10 

S0 

Second Ouput First Ouput 

B A 

4-bit 2:1 Multiplexer 

B A 

4-bit 2:1 Multiplexer 

Figure 2.11- Modified form of the schematic of  the 4-bit Data Switch component of the 
Arithmetic module 

Figure 2.12 – Schematic of a 4-bit 2:1 
Multiplexer used by the Data Switch 
component of the Arithmetic module 
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Input Operation 
performed 

First Input 
of FA 

Second 
Input of FA Ci S3 S2 S1 S0 

P0 A 0 A 0 1 0 0 0 

P2 A - B A B inverted 1 0 0 1 1 
P3 B 0 B 0 1 0 0 1 
P4 A + 1 0 A 1 1 0 0 0 

P5 A - 1 1111 A 0 1 1 X 0 

P6 B + 1 0 B 1 1 0 0 1 

P7 A + B A B 0 1 0 1 1 

P8 B - 1 1111 B 0 1 1 X 1 

P14 0 - B 0 B inverted 1 0 0 0 1 

P15 0 - A 0 A inverted 1 0 0 0 0 

Table 2.3- Truth Table to implement the Arithmetic Controller component of the 
Arithmetic module 

 
outputs of the Arithmetic Controller is specified through Table 2.3. 
 
From table 2.3, we can derive the logic expressions for Ci, S3, S2, S1, S0 as follows: 
Ci = S3

’ + P4 + P6 
S3 = P2

’. P14
’. P15

’ =  (P2 + P14 + P15)’ 
S2 = P5 +  P8 
S1 = P2 + P3 
S0 = P0’. P4’. P5’. P15’ = (P0 + P4 + P5 + P15)’ 
 
Notice that for convenience, we will choose the don’t-care values of S1 (X) = 0. 

Also notice that we 
don’t use P3 at all. This 
reflects the fact that 
when all inputs of the 
Arithmetic Controller 
are zero then either P3 = 
1 or the operation of the 
Arithmetic module is 
irrelevant (and not 
chosen to be the output 
of the ALU anyway). 
The schematic of the 
Arithmetic Controller is 
shown in Figure 2.13 
 
 

Figure 2.13 – The schematic of the Arithmetic Controller 
component of the Arithmetic module 
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Implementation of the Output Selector Module 
 
The duty of the Output Selector Module is to select the one and only one output which is 
relevant to the current command input out of 8 different sources of outputs. The block 
diagram for the module is shown in Figure 2.14 
 

We will implement the 4-bit 8:1 Multiplexer using two 4-bit 4:1 Multiplexers with Chip 
Select input (active-high), the schematic of which is shown in Figure 2.15. The modified 
schematic of the 4-bit 8:1 Multiplexer is shown in Figure 2.16 
 
 
 
Once again, from Figure 2.16, we use the notation S0, S1 for local explanation. They are 
not directly taken from the corresponding bits of the command input vector S. 

A AND B A OR B B2B1B0B3A XORB A 
B 

Output 
A>=B S 

Output 
Controller 

                  
                               4-bit 8:1 Multiplexer 

A0A3A2A1 Arithmetic 

Figure 2.14 – Block diagram of the Data Selector module 
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The 4-bit 8:1 Multiplexer will be controlled by the Output Controller component using 
control signal S0, S1, and CS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Output Controller itself has its inputs taken from the output of the command decoder 
plus one input from the output of the Half Comparator component of the A XOR and 
Comparison module. 
 
 

Figure 2.15 – Schematic of a 4-bit 4:1 Multiplexer used to 
implement the 4-bit 8:1 Multiplexer in the Output Selector 
module 
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CS 

S1 
S0 

A B2B1B0B3 B 

            4-bit 4:1 Mutiliplxer 
              with Chip Select 

            4-bit 4:1 Mutiliplxer 
              with Chip Select 

A0A3A2A1 A XOR BA OR BA AND B Arithmetic 

                      4 2-input OR Gates in Parallel 

Figure 2.16 – Modified form of the schematic of the 4-bit 8:1 Multiplexer used in the Output 
Selector module 

For convenience, the outputs of the Output Controller are also locally named S1, S0, and 
CS. They are used to control the S1, S0, and CS inputs of the 4-bit 8:1 Multiplexer 
respectively. 
 The truth table shown in Table 2.4 is used to implement the Output Controller 
component. 
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Operation S1 S0 CS Output from 

P0 1 1 1 Arithmetic module 
P1 0 1 0 B circular left shift 
P2 1 1 1 Arithmetic module 
P3 1 1 1 Arithmetic module 
P4 1 1 1 Arithmetic module 
P5 1 1 1 Arithmetic module 
P6 1 1 1 Arithmetic module 
P7 1 1 1 Arithmetic module 
P8 1 1 1 Arithmetic module 
P9 0 1 1 A OR B 
P10 1 0 0 A circular right shift 
P11 1 0 1 A AND B 
P12 0 0 1 A XOR B 
P13 fA fA 0 A / B depending on fA 
P14 1 1 1 Arithmetic module 
P15 1 1 1 Arithmetic module 

Table 2.4- Truth table used to implement the Output Controller 
component of the Output Selector module 

 
From Table 2.4, we see that CS = P1’. P10’. P13’ = (P1 + P10 + P13)’, S1 = P1’. P9’. P12’ = 
(P1 + P9 + P12)’ if P13 = 0, S1 = fA if P13 = 1. Similary, S0 = P10’. P11’. P12’ = (P10 + P11 + 
P12)’ if P3 = 0, and S0 = fA if P13 = 1.  

 
The implementation 
of the Output 
Controller is shown in 
Figure 2.17, in which 
we use a Dual 1-bit 
2:1 Multiplexer 
controlled by P13. If 
P13 = 0 , it lets S1 = 
(P1 + P9 + P12)’ and S0 
= (P10 + P11 + P12)’ 
pass to D1 and D0 
outputs, respectively, 
to control the 8:1 
Multiplexer. 
 The implementation 
of the Dual 1-bit 2:1 
Multiplexer is shown 
in Figure 2.18. As 
shown from the Figure 2.17- Implementation of the Output Controller 

S1

S0

CS 
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figure, the input P13 will 
control the operation of 
the multiplexers. When 
P13 is 0, the inputs S1 
and S0 are passed to the 
outputs D1 and D2 
respectively. The inputs 
S1 and S0 will be 
connected to the logic 
gates that implement 
the functions S1 = (P1 + 
P9 + P12)’, and S0 = (P10 
+ P11 + P12)’ 
respectively. The 
outputs D1 and D0 will 
be used to control the 
control signal S1 and S0 
from the 4-bit 8:1 
Multiplexer. The CS 
control signal of the 4-
bit 8:1 component will 

be controlled by a logic gate implementing the expression CS = (P1 + P10 + P13)’ as 
shown in Figure 2.18. The whole schematic of the Output Selector is given in Figure 
2.19. 
 
Implementation of the Carry  and Overflow  module. 
 
Before describing in detail the design of the Carry and Overflow module, we need to give 
some comments on the meaning of the Carry and Overflow bits as well as on how their 
values are set up.  
- Because we are using complement-two form to perform arithmetic and each of operand 
is 4-bit number. The most significant bit will be the sign bit. So we can represent 
numbers in the range of +7 to –8. 
- The Carry bit (C) will be set to 1 whenever we have a result of an arithmetic operation 
greater than +7. In that case, in addition to the Carry bit being 1, the sign bit of the result 
will be changed to 0. 
- The Overflow bit (V) will be set to 1 whenever the result is either greater than 15 or less 
than –8. However, with three bits of magnitude in our particular problem, the result will 
never be greater 15. As a result, for this particular design, the Overflow bit will be set to 
1 whenever the result is less than –8. 
 
With that in mind, we can derive logic expressions for C bit and V bit as follows: 
 
For the Carry (C) bit: 
 
i) A + B : P7. A3’. B3’. D3 (Addition of two positive numbers, result > 7) 

Figure 2.18- Schematic of the Dual 1-bit 2:1 Multiplexer used 
by the Output Controller component of the Output Selector 
module 
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ii) A + 1 : P4. A3’. A2. A1. A0 (Incrementing A, which is already 7) 
iii) B + 1: P6. B3’. B2. B1. B0 (Incrementing B, which is already 7) 
iv) A – B: P2. A3’. B3. D3 (Subtraction of a negative number from a positive 
number, the result is greater than 7). 
v) – B: P14. B3. B2’. B1’. B0’ (Negation of –8) 
vi) –A: P14. A3. A2’. A1’. A0’  (Negation of –8) 
 
For the Overflow (V) bit: 
 
i) A + B : P7. A3. B3. D3’ (Addition of two negative numbers, result < -8) 
ii) A – B : P2. A3. B3’. D3’ (Subtraction of positive number from a negative 
number, the result is less than – 8). 
iii) A – 1: P5. A3. A2’. A1’. A0’ (Decrementing A, which is currently equal to –8) 
iv) B – 1: P8. B3. B2’. B1’. B0’ (Decrementing B, which is currently equal to –8) 
 
For other arithmetic operations, neither C and V bits are set to 1 because, regardless of A 
and B are, the operation can’t result in a number out of the range of [-8, +7]. For 
example, negation of a positive number less than 7 will never produce a negative number 
less than –8. Another example is incrementing a negative number, which is greater than –
8, in which case, the result can never be less than –8 … 
 
So the expression of C is: C = P7. A3’. B3’. D3 + P4. A3’. A2. A1. A0 + P6. B3’. B2. B1. B0 
+ P2. A3’. B3. D3 + P14. B3. B2’. B1’. B0’ + P14. A3. A2’. A1’. A0’. 
 
And the expression of V is: V = P7. A3. B3. D3’ + P2. A3. B3’. D3’ + P5. A3. A2’. A1’. A0’ 
+ P8. B3. B2’. B1’. B0’. 

 
The schematic of the 
Carry and Overflow 
module is shown in 
Figure 2.20. 
One more thing to be 
mentioned about the 
Carry (C) bit is that: 
the Carry bit will be 
used to produce the 
most significant bit of 
the sum of the FA by 
just XORing them to 
give the final sign bit 
of the result. 
 
Testing, Simulation, 
and Layout Results 
of Each Sub-Module 
 

Figure 2.20 – Schematic of the Carry and 
O fl d l

Figure 2.20 – Schematic of the Carry and Overflow module 
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Due to the nature of each module’s operations, some of them are very straightforward 
like the OR, AND, and XOR. Testing of these modules seems very trivial and prove 
unnecessary. Other modules, as described, are more complicated in structure because 
their requirements of the controller components. It turns out that simulation of them is 
very impractical and somehow out of context (meaning that the simulation is hardly close 
to the real operation of the circuit as a whole). For that reasons, we will choose to test the 
whole circuit as a complete simulation unit instead of testing and simulation of each 
individual module. 
We also choose not to produce the layout for each individual module. This is to 
emphasize the integration of the ALU as a whole. 
 
Implementation of the Synchronizing module 
 
This module will include four 4-bit registers using D Flip-Flops with Edge-Trigger clock 
signal (to synchronize A, B, S, and the output R respectively) and two individual D Flip-
Flops with Edge-Trigger clock signal to latch the values of C and V bits. 
The clock inputs of the output Flip-Flops and register will be triggered using the down-
edge of the clock signal used to synchronize the inputs A, B, and S. We do so by 
inverting the original clock signal and using that to drive the output register and Flip-
Flops. Doing so, we can notice that the output should be available in half clock period 
since the input data are available and stay there for one clock period before the result of 
the next command and/or input data are sent to the ALU for a new operation. The 
schematic of a register used by this module is shown in Figure 2.21. 

 

 
 

Figure 2.21- Schematic of a 4-bit register used to synchronize the data inputs and 
output. 
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III- Schematic of the Top-Level Design, Simulation, Testing, 
and Layout of the Top-Level Circuit 
 
Combining all modules with all components described above, we will get the top-level 
design of the circuit. The whole circuit of the ALU is shown in Figure 3.1 

 

 
 
Characterization and Testing of Top-Level Design 
 
We will use two different sets of data inputs to test the circuit. For each of data set, we 
will apply the same command line sequence so that all 16 operations will have a chance 
to be done with each data set. (We will insure that one operation is done at least once by 
using a simulation length of at leat 16 clock signal. 
We will use a clock signal with frequency of 100 MHz to test the circuit (so the period is 
set to 10 ns). This speed is three times faster than the required one; hence, if our circuit is 
successfully tested under this circumstance, it apparently meets the stated requirement. 
The two sets of data input are as follows: 
 
Set 1: A = 1001, B = 0110. 
Set 2: A = 0111, B = 0101 
 
For the first set of data, the simulation result will be compared against the data shown in 
Table 3.1 

Figure 3.1- Schematic of the top-level circuit of the ALU. 
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Operation Decoder Output R C V 

A P0 1001 0 0 
B circular left shift P1 1100 0 0 

A - B P2 0011 0 1 
B P3 0110 0 0 

A + 1 P4 1010 0 0 
A - 1 P5 1000 0 0 
B + 1 P6 0111 0 0 
A + B P7 1111 0 0 
B - 1 P8 0101 0 0 

A OR B P9 1111 0 0 
A circular right shift P10 1100 0 0 

A AND B P11 0000 0 0 
A XOR B P12 1111 0 0 
Max A, B P13 1001 0 0 

-B P14 1010 0 0 
-A P15 0111 0 0 

Table 3.1 Truth Table used to compare against the simulation result for 
the first data set (A = 1001, B = 0110) 
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For the second set of data, the simulation result will be compared against the data shown 
in Table 3.2 
 

Operation Decoder Output R C V 

A P0 0111 0 0 
B circular left shift P1 1010 0 0 

A - B P2 0010 0 0 
B P3 0101 0 0 

A + 1 P4 0000 1 0 
A - 1 P5 0110 0 0 
B + 1 P6 0110 0 0 
A + B P7 0100 1 0 
B - 1 P8 0100 0 0 

A OR B P9 0111 0 0 
A circular right shift P10 1011 0 0 

A AND B P11 0101 0 0 
A XOR B P12 0010 0 0 
Max A, B P13 0111 0 0 

-B P14 1011 0 0 
-A P15 1001 0 0 

Table 3.1 Truth Table used to compare against the simulation result for 
the second data set (A = 0111, B = 0101) 

 
Simulation and Layout Results of Top-Level Design 
 
- We will set up our data inputs as constant voltages although still using registers to 
synchronize the data. (We assume we have unsynchronized data) 
- We will apply 4 pulse voltage sources at S3, S2, S1, S0 so that all 16 combinations of S3, 
S2, S1, and S0 are available during the simulation length under the clock signal frequency 
of 100 MHz. 
- The clock signal will have a period of 10 ns. 
- The simulation will use the ml2_125.md model file. 
- As stated by the requirement, all designs will employ the SCMOS logic gate library that 
is in TannerLB and the layout  will employ the Hewlett Packard 0.5µm n-well technology 
by using mhp_n05d.tdb file. 
 
From the simulation result of the synchronized command signals S3, S2, S1, and S0, we 
can record the time mark for each data inputs and command. The time mark of each 
operation is shown in the following table (Table 3.3) 
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Operation Decoder 
Output 

Time Mark 
(ns) 

Time Mark (ns) for 
Output Availability 

A P0 160-170 165-175 
B circular left shift P1 150-160 155-165 

A - B P2 140-150 145-155 
B P3 130-140 135-145 

A + 1 P4 120-130 125-135 
A - 1 P5 110-120 115-125 
B + 1 P6 100-110 105-115 
A + B P7 90-100 95-105 
B - 1 P8 80-90 85-95 

A OR B P9 70-80 75-85 
A circular right shift P10 60-70 65-75 

A AND B P11 50-60 55-65 
A XOR B P12 40-50 45-55 
Max A, B P13 30-40 35-45 

-B P14 20-30 25-35 
-A P15 10-20 15-25 

Table 3.3 Time mark to monitor the outputs 

 
 
All simulation results can be viewed in the section entitled “Simulation Result of the Top-
Level Design” 
 
The layout of the chip is shown in Figure 3.2 
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The layout is implemented using 1897 MOSFETs and takes a layout area of 4694760 
(Internal Units). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 – Chip layout of the top-level design of the ALU
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IV-Conclusions 
 
According to the requirement of the project, we can say that all of the stated objectives 
have been accomplished successfully. Besides the requirements of using 5-V power 
sources in the designs and of employing the SCMOS logic gate library in TannerLB as 
well as employing the Hewlett Packard 0.5 µm n-well technology for the layout which 
have been properly applied in all simulation stages, all other objectives such as speed of 
the circuit; and most importantly the correct functionality of the ALU are also 
successfully met.  However, there is an issue which is harder to assess in terms of a 
successful design. That is the goal of minimum chip area of the circuit. We have tried our 
best to minimize the area of the chip so that it can be more easily integrated into another 
chip. The assessment of this criteria is giving an estimated number of MOSFETs used in 
the design. This number is about 1890. We are not sure if this number reflects a good 
design or not. But accoring to our rule of design, that is, to share as many components as 
we can among various module and functions, to optimize logic functions of control lines 
as much as we can, and try to use as fewer gate in a certain design as we could, we are 
confident that that number reflects a quite good design. Under those terms, we can 
conclude that the design is completely and successfully done not only in correct 
functionality of the chip, but also in other goals aimed at optimizing the product as a 
whole. 
In conducting this project, we also learned several things regarding to VLSI concepts and 
designing principles. In designing a VLSI circuit, we are dealing with various problems 
that are never surfaced for other  type of design. We are more concerned with delay time 
in such a way that the functionality of the product will not be compromised when we try 
to integrate more and more gates into the chip. We can deal with that problem by 
balancing of gates between data paths. At the same time, we are equally concerned with 
the area of the chip. The conflicting nature of these two problems requires us to find a 
best way somewhere in between making their coexistence without compromising the 
performance of the circuit as a whole. 
 
To conclude the project, we would like to say that this is an excellent but challenging 
project. We have accomplished all of its goals in a timely manner as well as in terms of 
functional quality. 
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Simulation of the Top-Level Design 
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Waveforms of the Synchronized Command Inputs and the Clock 
(From Top to Bottom: S3, S2, S1, S0 – all of these have been synchronized, and 
CLK) 
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Waveforms of the Synchronized Output Data  
for the First Set of Input Data (A = 1001, B = 0110) 
(from Top to Bottom: R3, R2, R1, R0 – see Table 3.3 for Time Mark Reference) 
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Waveforms of the Synchronized Carry and Overflow bits Outputs 
For the First Set of Input Data (A = 1001, B = 0110) 
(from Top to Bottom: C, V – see Table 3.3 for Time Mark Reference 
 
 
 

 
 
 
 
 
 



 

 39

Waveforms of the Synchronized Output Data  
for the Second Set of Input Data (A =0111, B = 0101) 
(from Top to Bottom: R3, R2, R1, R0 – see Table 3.3 for Time Mark Reference) 
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Waveforms of the Synchronized Carry and Overflow bits Outputs 
For the Second Set of Input Data (A = 0111, B = 0101) 
(from Top to Bottom: C, V – see Table 3.3 for Time Mark Reference 
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