

 The George Washington University
 Electrical and Computer Engineering Department
 Fall 2001

 Mid-Term Project Documentation

 Design of 4-bit Arithmetic and Logic Unit

 Course: ECE 122

 Professor: John E. Korman
 GTA: Ritabrata Roy

 2

Table of Content

Abstract ………………………..………………………..……………………….. 5
Acknowledgement ………………………..………………………..……………… 6
Project Introduction ………………………..………………………..…………….. 7

 Project Requirement and Basic Goals ………………………..……………… 7
 Top-Level Design and Input/Output Relationship …………………………… 7
 Design Procedure with Block Diagrams ………………………..……………. 9
 Implementation of Design Using EDA Tools ……………………………….. 12

Project Breakdown and Characterization of Each Sub-module …………………… 12

 Partitioning of Project ………………………..………………………………. 12
 Implementation of Command Decoder Module …………………………….. 13
 Implementation of the A OR B Module …………………………………….. 14
 Implementation of the A AND B Module …………………………………… 14
 Implementation of the A XOR B and Comparision Module ………………… 15
 Implementation of the Arithmetic Module ………………………………….. 16
 Implementation of the Output Selector Module .……………………………. 22
 Implementation of the Carry and Overflow Module ………………………… 26
 Implementation of the Synchronizing Module ……………………………… 28

Schematic of the Top-Level Design, Simulation, Testing, and Layout …………… 29

 Characterization and Testing of Top-Level Design …………………………. 29
 Simulation and Layout Results of Top-Level Design ………………………. 31

Conclusions ……………………………………………………………………… 34

Simulation Results ………………………………………………………………. 35

 3

List of Illustrations

Figure 1.1 Top-Level Design ……………….………………………..…………….. 7
Figure 1.2. Block Diagram to Implement Output Vector R …………..……………. 9
Figure 1.3. Block Diagram to Implement C and V functions ……………………… 10
Figure 1.4 Modified Block Diagram of the Circuit ……………………………….. 12

Figure 2.1. Schematic of the Command Decoder Module …………………………. 13
Figure 2.2 Schematic of the A OR B Module …………………………………….. 14
Figure 2.3.Schematic of the A AND B Module ………………… ………………… 15
Figure 2.4.Schematic of the A XOR B Function … …………… ………………… 15
Figure 2.5 Schematic of the Half-Comparator …………………………………….. 16
Figure 2.6. Block Diagram for Arithmetic Module … .……………………………. 17
Figure 2.7. Schematic of the4-bit Full Adder ……………………………………… 18
Figure 2.8. Block Diagram to Implement the First Input Router of the 4-bit FA …. 18
Figure 2.9. Schematic of the Arithmetic Module …………………………………. 19
Figure 2.10. Schematic of the Second Input Router of the 4-bit FA ……………… 19
Figure 2.11. Modified Form of the Schematic of the 4-bit Data Switch ………….. 20
Figure 2.12. Schematic of a 4-bit 2:1 Multiplexer ………………………………… 20
Figure 2.13. Schematic of the Arithmetic Controller ……………………………… 21
Figure 2.14. Block Diagram of the Data Selector Module ………………………… 22
Figure 2.15. Schematic of a 4-bit 4:1 Multiplexer with CS Input …………………. 23
Figure 2.16. Modified Form of the Schematic of the 4-bit 8:1 Multiplexer ………. 24
Figure 2.17. Implementation of the Output Controller ……………………………. 25
Figure 2.18. Schematic of the Dual 1-bit 2:1 Multiplexer ………………………… 26
Figure 2.20. Schematic of the Carry and Overflow Module ………………………. 27
Figure 2.21. Schematic of a 4-bit Register ………………………………………… 28

Figure 3.1. Schematic of Top-Level Circuit of the ALU ………………………… 29
Figure 3.2. Chip Layout of the Top-Level Design of the ALU ………………….. 30

 4

List of Tables

Table 1.1 Input/Output Relationship ……………….………………………..…….. 8

Table 2.1 Truth Table Describing the Functionality of Command Decoder Module .. 14
Table 2.2 Operations Performed by the FA ………………………………………… 17
Table 2.3 Truth Table to Implement the Arithmetic Controller …………………… 21
Table 2.4 Truth Table to Implement the Output Controller ……………………….. 25

Table 3.1 Truth Table to Compare the Simulation Result for First Data Set ……… 30
Table 3.2 Truth Table to Compare the Simulation Result for Second Data Set ….. 31
Table 3.3 Time Mark to Monitor the Outputs ……………………………………. 32

 5

Abstract

This project is to design a 4-bit ALU core which, if designed successfully, is supposed to
be integrated into an IC used to control a new color touch pad display. Among several
requirements imposed on the design, are the speed of clock signal that the ALU are to
operate in being 30 MHz, the source voltage being 5 V … The design should be
implemented with smallest layout area. Some other requirements involve the way we will
simulate the design and the technology used to generate the layout. (using Hewlett-
Packard 0.5 um n-well technology)

The project is given about three weeks ago. However, due to various reasons, it can’t be
started until about two weeks prior to the due date. Among the reasons that make early
initialization of the project impossible was the theoretical materials given in the lecture
being not sufficient up to the point.

However, althrough being started a little late, the project basically has been completed
one week before the due date. Unfortunately, again due to some misunderstanding of the
statement of the project by the author, especially of the meanings of the Carry and
Overflow bit of a ALU, the author has to make some correction before it can be called a
completed working project. And this is done just two day before the due date.

In summary, the project has been successfully completed after three weeks of designing,
simulation, testing, and documentation. All of the goals given by the project statement
have been beautifully achieved with one exception of the layout area the definition of
which is not very obvious so as how small is considered as small. However, according to
the estimated number of MOSFETs that Pr. Can E. Korman told us, the number of
MOSFETs used in this design is not a bad one at all. And hence, we can say the project is
successful in terms of timeliness and good functionality of the design.

 6

Acknowledgement

I would like to thank Pr. John E. Korman who has been very patient explaining to me
various practical concepts and ideas behind a real ALU’s working functionality such as
synchronization of input before going in the ALU and output data before going out the
ALU. He also spent lots of his time clarifying the idea of how the carry and overflow bits
are set in a real, practical working ALU as well as giving very interesting lectures on the
electronic and digital design course. I also thank Ritabrata Roy, my GTA for this course,
for his help on various practical problems that I encountered while conducting the project
as well as in regular lab hours. I also thank many of friends who shared with me very
enjoyable moments while we are busy with our tasks looking for solutions to the project.
Without any of these people, I can hardly imagine how can complete this project in a
timely manner while not compromising the quality of my work.

 7

I- Project Introduction

Project Requirements and Basic Goals

The task is to design a 4-bit arithmetic logic unit (ALU) core which will be part of an IC
to control a new color touch pad display. The primary emphasis of the project is on a
working ALU design with minimum core layout area.
Besides the specific technical requirements which are related to input/output
characterizations and relationship that will be stated clearly in the next section, there are
other requirements regarding to the technology used to implement the layout as well as
the working environment in which the ALU must function correctly. These are:

- The ALU must be able to operate at a 30 MHz clock and 5V-power source. (We are not
responsible for the design of the clock).
- All designs will employ the SCMOS logic gate library that is in TannerLB.
- All layouts will employ the Hewlett Packard 0.5 µm n-well technology.

Top Level Design and Input/Output Relationship

Before going into details of the design, this section will give a more specific description
of the requirement in terms of technical aspect by giving a clear statement of the
input/output characterization and relationship. From that point, a sketch of top-level
design will be derived based on that input/output characterization as well as other
requirements which are relevant to this stage as stated by the project specifications.

From the top-level, the design will be a circuit with three sets of inputs and two sets of
outputs as shown in Figure 1.1

As shown in figure 1.1, the circuit accepts three 4-bit input vectors A, B, and S. More
specifically, A and B are 4-bit data input vectors and S is a 4-bit command input vector.
At the output end, the circuit will generate a 4-bit data result as well as two 1-bit status

V
C

R3-R0A3-A0

B3-B0

4-bit ALU

S3-S0

Figure 1.1. Top-Level Design

 8

signals C and V representing the Carry bit and Overflow bit, respectively for the
operations.
The relationship between A, B, S, R, C, and V can be more specifically listed in the
following table (Table 1.1)

Hex. Code S3 S2 S1 S0 R Comments C V

0 0 0 0 0 A A is outputted 0 0

1 0 0 0 1 B shifted 1 bit left circular shift 0 0

2 0 0 1 0 A - B Complement-Two Subtraction 0/1 0/1

3 0 0 1 1 B B is outputted 0 0

4 0 1 0 0 A + 1 Increment A 0/1 0/1

5 0 1 0 A - 1 Decrement A 0/1 0/1

6 0 1 1 0 B + 1 Increment B 0/1 0/1

7 0 1 1 1 A + B Add A and B 0/1 0/1

8 1 0 0 0 B - 1 Decrement B 0/1 0/1

9 1 0 0 1 A OR B bit by bit OR 0 0

A 1 0 1 0 A shifted 1 bit right circular shift 0 0

B 1 0 1 1 A AND B bit by bit AND 0 0

C 1 1 0 0 A XOR B bit by bit XOR 0 0

D 1 1 0 1 Max(A, B) Select the maximum 0 0

E 1 1 1 0 -B Complement-Two Negation 0 0

F 1 1 1 1 - A Complement-Two Negation 0 0

Table 1.1 Input/Output Relationship

According to the input/output relationship listed in table 1.1, we can specify further the
way we interprete the meaning of the data input vectors A and B, and the data output
vector R respectively so that the corresponding operation is meaningful. This is
straightforward. For those operations other than addition, subtraction, increment, and
decrement (including Max (A,B)), A and B are considered as two sets of bits. For the
rests, A, B, and R are 4-bit signed numbers. In such circumstances, their most significant
bits (A3, B3, and R3) are sign bits. Also note that we will use complement-two
representations for negative numbers or in cases that involve subtraction operation.

One more thing important enough to be mentioned is that we can’t assume each bit of our
data inputs and command inputs which are meaningful to the supposed operation will be
available to the ALU simultaneously. Hence, it is appropriate to implement some kind of
circuit that can synchronize the inputs; and make sure that our circuit is operating on the

 9

correct data. At the output end, we will do the same thing so that our output will always
contain meaningful data.

Design Procedure with Block Diagrams to Get Input/Output Relationships

Up to this point, the basic requirements and specifications of the problem have been well
stated; and therefore, we are ready for the designing process. It is certain that, while the
basic requirements will need to be perfectly met, we will probably impose some more
specifications and requirements in order to improve and/or to facilitate our version of
implementation. We will do this along our way to implement the circuit at any stage of
our designing and/or testing processes.
As the basic requirements and specifications of the problem suggest, the circuit will
accepts three sets of inputs (A, B, and S) and giving the values of output (R,C, and V)
accordingly. Also as stated, we always keep in mind that, whatever our approach is, the
meaningful input data of our top-level circuit will not come to our ALU at the same time.
However, for the time being, we just assume that the synchronizing mechanism has been
achieved; and our data and command inputs are already synchronized. So at the top-level
without taking into account the synchronizing circuitry, we can model the rest of the
circuit as of a logic function given as f = f(A, B, S) whereas f is the output vector that
includes R, C, and V as a whole. More specifically, we can implement R, C, and V
separately as follows: R = R(A, B, S), C = C(A, B, S), and V = V(A, B, S); and f = [R, C,
V]. Doing so, we can approach the task by introducing an initial version of our design of
R as given in figure 1.2

R

S

R1

B A

Operation 1

R2

BA

Operation 2 …

R16

BA

Operation 16

Data Selector

Figure 1.2. Block diagram to implement data output vector R

 10

C

BA

Logic function C

V

BA

Logic function V

Figure 1.3. Block diagram for the circuitry of C
and V functions

As shown in Figure 1.2, our circuit can comprise 16 operation components , each of
which performs one of the 16 operations given by the statement of the problem (see table
1.1). Also from the figure, A, B, S, and R are all 4-bit vectors. The basic idea behind this
scheme is that because we have 16 operations (each operation corresponds to a
combination of 4-bit command input S – there are 16 of such combinations), we can
implement each component as a separate combinational circuit receiving A and/or B as
data inputs and giving 16 output vectors R1, R2, …, R16 respectively, in general sense, at
the same time. Because there is only one out of these 16 data is meaningful at a time, the
unique bit pattern of S will choose among these the unique correct output vector.
Similarly, we can use the same approach to obtain the circuitry for C and V as shown in
figure 1.3. After implementing each part individually, we can put them together giving
the complete and integrated circuit as desired.

Comment: We can see that the
material from the two sections
just described above is
sufficient to implement the
circuit in terms of logic
functions. However, as stated
from the beginning of the
project statements, the layout
with minimum core area is also
desired so that the core can be
appropriately integrated into a
larger chip. It turns out that the
described approach is not a
good one by small area criteria.
Also, from figure 1.2, if this
approach is adopted, we will

need a 4-bit 16:1 multiplexer so that we can select the correct data output at the output
end of the ALU. However, this is very impractical because it may impose a heavy
current-driving capability on the selector inputs. For that reason, we will adopt a more
practical approach by modifying the initial version described above. In this approach, we
will try to group our data into a smaller number of units by sharing some of the
components among members of each group. This approach will help reduce the total area
of the circuit in order to meet the minimum area layout requirement. In order to do so, we
will begin with the basic functions which may be reuseable by other operations and more
importantly, can’t be broken up into smaller pieces. The candicate operations for separate
and independent implementation are: OR, AND, and XOR. The operations to output A or
B, of course, can use either one of the above if appropriate inputs are applied; hence these
operations are removed from the list. The interesting cases are the shift operations
(having hex code 1, and A). Should this be implemented as independent module or not
depends on how we choose to implement the functions. One option could be using a 4-bit
register with a clock signal being implemented internally so that at the output end of the
circuit, the ALU behaves just like a combinational logic circuit. We can use the same
register with extra logic to perform the two shift operations. However, the added logic

 11

circuit may increase the performance (adding delay time) of the operations as well as the
total area of the ALU as a whole. Or, we can use two registers, each for one operation. If
the latter one is adopted, then there is an even better solution: using fixed connection so
that no registers nor logic circuits are needed by outputting directly. We will go back to
this issue when we are done with other operations. Now, besides OR, AND, XOR, A, B,
and the two shift operations, all the outputs of the other operations can be implemented
sharing the adder circuitry except for the operation D (Max(A, B)). These are done in the
following manner:

Operation 7 (A + B) is clear. The adder will receive two input vectors A and B and
generates the output vector A + B using regular addition performance.
Operation E (0 minus B) is implemented by applying 0 at one input of the adder. The
other input vector is B complemented and added 1.
Operation F (0 minus A) is done in the similar fashion.
Operation 4 (A + 1) is just like operation 7 except for one of the operands now being a
constant 1.
Operation 6 (B+1) is similar to the operation 4.
Operations 5 and 8 (A – 1 and B – 1 respectively) are performed by adding the relevant
operand (A or B) to –1 (The 4-bit complement-two of –1 is binarily represented as 1111).
Operation 2 (A – B) is performed by first negating B and add this to A itself.

The discussion above indicates that at least the outputs of the operations 2, 4, 5, 6, 7, 8, E,
and F can be taken from the sum output of the adder.

So far, we have 4 units whose outputs will be fed to the output end of the ALU: the
circuit of the adder, and three circuits that performs the OR, AND, and XOR respectively.
Also, we have at least one more unit that needs its output to be directed to the output end
(at least one shift operation). Because the inputs of the Output Selector component shown
in figure 1.2 now exceeds four. It may be attempted to use a 4-bit 8:1 multiplexer to do
the task.

The operation D itself, can be implemented using the XOR function which is assumably
already built as an independent function. Depending on the comparison, either A or B is
outputted. Again we can build this unit as one output unit or just by outputting A or B
directly based on the outcome of the comparision. The first choice requires extra logic
circuit to switch the outputs. The second one just outputs A or B directly; thus, requires
two more vector inputs at the 4-bit 8:1 multiplexer giving the total inputs already used at
the multiplexer to 6.

Now, come back to the shift operations, because we still have two more 4-bit inputs
available at the data selector component, we will choose the last option to implement the
shift operations, that is, the one using fixed, direct connection of input to output. As
discussed, this will need two vector inputs at the data selector component making the
total numbers of inputs needed for the data selection component to be 8.

 12

From the discussion above, we will have our modified block diagram shown in figure
1.4, in which we also incorporated the logic circuit to implement C and V bits. Also, what
not shown explicitly from the diagram is the synchronization mechamism to synchronize
our inputs and outputs.

Implementation of Design Using EDA Tools

There are three main stages in implementing the circuit using EDA tools.

- S-Edit will be used first to create the circuitry of the design including all modules
together with the top module. We also use S-Edit to input values of some other
parameters such as source voltage, and relevant information of the pulses, if any, so that
it is ready for simulation. (For instance, the clock signal will have period of less than
33.33 ns to emulate the condition of 30 MHz clock as required).
- T-Spice will be used to simulate the circuit. According to the requirement of the
project, we will set the chanel length L = 0.5 µm through parameter l.
- W-Edit will be used to view the waveforms of our output together with its
corresponding inputs.

II- Project Breakdown and Characterization of Each Sub-
Module

Partitioning of Project into Smaller and Manageable Sub-Modules

S C

A3

B2B1B0B3 A0A3A2A1

B A B

B A

S

B A

A or B

B A

A and B

A

A xor B

Half Comparator

Adder
Controller

Figure 1.4. Modified Block Diagram of the Circuit

Output Selector

R

Logic
Logic

B3

V

Command
Decoder

 13

As shown in figure 1.4, the circuit composes of several modules. In this section, we will
name each module and describe in detail their implementations.

To make our circuit
hierarchically structural, we
will divide the circuit into
following modules:

- Command decoder
module.

- A AND B module.
- A OR B module.
- A XOR B and

Comparision module.
- Output Selector module.
- Arithmetic module.
- Carry and Overflow

Logic module.

Implementation of the
Command Decoder module

From our discussions so far,
basically our circuit behaves
like a function selector. So to
facilitate this process, it is
useful to have a command
decoder module. The input of
the module will be the 4-bit
command vector S. It will have
16 outputs, each of which
corresponds to a unique
combination of input bits out of
16. The schematic of the
command decoder is shown in

figure 2.1.
At the output end, although the module has 16 outputs, there is one and only one of them
being active at a time (active high). We can use the outputs of the module to control other
modules accordingly so as they will give the correct data flow from our inputs and
outputs. The functionality of the module can be described using the following truth table
(table 2.1)

Figure 2.1 –
Schematic of
the Command
Decoder
module

 14

S3 S2 S1 S0 Active-High Output
0 0 0 0 P0
0 0 0 1 P1
0 0 1 0 P2
0 0 1 1 P3
0 1 0 0 P4
0 1 0 1 P5
0 1 1 0 P6
0 1 1 1 P7
1 0 0 0 P8
1 0 0 1 P9
1 0 1 0 P10
1 0 1 1 P11
1 1 0 0 P12
1 1 0 1 P13
1 1 1 0 P14
1 1 1 1 P15

Table 2.1. Truth Table describing the functionality of the Command
Decoder module.

Implementation of the A OR B module

For the A OR B module the circuit is very straightforward. The module consists of 4 2-
input OR gates in parallel to OR A and B bit by bit.

The schematic of the module is shown
in Figure 2.2.
This module will be used to perform the
A OR B operation. Its output will be fed
to the output selector. Based on the
decoding of the command inputs, if P9
is high, this output will be the output of
the whole circuit (still need to be
synchronize – we will describe this
later).

Implementation of the A AND B
module

Similar to what described in the
previous section, the implementation of
the A AND B module is shown in

Figure 2.2- Schematic of the A OR B
module

 15

Figure 2.3. The module consists of 4 2-input AND gates in parallel to AND A and B bit
by bit.
This module will be used to perform the A AND B operation. Its output will be fed to the
output selector. Based on the decoding of the current command inputs, if P11 is currently
high, the output of this module will be selected to be the output of the whole circuit.

Implementation of the A XOR B
and Comparision module

This module includes two
components. The first component
is the 4-bit XOR logic function
itself and pretty straightforward.
The output of this component will
be used by the second component
named Half Comparator and also
be fed to the output selector. In
case P12 is currently active (or the
current command is A XOR B),
this output will be selected to be
the output of the whole circuit. The
schematic of the XOR component

is shown in Figure 2.4.

The second component of this
module will be named Half
Comparator used to compare the
values of two unsigned numbers A
and B.
 This component will have 1-bit
output called fA indicating whether
A is greater than or equal to B in that
case fA is 1 (and 0 if A is less than
or equal to B). The schematic of this
component is shown in Figure 2.5

The algorithm used to compare two
unsigned number A and B is as
follows:
Let D = D3D2D1D0 = A XOR B.
If D3 is 1 and A3 = 1 then fA = 1

(indicating that A is greater than B). If D3 is 1, and A3 = 0 then fA = 0 (indicating A is
not greater than B). If D3 = 0, then we have to take a look at D2 and A2 and B2 in a similar
manner. In case D3 = D2 = D1 = 0, we just look at the value of A0. It is safe to set fA to 1

Figure 2.3 – Schematic of the A AND B
module

Figure 2.4 – Schematic of the XOR
component of the XOR and comparision
module

 16

if A0 = 1 (A greater than
or equal to B), and to 0 if
A0 = 0 (A is less than or
equal to B). The output
fA of this component will
be used to control the data
selector if in case the
output P13 is high (current
command code is D). If
that is the case, A will be
selected if fA is 1,
otherwise B will be
selected to be the output.

Implementation of the
Arithmetic module

As stated above, several
operations (P0, P2, P3, P4,
P5, P6, P7, P8, P14, P15)
will share this module to
do their tasks. For this
reason, this module will
have extra control circuits

or components to control the data flow so that the correct operation of the circuit is
always guaranteed. The core of the module is the 4-bit Full Adder. For the time being, we
just take a straightforward approach and use a linear full adder instead of employing a
faster version. When we come to the testing stage, we may modify the circuit to meet the
clock speed of 30 MHz as required. If the linear 4-bit Full Adder works well, we will
keep our original design.
As far as the inputs of the FA is concerned, we can construct the following table (Table
2.2)
As shown from the third column, we will need some kind of logic combination so that it
allows various inputs to be entered the adder accordingly with the active command.
Besides inputs for regular operands (A and B – entered the adder at the same time for
operation with command code 2 and 7, others involve only one (either A or B but not
both) and a constant (either 0 or 1 but not both). Also from the table we notice that,
whenever there is an operation that involves a negation (negation, subtraction,
decrementing) the negation involves only one operand or constant at a time. So the logic
for the inputs of the FA at least will be implemented as follows:
- Constants 0 and 1 will be fixed on the same side (because we will need only one of
them at any instant).
- Each side must have at least one route for regular inputs (operands of the operation).
- One of the regular route allows negation for operations that involve negation.
- A and B should be switcheable so that the adder will work equally well with A and B
without knowing in advance which route A and/or B will enter the adder.

Figure 2.5 – Schematic of the Half-
Comparator component of the XOR and
Comparision module

 17

Command Code Active Decoder Output Operation by the FA

0 P0 A + 0

2 P2 A - B

3 P3 B + 0

4 P4 A + 1

5 P5 A - 1

6 P6 B + 1

7 P7 A + B

8 P8 B - 1

E P14 0 - B

F P15 0 - A

Table 2.2 Operations performed by the FA with respect to each command

From the discussion above, we can derive the block diagram for the Arithmetic module
as shown in Figure 2.6. Before going any further, we need to make it clear that the
control signals S0, S1, S2, and S3 shown in the Figure have local meaning only; that is,
these signals don’t have anything to do with our global command input vector S. We
simply take these notations for convenience.

 D1 D0

R
Co

Ci

S2
S3

S0

S1

4-bit Data Switch

4-bit Full Adder

D1 or D1
inverted

0, 1, or D0
Arithmetic
Controller

Figure 2.6 – Block Diagram for Arithmetic module

 18

 Implementation of the 4-bit Full Adder is shown in Figure 2.7.

We can implement the first input route using the following block diagram (shown in
Figure 2.8). The component will be controlled by the Arithmetic Controller component
using two control signals S1 and S2 as shown in the figure. If we like the 4-bit D0 to pass
through the router, we will control S1 and S2 so that S1 = 1 and S2 = 0. If we want a
constant 0 to appear at the FA’s inputs, we will set S1 = 0 and S2 = 0. Similarly, if a
constant 1 is desired, S2 will be set to 1 regardless of the values of S1 and D0. In this case,
we will choose S1 so that it is more convenient to implement the Arithmetic Controller.

The schematics of the
Arithmetic module is
shown in Figure 2.9.
The schematic of the
second router is shown
in Figure 2.10 (in figure
2.19, it is named Data
Selector). The second
input router will be
controlled by the
Arithmetic Controller
using control signal S3.
If S3 = 1, its input will
be fed to the second
inputs of the FA.
Otherwise, the inverts
of its inputs will pass
through the router to

the second inputs of the FA.

Figure 2.7 – Schematic of the 4-bit Full Adder

F0
S2

S1 D0

S1 AND D0

S2 OR F0

To the first inputs of FA

Figure 2.8 – Block diagram to implement the first input
router of the 4-bit FA.

 19

To implement the 4-bit data switch, we will use two 4-bit 2:1 Multiplexers. The data
switch component will be controlled by the Arithmetic Controller component using
control signal S0. The implementation of the 4-bit data switch is shown in Figure 2.11. As

shown from the figure, if S0 = 1,
the 4-bit operand A will appear at
the first 4-bit output
and the 4-bit operand B will
appear at the second output. If
we want the operands to switch
between the two outputs, we will
set S0 = 0. The implementation of
a 4-bit 2:1 Multiplexer used by
this module is shown in Figure
2.12.

 Figure 2.10 – Schematic of the second input router

of the 4-bit FA

Figure 2.9 – The schematic of the Arithmetic module

 20

Implementation of the Arithmetic
Controller component (in figure
2.19, it is named FA Controller)

The duty of the Arithmetic
Controller component is to control
the Data Switch component, the
input routers to the 4-bit FA, and the
FA itself so that the correct operands
and inputs are applied at the inputs
of the FA corresponding to a certain
operation which involves
arithmetics. It does so using five
control signals: S0, S1, S2, S3, and Ci.
The role of S0, S1, S2, and S3 have
been described previously. The role
of Ci is to set up the carry-in bit for
the FA so that it works properly with
a whole range of operations
(addition, subtraction, which needs
two’s complement form of the
subtrand). The inputs of the
Arithmetic Controller component are

P0, P2, P3, P4, P5, P6, P7, P8, P14, P15. The relationship between inputs and

0 1 10

S0

Second Ouput First Ouput

B A

4-bit 2:1 Multiplexer

B A

4-bit 2:1 Multiplexer

Figure 2.11- Modified form of the schematic of the 4-bit Data Switch component of the
Arithmetic module

Figure 2.12 – Schematic of a 4-bit 2:1
Multiplexer used by the Data Switch
component of the Arithmetic module

 21

Input Operation
performed

First Input
of FA

Second
Input of FA Ci S3 S2 S1 S0

P0 A 0 A 0 1 0 0 0

P2 A - B A B inverted 1 0 0 1 1
P3 B 0 B 0 1 0 0 1
P4 A + 1 0 A 1 1 0 0 0

P5 A - 1 1111 A 0 1 1 X 0

P6 B + 1 0 B 1 1 0 0 1

P7 A + B A B 0 1 0 1 1

P8 B - 1 1111 B 0 1 1 X 1

P14 0 - B 0 B inverted 1 0 0 0 1

P15 0 - A 0 A inverted 1 0 0 0 0

Table 2.3- Truth Table to implement the Arithmetic Controller component of the
Arithmetic module

outputs of the Arithmetic Controller is specified through Table 2.3.

From table 2.3, we can derive the logic expressions for Ci, S3, S2, S1, S0 as follows:
Ci = S3

’ + P4 + P6
S3 = P2

’. P14
’. P15

’ = (P2 + P14 + P15)’
S2 = P5 + P8
S1 = P2 + P3
S0 = P0’. P4’. P5’. P15’ = (P0 + P4 + P5 + P15)’

Notice that for convenience, we will choose the don’t-care values of S1 (X) = 0.

Also notice that we
don’t use P3 at all. This
reflects the fact that
when all inputs of the
Arithmetic Controller
are zero then either P3 =
1 or the operation of the
Arithmetic module is
irrelevant (and not
chosen to be the output
of the ALU anyway).
The schematic of the
Arithmetic Controller is
shown in Figure 2.13

Figure 2.13 – The schematic of the Arithmetic Controller
component of the Arithmetic module

 22

Implementation of the Output Selector Module

The duty of the Output Selector Module is to select the one and only one output which is
relevant to the current command input out of 8 different sources of outputs. The block
diagram for the module is shown in Figure 2.14

We will implement the 4-bit 8:1 Multiplexer using two 4-bit 4:1 Multiplexers with Chip
Select input (active-high), the schematic of which is shown in Figure 2.15. The modified
schematic of the 4-bit 8:1 Multiplexer is shown in Figure 2.16

Once again, from Figure 2.16, we use the notation S0, S1 for local explanation. They are
not directly taken from the corresponding bits of the command input vector S.

A AND B A OR B B2B1B0B3A XORB A
B

Output
A>=B S

Output
Controller

 4-bit 8:1 Multiplexer

A0A3A2A1 Arithmetic

Figure 2.14 – Block diagram of the Data Selector module

 23

The 4-bit 8:1 Multiplexer will be controlled by the Output Controller component using
control signal S0, S1, and CS.

The Output Controller itself has its inputs taken from the output of the command decoder
plus one input from the output of the Half Comparator component of the A XOR and
Comparison module.

Figure 2.15 – Schematic of a 4-bit 4:1 Multiplexer used to
implement the 4-bit 8:1 Multiplexer in the Output Selector
module

 24

CS

S1
S0

A B2B1B0B3 B

 4-bit 4:1 Mutiliplxer
 with Chip Select

 4-bit 4:1 Mutiliplxer
 with Chip Select

A0A3A2A1 A XOR BA OR BA AND B Arithmetic

 4 2-input OR Gates in Parallel

Figure 2.16 – Modified form of the schematic of the 4-bit 8:1 Multiplexer used in the Output
Selector module

For convenience, the outputs of the Output Controller are also locally named S1, S0, and
CS. They are used to control the S1, S0, and CS inputs of the 4-bit 8:1 Multiplexer
respectively.
 The truth table shown in Table 2.4 is used to implement the Output Controller
component.

 25

Operation S1 S0 CS Output from

P0 1 1 1 Arithmetic module
P1 0 1 0 B circular left shift
P2 1 1 1 Arithmetic module
P3 1 1 1 Arithmetic module
P4 1 1 1 Arithmetic module
P5 1 1 1 Arithmetic module
P6 1 1 1 Arithmetic module
P7 1 1 1 Arithmetic module
P8 1 1 1 Arithmetic module
P9 0 1 1 A OR B
P10 1 0 0 A circular right shift
P11 1 0 1 A AND B
P12 0 0 1 A XOR B
P13 fA fA 0 A / B depending on fA
P14 1 1 1 Arithmetic module
P15 1 1 1 Arithmetic module

Table 2.4- Truth table used to implement the Output Controller
component of the Output Selector module

From Table 2.4, we see that CS = P1’. P10’. P13’ = (P1 + P10 + P13)’, S1 = P1’. P9’. P12’ =
(P1 + P9 + P12)’ if P13 = 0, S1 = fA if P13 = 1. Similary, S0 = P10’. P11’. P12’ = (P10 + P11 +
P12)’ if P3 = 0, and S0 = fA if P13 = 1.

The implementation
of the Output
Controller is shown in
Figure 2.17, in which
we use a Dual 1-bit
2:1 Multiplexer
controlled by P13. If
P13 = 0 , it lets S1 =
(P1 + P9 + P12)’ and S0
= (P10 + P11 + P12)’
pass to D1 and D0
outputs, respectively,
to control the 8:1
Multiplexer.
 The implementation
of the Dual 1-bit 2:1
Multiplexer is shown
in Figure 2.18. As
shown from the Figure 2.17- Implementation of the Output Controller

S1

S0

CS

 26

figure, the input P13 will
control the operation of
the multiplexers. When
P13 is 0, the inputs S1
and S0 are passed to the
outputs D1 and D2
respectively. The inputs
S1 and S0 will be
connected to the logic
gates that implement
the functions S1 = (P1 +
P9 + P12)’, and S0 = (P10
+ P11 + P12)’
respectively. The
outputs D1 and D0 will
be used to control the
control signal S1 and S0
from the 4-bit 8:1
Multiplexer. The CS
control signal of the 4-
bit 8:1 component will

be controlled by a logic gate implementing the expression CS = (P1 + P10 + P13)’ as
shown in Figure 2.18. The whole schematic of the Output Selector is given in Figure
2.19.

Implementation of the Carry and Overflow module.

Before describing in detail the design of the Carry and Overflow module, we need to give
some comments on the meaning of the Carry and Overflow bits as well as on how their
values are set up.
- Because we are using complement-two form to perform arithmetic and each of operand
is 4-bit number. The most significant bit will be the sign bit. So we can represent
numbers in the range of +7 to –8.
- The Carry bit (C) will be set to 1 whenever we have a result of an arithmetic operation
greater than +7. In that case, in addition to the Carry bit being 1, the sign bit of the result
will be changed to 0.
- The Overflow bit (V) will be set to 1 whenever the result is either greater than 15 or less
than –8. However, with three bits of magnitude in our particular problem, the result will
never be greater 15. As a result, for this particular design, the Overflow bit will be set to
1 whenever the result is less than –8.

With that in mind, we can derive logic expressions for C bit and V bit as follows:

For the Carry (C) bit:

i) A + B : P7. A3’. B3’. D3 (Addition of two positive numbers, result > 7)

Figure 2.18- Schematic of the Dual 1-bit 2:1 Multiplexer used
by the Output Controller component of the Output Selector
module

 27

ii) A + 1 : P4. A3’. A2. A1. A0 (Incrementing A, which is already 7)
iii) B + 1: P6. B3’. B2. B1. B0 (Incrementing B, which is already 7)
iv) A – B: P2. A3’. B3. D3 (Subtraction of a negative number from a positive
number, the result is greater than 7).
v) – B: P14. B3. B2’. B1’. B0’ (Negation of –8)
vi) –A: P14. A3. A2’. A1’. A0’ (Negation of –8)

For the Overflow (V) bit:

i) A + B : P7. A3. B3. D3’ (Addition of two negative numbers, result < -8)
ii) A – B : P2. A3. B3’. D3’ (Subtraction of positive number from a negative
number, the result is less than – 8).
iii) A – 1: P5. A3. A2’. A1’. A0’ (Decrementing A, which is currently equal to –8)
iv) B – 1: P8. B3. B2’. B1’. B0’ (Decrementing B, which is currently equal to –8)

For other arithmetic operations, neither C and V bits are set to 1 because, regardless of A
and B are, the operation can’t result in a number out of the range of [-8, +7]. For
example, negation of a positive number less than 7 will never produce a negative number
less than –8. Another example is incrementing a negative number, which is greater than –
8, in which case, the result can never be less than –8 …

So the expression of C is: C = P7. A3’. B3’. D3 + P4. A3’. A2. A1. A0 + P6. B3’. B2. B1. B0
+ P2. A3’. B3. D3 + P14. B3. B2’. B1’. B0’ + P14. A3. A2’. A1’. A0’.

And the expression of V is: V = P7. A3. B3. D3’ + P2. A3. B3’. D3’ + P5. A3. A2’. A1’. A0’
+ P8. B3. B2’. B1’. B0’.

The schematic of the
Carry and Overflow
module is shown in
Figure 2.20.
One more thing to be
mentioned about the
Carry (C) bit is that:
the Carry bit will be
used to produce the
most significant bit of
the sum of the FA by
just XORing them to
give the final sign bit
of the result.

Testing, Simulation,
and Layout Results
of Each Sub-Module

Figure 2.20 – Schematic of the Carry and
O fl d l

Figure 2.20 – Schematic of the Carry and Overflow module

 28

Due to the nature of each module’s operations, some of them are very straightforward
like the OR, AND, and XOR. Testing of these modules seems very trivial and prove
unnecessary. Other modules, as described, are more complicated in structure because
their requirements of the controller components. It turns out that simulation of them is
very impractical and somehow out of context (meaning that the simulation is hardly close
to the real operation of the circuit as a whole). For that reasons, we will choose to test the
whole circuit as a complete simulation unit instead of testing and simulation of each
individual module.
We also choose not to produce the layout for each individual module. This is to
emphasize the integration of the ALU as a whole.

Implementation of the Synchronizing module

This module will include four 4-bit registers using D Flip-Flops with Edge-Trigger clock
signal (to synchronize A, B, S, and the output R respectively) and two individual D Flip-
Flops with Edge-Trigger clock signal to latch the values of C and V bits.
The clock inputs of the output Flip-Flops and register will be triggered using the down-
edge of the clock signal used to synchronize the inputs A, B, and S. We do so by
inverting the original clock signal and using that to drive the output register and Flip-
Flops. Doing so, we can notice that the output should be available in half clock period
since the input data are available and stay there for one clock period before the result of
the next command and/or input data are sent to the ALU for a new operation. The
schematic of a register used by this module is shown in Figure 2.21.

Figure 2.21- Schematic of a 4-bit register used to synchronize the data inputs and
output.

 29

III- Schematic of the Top-Level Design, Simulation, Testing,
and Layout of the Top-Level Circuit

Combining all modules with all components described above, we will get the top-level
design of the circuit. The whole circuit of the ALU is shown in Figure 3.1

Characterization and Testing of Top-Level Design

We will use two different sets of data inputs to test the circuit. For each of data set, we
will apply the same command line sequence so that all 16 operations will have a chance
to be done with each data set. (We will insure that one operation is done at least once by
using a simulation length of at leat 16 clock signal.
We will use a clock signal with frequency of 100 MHz to test the circuit (so the period is
set to 10 ns). This speed is three times faster than the required one; hence, if our circuit is
successfully tested under this circumstance, it apparently meets the stated requirement.
The two sets of data input are as follows:

Set 1: A = 1001, B = 0110.
Set 2: A = 0111, B = 0101

For the first set of data, the simulation result will be compared against the data shown in
Table 3.1

Figure 3.1- Schematic of the top-level circuit of the ALU.

 30

Operation Decoder Output R C V

A P0 1001 0 0
B circular left shift P1 1100 0 0

A - B P2 0011 0 1
B P3 0110 0 0

A + 1 P4 1010 0 0
A - 1 P5 1000 0 0
B + 1 P6 0111 0 0
A + B P7 1111 0 0
B - 1 P8 0101 0 0

A OR B P9 1111 0 0
A circular right shift P10 1100 0 0

A AND B P11 0000 0 0
A XOR B P12 1111 0 0
Max A, B P13 1001 0 0

-B P14 1010 0 0
-A P15 0111 0 0

Table 3.1 Truth Table used to compare against the simulation result for
the first data set (A = 1001, B = 0110)

 31

For the second set of data, the simulation result will be compared against the data shown
in Table 3.2

Operation Decoder Output R C V

A P0 0111 0 0
B circular left shift P1 1010 0 0

A - B P2 0010 0 0
B P3 0101 0 0

A + 1 P4 0000 1 0
A - 1 P5 0110 0 0
B + 1 P6 0110 0 0
A + B P7 0100 1 0
B - 1 P8 0100 0 0

A OR B P9 0111 0 0
A circular right shift P10 1011 0 0

A AND B P11 0101 0 0
A XOR B P12 0010 0 0
Max A, B P13 0111 0 0

-B P14 1011 0 0
-A P15 1001 0 0

Table 3.1 Truth Table used to compare against the simulation result for
the second data set (A = 0111, B = 0101)

Simulation and Layout Results of Top-Level Design

- We will set up our data inputs as constant voltages although still using registers to
synchronize the data. (We assume we have unsynchronized data)
- We will apply 4 pulse voltage sources at S3, S2, S1, S0 so that all 16 combinations of S3,
S2, S1, and S0 are available during the simulation length under the clock signal frequency
of 100 MHz.
- The clock signal will have a period of 10 ns.
- The simulation will use the ml2_125.md model file.
- As stated by the requirement, all designs will employ the SCMOS logic gate library that
is in TannerLB and the layout will employ the Hewlett Packard 0.5µm n-well technology
by using mhp_n05d.tdb file.

From the simulation result of the synchronized command signals S3, S2, S1, and S0, we
can record the time mark for each data inputs and command. The time mark of each
operation is shown in the following table (Table 3.3)

 32

Operation Decoder
Output

Time Mark
(ns)

Time Mark (ns) for
Output Availability

A P0 160-170 165-175
B circular left shift P1 150-160 155-165

A - B P2 140-150 145-155
B P3 130-140 135-145

A + 1 P4 120-130 125-135
A - 1 P5 110-120 115-125
B + 1 P6 100-110 105-115
A + B P7 90-100 95-105
B - 1 P8 80-90 85-95

A OR B P9 70-80 75-85
A circular right shift P10 60-70 65-75

A AND B P11 50-60 55-65
A XOR B P12 40-50 45-55
Max A, B P13 30-40 35-45

-B P14 20-30 25-35
-A P15 10-20 15-25

Table 3.3 Time mark to monitor the outputs

All simulation results can be viewed in the section entitled “Simulation Result of the Top-
Level Design”

The layout of the chip is shown in Figure 3.2

 33

The layout is implemented using 1897 MOSFETs and takes a layout area of 4694760
(Internal Units).

Figure 3.2 – Chip layout of the top-level design of the ALU

 34

IV-Conclusions

According to the requirement of the project, we can say that all of the stated objectives
have been accomplished successfully. Besides the requirements of using 5-V power
sources in the designs and of employing the SCMOS logic gate library in TannerLB as
well as employing the Hewlett Packard 0.5 µm n-well technology for the layout which
have been properly applied in all simulation stages, all other objectives such as speed of
the circuit; and most importantly the correct functionality of the ALU are also
successfully met. However, there is an issue which is harder to assess in terms of a
successful design. That is the goal of minimum chip area of the circuit. We have tried our
best to minimize the area of the chip so that it can be more easily integrated into another
chip. The assessment of this criteria is giving an estimated number of MOSFETs used in
the design. This number is about 1890. We are not sure if this number reflects a good
design or not. But accoring to our rule of design, that is, to share as many components as
we can among various module and functions, to optimize logic functions of control lines
as much as we can, and try to use as fewer gate in a certain design as we could, we are
confident that that number reflects a quite good design. Under those terms, we can
conclude that the design is completely and successfully done not only in correct
functionality of the chip, but also in other goals aimed at optimizing the product as a
whole.
In conducting this project, we also learned several things regarding to VLSI concepts and
designing principles. In designing a VLSI circuit, we are dealing with various problems
that are never surfaced for other type of design. We are more concerned with delay time
in such a way that the functionality of the product will not be compromised when we try
to integrate more and more gates into the chip. We can deal with that problem by
balancing of gates between data paths. At the same time, we are equally concerned with
the area of the chip. The conflicting nature of these two problems requires us to find a
best way somewhere in between making their coexistence without compromising the
performance of the circuit as a whole.

To conclude the project, we would like to say that this is an excellent but challenging
project. We have accomplished all of its goals in a timely manner as well as in terms of
functional quality.

 35

Simulation of the Top-Level Design

 36

Waveforms of the Synchronized Command Inputs and the Clock
(From Top to Bottom: S3, S2, S1, S0 – all of these have been synchronized, and
CLK)

 37

Waveforms of the Synchronized Output Data
for the First Set of Input Data (A = 1001, B = 0110)
(from Top to Bottom: R3, R2, R1, R0 – see Table 3.3 for Time Mark Reference)

 38

Waveforms of the Synchronized Carry and Overflow bits Outputs
For the First Set of Input Data (A = 1001, B = 0110)
(from Top to Bottom: C, V – see Table 3.3 for Time Mark Reference

 39

Waveforms of the Synchronized Output Data
for the Second Set of Input Data (A =0111, B = 0101)
(from Top to Bottom: R3, R2, R1, R0 – see Table 3.3 for Time Mark Reference)

 40

Waveforms of the Synchronized Carry and Overflow bits Outputs
For the Second Set of Input Data (A = 0111, B = 0101)
(from Top to Bottom: C, V – see Table 3.3 for Time Mark Reference

	Table of Content
	Simulation Results ………………………………………………………………. 35
	List of Illustrations
	List of Tables
	Abstract
	Project Requirements and Basic Goals
	Top Level Design and Input/Output Relationship
	Design Procedure with Block Diagrams to Get Input/Output Relationships
	Comment: We can see that the material from the two sections just described above is sufficient to implement the circuit in terms of logic functions. However, as stated from the beginning of the project statements, the layout with minimum core area is als
	Implementation of Design Using EDA Tools
	II- Project Breakdown and Characterization of Each Sub-Module
	Partitioning of Project into Smaller and Manageable Sub-Modules
	Implementation of the Command Decoder module
	Implementation of the A OR B module
	Implementation of the A AND B module
	Implementation of the A XOR B and Comparision module
	Implementation of the Arithmetic module
	Implementation of the Arithmetic Controller component (in figure 2.19, it is named FA Controller)

	Testing, Simulation, and Layout Results of Each Sub-Module
	Implementation of the Synchronizing module

	III- Schematic of the Top-Level Design, Simulation, Testing, and Layout of the Top-Level Circuit
	Simulation and Layout Results of Top-Level Design

