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Abstract 

We develop a Bayesian multivariate analysis of expert judgment elicited using an 

extended form of pair-wise comparisons. The method can be used to estimate the effect 

of multiple factors on the probability of an event and can be applied in risk analysis and 

other decision problems. The analysis provides variance predictions of the quantity of 

interest that incorporate dependencies amongst the various experts. Unlike other 

combination methods for expert judgment, in this form we may learn about the 

dependencies between the experts from their responses. The analysis is applied to a data 

set of expert judgments elicited during the Washington State Ferries Risk Assessment. 

The effect of the statistical dependence amongst experts is compared to an analysis 

assuming independence amongst them. 

 

Keywords: Expert judgment; Pairwise Comparisons; Bayesian statistics; Multivariate 

analysis. 
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1. Introduction 

Pate-Cornell (1996) discusses the necessity of using expert judgment in risk analysis 

when sufficient data is not available. Many applications of expert judgment involve the 

estimation of the probabilities of events, often with these probabilities affected by 

multiple factors. Merrick et al. (2000) propose an expert judgment elicitation method that 

estimates the effect of multiple factors on the probability of an event. This form of 

elicitation has been applied in the Prince William Sound (PWS) Risk Assessment 

(Merrick et al. 2002) and the Washington State Ferries Risk Assessment (WSF) van Dorp 

et al. 2001) to estimate the probability of human error given organizational factors, such 

as the experience and training of the crew, and to estimate the probability of an accident 

given situational factors, such as the proximity and type of nearby vessels and the 

environmental conditions at the time.  While the elicitation method was proposed for use 

in risk analysis, it can be applied in other decision situations where applicable data is 

lacking.  

 The form of the elicitation is pairwise comparison of scenarios in which the event 

might occur. Multiple factors describe the two scenarios to the expert in a meaningful 

manner and in each comparison one factor is changed between the two scenarios. The 

method is akin to that in Bradley and Terry (1952), but the aim is to estimate the effect of 

the multiple factors rather than developing a scale for a single factor. In the PWS and 

WSF studies, a classical multiple regression was performed on the elicited expert data by 

assuming a log-linear model for the accident probability as a function of the factors.  

The presence of uncertainty in analyzing risk is well recognized and discussed in 

the literature (Cooke 1997). However, these uncertainties are often ignored or under-
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reported in studies of controversial or politically sensitive issues (Paté-Cornell 1996).  

The Bayesian paradigm allows the representation of both aleatory uncertainty (the 

randomness of the system itself) through the probability model and epistemic uncertainty 

(the lack of knowledge about the system) through prior distributions on the model 

parameters (Apostalakis 1978; Cooke 1991; Hofer 1996; Hora 1996; Winkler 1996). It is 

also well accepted that the judgments of multiple experts can be correlated and that the 

treatment of these correlations is necessary for proper analysis of such data (Winkler 

1981; French 1980 1981; Lindley 1983 1985; Mosleh et al. 1988; Clemen 1987; Jouini 

and Clemen 2002). Such correlation is often introduced, in the language of Clemen 

(1987), by overlapping information available to the experts and thus used in determining 

their responses to the questionnaires. 

Szwed et al. (2004) develop a Bayesian analysis of expert judgments elicited 

using the pairwise comparisons from Merrick et al. (2002). However, the Bayesian 

analysis in Szwed et al. assumes that the responses of the experts are independent. In this 

paper, we follow the development of Winkler (1981) by assuming that the errors in the 

judgments of the experts are drawn from a multivariate normal distribution. There is a 

fundamental difference, however. In Winkler’s work, the experts are assessing the value 

of one continuous quantity and the covariance matrix is treated either as a 

hyperparameter (i.e. the components of the matrix need to be assessed by the decision 

maker) or can be assigned a prior distribution that is not updated in the final analysis. In 

our case, the experts are assessing the impact of multiple factors and thus give multiple 

judgments of related quantities. This allows us to treat the covariance matrix as a model 

parameter and thus learn about the dependencies between the experts. 
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Our approach can be considered a regression extension of Winkler (1981). We 

develop a multivariate regression analysis of the responses to the questions that allows 

for the correlation between experts. While the analysis mirrors the development of 

Bayesian multivariate regression (Press 1982), it is a special case as each expert is 

providing judgments on the same quantities, not different quantities as in the case of a 

full multivariate regression. This requires the complete development of the likelihood, 

prior and posterior forms. We note, however, that the ability to learn about the 

dependencies between the experts is gained at a price. While Winkler obtains the decision 

maker’s predictive distribution on the quantity of interest, the multivariate regression set-

up obtains the decision maker’s multivariate predictive distribution of the judgments the 

various experts would provide. This requires the aggregation of the predictions to obtain 

a single distribution. To achieve this aggregation, we follow the minimum variance 

combination of Newbold and Granger (1974), the formula for which is in fact the same as 

that obtained by Winkler (1981). 

The outline of the paper is as follows. In Section 2, we illustrate the type of 

question used in our elicitation technique with an example drawn from a maritime risk 

study. We then illustrate the form of the underlying probability model assumed and show 

how this leads to regression as a suitable analysis methodology. Our multivariate 

extension is justified and developed in Section 3. The expert judgment data collected in 

the WSF Risk Assessment and the process used to collect it is described in Section 4 and 

this data is used to illustrate the use of our analysis method. We compare the analysis 

incorporating dependencies herein with one that is analogous to Szwed et al. (2004) 

assuming independence. Some concluding remarks are drawn in Section 5. 
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2. The Elicitation Method 

2.1 The Questions 

The following discussion will be based on the questionnaire used in the WSF Risk 

Assessment, although the same technique was used in the PWS Risk Assessment and can 

be used in many risk analysis and general decision problems. As an example, we shall 

examine the questionnaire for the likelihood of a collision between a ferry and another 

vessel given that the ferry has suffered a navigational aid (radar) failure. To assess the 

probability of an accident, experts were asked to compare two situations, as shown in 

Figure 1. This is essentially a pairwise comparison type of question (Bradley and Terry 

1952). However, the questionnaires are used to estimate the effect of several factors, 

rather than the single factor in standard pairwise comparisons.  

Issaquah class ferry on the Bremerton to Seattle route in a
crossing situation within 15 minutes, no other vessels around,

good visibility, negligible wind.

Other vessel is a navy vessel Other vessel is a product tanker  

Figure 1. An example of the type of question used in the expert judgement 
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The questions ask the expert to consider two situations between which only one 

factor has changed. The basic situation in Figure 1 is an Issaquah class ferry traveling 

from Bremerton to Seattle on a clear day with no wind. There is another vessel crossing 

the bow of the ferry less than 1 mile away. In the situation on the left-hand side, the other 

vessel is a Navy vessel, while on the right-hand side it is a product tanker. The questions 

were asked in the format of Figure 2. The responses were given on the scale at the bottom 

of Figure 2, which is taken from Saaty (1977). We interpret their response as the ratio of 

the probability of an accident in the two situations pictured. If the expert circled a “1”, the 

two probabilities would be equal. We assume that if the expert circled the “9” on the right 

(left) then the ratio of the probabilities would be 9 (1/9).  

Situation 1 Attribute Situation 2 

Issaquah Ferry Class - 

SEA-BRE(A) Ferry Route - 

Navy 1st Interacting Vessel Product Tanker 

Crossing Traffic Scenario 1st Vessel - 

< 1 mile Traffic Proximity 1st Vessel - 

No Vessel 2nd Interacting Vessel - 

No Vessel Traffic Scenario 2nd Vessel - 

No Vessel Traffic Proximity 2nd Vessel - 

> 0.5 Miles Visibility - 

Along Ferry Wind Direction - 

0 Wind Speed - 

 Likelihood of Collision   

 9   8   7   6   5   4   3   2   1   2   3   4   5   6   7   8   9  

 
Figure 2.  An example of the question format 
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2.2 The Probability Model 

The model assumed in the PWS and WSF Risk Assessments takes the form of a 

proportional probabilities model, based on the idea of the proportional hazards model 

(Cox 1972). Let ( )TqxxX ,,1 …=  denote the q  factors describing a situation in which the 

event of interest could occur. The conditional probability of the event, given the situation 

defined by X , is assumed to be 

 ( ),exp)|( 0 βTXpXEventP =  (1) 

where ( )Tqβββ ,,1 …=  is a vector of q parameters and 0p   is a baseline probability 

parameter. Examining the ratio of the probability of the event in two situations reveals 

the convenience of this form. Consider two situations defined by the factor vectors X1 and 

X2. The ratio of the probabilities is 

( ),)(exp
)exp(
)exp(

)|(
)|(

21
20

10

2

1 β
β
β T

T

T

XX
Xp
Xp

XEventP
XEventP

−==   (2) 

where (X1 - X2) denotes the difference vector between the two factor vectors. Thus, for 

this probability model, the ratio of the probabilities of the event given the two situations 

depends solely upon the difference between the two situations and the parameter vector 

β . 

2.3 Analyzing the Experts’ Responses 

Recall the format of the questionnaires demonstrated in Figure 1. Each question asked the 

experts to assess the relative likelihood (or ratio of probabilities) of the event (a collision) 

given the two situations. Multiple experts complete each questionnaire, so there are 

multiple responses to each question. Let the experts be indexed by ( )pj ,,1…=  and the 

questions be indexed by ( )Ni ,,1…= , so the experts’ responses can be denoted zi,j. We 
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now have that zi,j  is the j-th expert’s estimate of the ratio of probabilities for the i-th 

question, while the model gives this relative probability as ( )βT
iXexp , where iX  is a 

vector representing the difference between the two situations in question i  ( )2,1, ii XX − . 

This gives the basis for the regression equation used, specifically 

ji
T
iji uXz ,, )ln( += β      (3) 

where jiu ,  is the residual error term representing the variation between the experts’ 

responses around the model. 

Assuming that the errors   jiu ,  are independent and normally distributed with zero 

mean and variance 2σ , this equation is a standard linear regression, where ( )jiji zy ,, ln=  

is the dependent variable, iX  is the vector of independent variables, β  is a vector of 

regression parameters and jiu ,  is the error term. Clemen and Reilly (1999) observe that it 

is often necessary in expert judgment analysis to use such transformations to arrive at the 

normal distribution. Kadane et al. (1980) develop a method for assessing prior 

hyperparameters on a linear regression model; however, their approach is based on direct 

assessments rather than pairwise comparisons. A conjugate Bayesian analysis of (3) is 

developed in Szwed et al. (2004) assuming conditional independence of the experts’ 

responses given the model parameters. Pulkkinen (1993 1994a 1994b) was first to 

introduce, to the best of our knowledge, a Bayesian analysis of pairwise comparisons, but 

his Bayesian paired comparison inference model does not allow for updating of the 

dependence amongst experts 



8 

3. Analysis for Correlated Experts 

3.1 A Multivariate Model 

Clemen (1986 1987), Winkler (1981) and Mosleh et al. (1988) discuss the need for the 

representation of correlation between the experts in the analysis of expert judgment data. 

Winkler (1981) develops an aggregation technique for experts’ assessments of a single, 

continuous quantity θ  using the multivariate normal distribution, although here we 

follow more the form and notation of Clemen and Winkler (1985). If we denote the 

experts’ point estimates of θ  as ( )pµµµ …,1=  and let θµ −= iie  be their judgment 

errors around the parameter θ , then Winkler’s likelihood is formed by assuming that 

( )Σ,0~
1

MVNormal
e

e
e

p















= # , 

where ( )0,MVNormal Σ  denotes a multivariate normal distribution with mean vector 0 , 

a vector of p  zeros, and covariance matrix Σ . Winkler specifies the decision maker’s 

prior distribution on θ  as diffuse and updates using the multivariate normal likelihood 

),,,;( 1 ΣpL µµθ … . Winkler’s initial set-up requires the decision maker to specify the 

covariance matrix Σ  as a hyperparameter of the analysis. Winkler shows that the 

posterior distribution of θ  can then be re-written as 

( )( )2*2* 2/exp),;( σµθµθπ −−∝Σ     (4) 

where 

11/1 11* −−= ΣΣ TT µµ      (5) 

11/1 12* −= ΣTσ      (6) 



9 

and ( )1 1, ,1T = …  is a vector of p  1’s. Winkler’s second set-up allows the decision maker 

to specify a prior distribution on Σ , specifically an inverted Wishart distribution. 

However, the prior is not updated in the posterior analysis as each expert is only 

supplying one estimate and thus there is not sufficient information. 

 In our case, the single quantity θ  is replaced by the multiple assessments of 

( )βT
iXexp  ( Ni ,,1…= ) that are linked by the common parameter vector β . Thus there 

are multiple assessments made by multiple experts, which we denoted by ( )jiji zy ,, ln= . 

We may mirror Winkler’s development by defining βT
ijiji Xyu −= ,,  and letting  

( )Σ,0~

,

1,

MVNormal
u

u
u

pi

i
T

i















= # .    (7) 

We may re-write this model in matrix form to obtain 

1,1 1, 1,1 1, 1 1 1,1 1,

,1 , ,1 , ,1 ,

p q p

N N p N N q q q N N p

y y x x u u

y y x x u u

β β

β β

      
      = +      
      
      

" " " "
# % # # % # # % # # % #

" " " "
 

or  

 1Tβ= +Y X U  (8) 

This equation is similar to a full multivariate regression model 

 UXBY += , (9) 

where X is a ( )qN × -matrix of differences between the q  covariates for the N  

questions, B is a ( )pq× -matrix where each column represents the covariate effect 

parameters for an expert and U is a ( )pN × -vector of residual errors. The difference 
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between (8) and (9) is that in (8) columns of the regression parameter matrix are 

restricted to be equal as each expert is providing estimates of the same quantity.  

 The form in (8) suggests that we follow the analysis of a multivariate regression 

model, such as that developed in Press (1982). Equation (7) implies that the rows of U  

are independent vectors distributed according to a multivariate normal with a zero mean 

vector and covariance matrix Σ . The rows of U are assumed to be independent as they 

are responses to the individual questions, but the columns are dependent as they represent 

the responses of the experts to each question. Analyzing the model in (7) will make our 

analysis different from Winkler’s, as the prior distribution on Σ   will be updated by the 

judgments of the experts.  

3.2 Posterior Analysis 

While the following analysis mirrors the Bayesian analysis in Press (1982), the likelihood 

and posterior distributions for the column restricted form in (8) requires full development 

which can be found in Appendices A and B. We summarize these results here for brevity. 

The likelihood for the parameter restricted multivariate regression model in (8) is  

( )∝XΣY ,,| βp ( ){ } ( ) ( ( ) ) ( ){ },2
1exp  2

1exp 11212
1

BBtr TT
−−−Σ−Σ

−−
Σ

−− βσβ XXV  

(10) 

where ( ) ( )BXYBXYV ˆˆ −−=
T

 is the usual sufficient statistic for the unrestricted model, 

( ) YXXXB TT 1−
=

�
 is the least squares estimates of B under the unrestricted model, 

11 B
�

p
B =   is the average of the p  experts’ least squares estimates under the unrestricted 
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model and 111
2

2 ΣΣ
T

p
=σ  is the average variance across all experts. See Appendix A for 

the derivation of this form. 

 A natural conjugate analysis is made possible by the following distributional 

assumptions, 

( ) ( )mWishartInv ,~ G−Σ ,    (11) 

which defines an inverse Wishart distribution of dimension p  with parameter matrix G 

and m degrees of freedom, and 

( ) ( )AΣ 2,~| Σσφβ MVNormal .   (12) 

φ , A , G  and m  are arbitrary prior hyperparameters determined by the decision maker. 

 Given the experts’ responses to the questionnaires, the posterior distributions 

obtained in Appendix B are 

( ) ( )qmWishartInv ++− ,~,| VGXYΣ ,          (11) 

and 

( ) ( ) ( )( ( ))AXXABXXAXXΣXY +++ Σ

− TTTMVNormal 21 ,~,,| σφβ . (12) 

Thus the analysis is conjugate, making calculation, and therefore application, easier. 

 A result that will be useful later in the analysis is the marginal posterior 

distribution of the kβ ( )qk ,...,1=  that will be univariate student-t distributions with 

1++ qm  degrees of freedom given by  

( )XY,|kβ ( ) ( )( ,~ 1 φABXXAXX ++−
− TTtstudent 2)(

1)(1
pqm

T

+
+ VG ( ) )1

,
−

+ jj
T AXX  
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where ( ) 1
,
−

+ jj
T AXX is the j-th diagonal element of ( ) 1−

+AXXT . As Σ  follows an 

inverted Wishart distribution the marginal distributions of the off-diagonal elements are 

unknown, so samples are taken to observe their form. 

3.3 Prediction 

Once the Bayesian update has been performed, the next step is to develop the predictive 

distribution. In this case, we wish to predict how much more likely an accident is in one 

scenario compared to the other, or the ratio of the probabilities of an accident in the two 

scenarios. One would imagine that the development of a predictive distribution would 

mirror the development for multivariate regression, but with posterior distributions drawn 

from our parameter restricted model form. However, considering (8) reveals that if we 

denote the difference between the two scenarios by *x , then the prediction would be of 

( )∗∗∗ = pyyy ,,1 … , a vector of the various experts’ judgments of the ratio. We merely wish 

to estimate one value for the ratio of probabilities, not one for each expert.  

Instead, let us predict the weighted average of the p experts’ responses. In the 

following we apply the minimum variance weighted average aggregation of Newbold and 

Granger (1974). As noted by Clemen and Reilly (1999), the formula obtained by 

Newbold and Granger is the same as that obtained by Winkler (1981). We wish to predict 

the single quantity ∗y  = ∗ywT , where  ( )pwww ,,1 …=  is a vector of weights that sum to 

one.  The model form in (8) implies that  

( ) ( )ΣxΣxy ,1~,,| ββ TMVNormal ∗∗∗                   (13) 

with each expert having the same mean, but not necessarily the same variance or 

covariances amongst each other.. Using the results from Newbold and Granger, the 
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minimum variance aggregation ∗y , conditioned on β  and Σ , will be a normal 

distribution with mean and variance mirroring (5) and (6), specifically   

11/11 1*1* −−= ΣΣ TTT x βµ        (14) 

11/1 12* −= ΣTσ            (15) 

Note that βTx*  is a scalar, so can be brought to the front of (14) leaving the rest of the 

terms to cancel out, implying that =*µ βTx* . This is to be expected as each expert had 

the same mean prediction in (13) and the weights sum to one. So the minimum variance 

weighted prediction, conditioned on β  and Σ , is 

( ) ( )2*,~,,| σββ TMVNormal ∗∗∗ Σ xxy                   (16) 

 The posterior distribution of 2*σ  is scalar Wishart with posterior parameters 

1)(1/1 1−+ VGT
 and m q+  using (11) and formulae from Dawid (1981). The posterior 

distribution of β  is given in (12). Thus the posterior predictive distribution of ∗y  will 

then be a student-t distribution with 1−++ qpm  degrees of freedom given by 

( ) ( ) ( ) ( ) ( )( )∗∗−−∗ +++++− xAXXxVGABXXAXXx TTTTTT qmtstudenty 11,~ 11* φ     (14) 

To complete the prediction recall that ( )jiji zy ,, ln= , the prediction for jiz ,  is then a log 

student-t distribution. 

4. Example Results 

4.1 Elicitation for the WSF Risk Assessment 

Expert judgment was used in the WSF Risk Assessment to estimate the effect of risk 

factors on the probability of a collision given the occurrence of some triggering incident. 

The risk factors are listed in Table 1 and include the ferry class and route, the type, 
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proximity and angle of interaction of the closest two vessels, the visibility conditions and 

wind speed and direction. For a discussion of the derivation of the scales used for these 

risk factors see Szwed et al. (2004). 

Table 1. The risk factors included in the expert judgment questionnaires. 

Variable Description  Notation Values 

1X  Ferry route and class FR_FC 26 

2X  Type of 1st interacting vessel TT_1 13 

3X  Scenario of 1st interacting vessel TS_1 4 

4X  Proximity of 1st interacting vessel TP_1 Binary 

5X  Type of 2nd interacting vessel TT_2 5 

6X  Scenario of 2nd interacting vessel TS_2 4 

7X  Proximity of 2nd interacting vessel TP_2 Binary 

8X  Visibility VIS Binary 

9X  Wind direction WD Binary 

10X  Wind speed WS Continuous 

 

Experts may be classified in three categories (DeWispelare et al. 1995): 

• normative experts who have the analysis background to quantify the judgments of 

the substantive experts and combine their judgments.   

• generalists who have a thorough understanding of the project and play a role in 

defining the issues addressed and communicating with the experts 

• substantive experts who have the deep knowledge and experience of a system that 

allow them to provide information about the functioning of that system and  
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Certain members of the risk assessment team were normative experts, with knowledge of 

decision theory, probabilistic reasoning and expert elicitation techniques. Other members 

were generalists with both maritime experience, knowledge of maritime risk issues and 

systems engineering techniques. The substantive experts used in the study were the ferry 

captains that worked relief, filling in for captains on vacation or sick leave across all ferry 

routes. This ensured that the experts had a thorough knowledge of the entire system, not 

just a specific route. Each of the experts used had over 10 years of experience with the 

WSF.  

The elicitation team first provided to the substantive experts some background on 

the project followed by an explanation of the questionnaires and their purpose. Example 

questions were presented similar to Figure 1, but in the context of driving a car on the 

highway. This context was also explained in terms of several risk factors. The highway 

transportation mode was chosen over maritime examples to avoid biasing the experts 

before beginning the questionnaires and because everyone was familiar with the 

situations defined. The experts were then given an example question to consider in the 

driving example and discussion encouraged between the experts to ensure the idea was 

understood. It was important to remind the experts to look at all the risk factors in the 

question, rather than just the one that changed between the two situations as there can be 

interactions between the risk factors. 

Each questionnaire consisted of sixty comparisons of the type shown in Figure 2. 

The questionnaires were designed to collect the maximum amount of information from 

the sixty questions and to ensure that sufficient information was elicited to ensure the 

estimation of the main ten risk factors and six pre-defined interactions between risk 
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factors. The questions were asked in random order. The randomization of the questions 

meant that deliberate attempts to bias the results were difficult. Tests on the responses 

were performed to ensure that the experts’ responses were not affected by fatigue.  

4.2 Prior Distributions 

The first step in analyzing the expert judgment data is the specification of the prior 

hyperparameters. Clemen (1986) discusses the concept of aggregation of the decision 

maker’s beliefs with those of the experts. In our applications the decision makers have 

claimed ignorance of the effect of the factors in Table 1 on the probability of a collision 

and wished for the experts’ beliefs to dominate the predictions. In the Bayesian sense, 

this means specifying suitably vague priors.  

We assumed that φ , the vector of the prior means on β , is a vector of zeros, 

which indicates that a priori all covariates have on average no effect on the probability of 

an accident. The prior matrix A  is assumed to be an identity matrix to indicate no prior 

covariance between the parameters in β . The prior matrix G  is assumed to be an 

identity matrix, indicating no prior knowledge of correlations between the experts, while 

m  is assumed to be 0.380341 calculated by Szwed et al. (2004) to represent a priori that 

all expert respond to the N questions completely at random..  

Figure 3 shows the resulting marginal prior distributions of the β  parameters, 

represented by a circle for their mean and whiskers showing their prior 90% credibility 

interval. One may see that the prior assumptions are diffuse. Figure 4 shows the prior 

distribution of ( )
( )2

1

,.|
,.|
XFailNavCollisionP
XFailNavCollisionP  where X1 is the scenario on the left and X2 is 

the scenario on the right of Figure 1. Note that the distribution has median of one, 
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meaning collisions are equally likely in each situation, and a wide variability. In fact a 

90% credibility interval for this ratio of probabilities is 1.88x10-35 to 5.32x1034
. 
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Figure 3. The marginal prior distribution of β . 
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Figure 4. The prior distribution of the ratio of probabilities for the scenarios 

pictured in Figure 1. 

4.2 Posterior Distributions 

After updating with the experts’ responses using the formulae developed in Section 3.2, 

the marginal posterior distributions of the β  parameters are as shown in Figure 5. To 
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demonstrate the advantage of our model including dependence, we compare the results to 

the independent experts model in (9) developed in Szwed et al. (2004). Figure 6 shows 

the marginal posterior distributions of the β  parameters obtained using the independent 

experts model from Szwed et al. (2004), on the same scale as Figure 5. Note that while 

the mean values are similar, some slight differences can be observed amongst them in 

Figures 5 and 6. More noticeable, however, is that the posterior variance of every 

parameter is less in the dependent experts model (Figure 5) than that observed in the 

independent one by Szwed et al. (Figure 6). 
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Figure 5. The marginal posterior distribution of β  assuming dependent experts. 
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Figure 6. The marginal posterior distribution of β  assuming independent experts. 
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Of particular interest in this analysis, is the covariance matrix Σ  representing the 

dependencies between the experts. Figure 7 shows the posterior distribution of the 

corresponding correlation matrix with the correlation between the i-th and j-th experts 

indicated by the notation i,j on the top left of each histogram. Only lower triangular 

elements are shown to reduce clutter in the figure. A vertical line is drawn at 0, indicating 

no dependence between the two experts. Thus a histogram showing samples to the right 

of the line indicates a posterior probability that the two experts have positive dependence 

or overlapping information, while samples to the left indicates negative dependence or 

different information.  
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Figure 7. The posterior distribution of the expert correlation matrix. 
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The experts are re-ordered in Figure 7 to show groupings that appear in the correlations. 

Note that experts 1, 3 and 7 have a tendency to agree in their responses. Experts 2, 4 and 

6 also tend to agree with each other. These groups are not completely disparate, however. 

Experts 2 and 6 tend to disagree with experts 1, 3 and 7, but expert 4 tends to agree with 

them. Expert 5 tends to disagree with experts 1, 2, 3, 4 and 6, but does not conclusively 

agree or disagree with expert 7. Expert 8 disagrees with the group of experts 1, 3 and 7, 

but does not conclusively agree or disagree with the group 2, 4 and 6 or with 5.  

Consider the effect that this correlation between the experts will have on the 

variance of the experts’ responses. The posterior expected standard deviation of the 

average of the residuals for the p  experts, which we denoted 2
Σσ , evaluates to 0.49, 

whereas the posterior expected standard deviation of the residuals in the independent 

experts model is 1.05, over twice as high. 

4.3 Posterior Predictions 

We have seen the difference these correlations make in the variance of the β  parameters 

and to the precision of the residuals, but of more interest is their effect on the predictive 

distribution. Using the result in (14), Figure 9 shows the posterior distribution of 

1

2

(Collision | Prop. Fail, )
(Collision | Prop. Fail, )

P X
P X

 where 1X  is the scenario on the left and 2X  is the scenario 

on the right of Figure 1. The prior distribution is also shown as a dotted line to show the 

effect of updating. The posterior 90% credibility interval on the ratio of probabilities is 

4.01 to 5.00, with a half-width of 0.50. The reader should note that the question in 

Figures 1 and 2 is different from that illustrated in Szwed et al. (2004). 
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Figure 9. The prior and posterior density of the ratio of probabilities for the 

scenarios pictured in Figure 1. 
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Figure 10. The posterior density of the ratio of probabilities for the scenarios 

pictured in Figure 1 assuming dependent and independent experts. 
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 Figure 10 compares the posterior distribution of the ratio of probabilities from 

Figure 9 to the same prediction obtained using the independent experts model of Szwed 

et al. (2004). The independent expert model gives a higher posterior expected value of the 

ratio of probabilities, 5.59 as opposed to 4.48 with the dependent experts model, and a 

larger variance. The posterior 90% credibility interval is now 4.43 to 7.04, with a half-

width of 1.3 compared to 0.50 for the dependent expert model. 

4.4 The Experts’ Posterior Weights 

Of interest is the weight that each expert receives in the final predictions. These weights 

cannot be obtained in closed form and thus are found using sampling approximations. 

The weights depend only on the posterior distribution of Σ  as they are chosen to 

minimize the variance of * *Ty w y=  which equals Tw wΣ  when conditioned on Σ . 

Figure 11 shows 90% credibility intervals of the experts’ posterior weights as the 

whiskers of box plots and the interquartile range as the boxes, each estimated using 

sampling approximations.  
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Figure 11. Box plots for the expert weightings using regular weights restrictions. 
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Winkler and Clemen (1992) discuss the sensitivity of the aggregation formulae from both 

Winkler (1981) and Newbold and Granger (1974) to high dependencies. They report 

severe problems including negative weights and weights above one, neither of which is 

seen in Figure 11 for this expert group’s dependence structure. 

 The results in Figure 11 do raise the question of why certain experts receive a 

higher weight and some do not. Recall that ∗y = ∗ywT  implying that the variance of the 

weighted prediction obtained by Newbold and Granger (1974) is given by 

∑ ∑
≠

+=Σ
i ji

jijiiii wwwy ,,
2* )|var( σσ , 

where ,i jσ  is the element of Σ  in the i-th row and j-th column. As it is this expression 

that is minimized to find the weights of Newbold and Granger, it is apparent that to 

receive the most weight in the sum, experts should have low individual variance and be 

negatively correlated or uncorrelated with other experts that receive positive weight. 

Clemen and Winkler (1985) also conclude that positive (negative) correlations can reduce 

(increase) the precision of predictions and the value of information from dependent 

sources, although they use the results from Winkler (1981) in their investigations. 

As we have seen in Figure 7, groups of experts with positive dependencies do 

appear in our expert judgment data set, implying overlapping information. These groups 

are then uncorrelated or negatively correlated with other individual experts or groups of 

experts. It does not make sense to include all the members of a group due to their positive 

covariance. Rather some experts from the group should get chosen to represent the 

overlapping information from that group. Expert groups or individual experts that contain 

different information, as represented by negative or zero covariance with other experts, 

should receive positive weight to include their different information. Recalling the 
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apparent groupings amongst the experts in our analysis discussed in Section 4.2, experts 

1 and 3 are chosen to represent the group of experts 1, 3 and 7. Experts 2 and 4 are 

chosen to represent the group of 2, 4 and 6. Experts 5 and 8 both receive some weight as 

they represent different information from the other two groups. This is an intuitively 

appealing feature of this expert weighting technique. 

4.5 Expert Correlation: Good or Bad? 

The comparison of the dependent and independent experts models validates the 

incorporation of expert dependency in the modeling and aggregation of the experts’ 

opinions, but it does not demonstrate the impact that the correlation between the group of 

experts is having compared to an expert group with the same judgments about the effect 

of the factors but answering independently. The generalized variance of Σ  is defined as 

the determinant of Σ , denoted Σ , and is used as a measure of the overall variance of 

correlated variables. Applications include multivariate quality control (Mastrangelo et al. 

1996) and general linear models (Finn 1974; Tatsuoka 1971).  

To obtain a measure of the effect of the dependencies between the experts, we 

consider the covariance matrix Σ  compared to the same matrix Σ  with the off-diagonal 

elements set to zero, denoted by 0Σ . This modification leaves the experts with the same 

variance for their residuals around the aggregated model Tx β , but with no correlation. 

To compare the generalized variance for Σ  and 0Σ , we take the ratio 0Σ Σ . This 

yields a statistic that takes values above (below) one if independent experts would 

increase (decrease) the generalized variance compared to the correlated experts. Recall, 

however, that we in fact have a distribution on Σ . Thus we take samples from the 

posterior Wishart distribution of Σ  and calculate the generalized variance ratio for each 
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sample matrix. The distribution is difficult to read on this scale as we are trying to assess 

whether the values are above or below one. Thus we take the natural logarithm, to obtain 

the log generalized variance ratio. This statistic will take values above (below) zero if 

independent experts would increase (decrease) the generalized variance compared to the 

correlated experts.  

Figure 8 shows the posterior distribution of the log generalized variance ratio. In 

Figure 8, the log generalized variance ratio is almost surely positive, indicating that 

independent experts would increase the generalized variance compared to the correlated 

experts. Thus the correlation structure of the experts in Figure 7 has in fact reduced the 

generalized variance compared to independent experts. 
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Figure 8. The log generalized variance ratio. 
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5. Conclusions 

We have developed an analysis of an extended form of pairwise comparisons introduced 

in Merrick et al. (2000) from a Bayesian analysis that assumes that experts’ responses are 

independent (Szwed et al. 2004) to one that allows for correlations between experts. The 

analysis was set up using the approach of Winkler (1981), but took the form of a special 

case of Bayesian multivariate regression and this required full development of likelihood 

and posterior distributions in Appendices A and B. The method was applied to expert 

judgment data elicited during the WSF Risk Assessment. The empirical results show that 

there were correlations between the experts in this data and that allowing for these 

correlations decreases the posterior variance in the predictions made using the model 

compared to those obtained in Szwed et al. (2004). This reduction in uncertainty could be 

critical in determining whether to apply proposed risk interventions when such risk 

interventions are evaluated using the output of this expert judgment methodology.  

In a complete decision analysis, we must take care not only in the estimation of 

our mean predictions, but also their variances. Modeling dependencies amongst experts is 

a key part of getting the variance predictions right. Thus the development herein for such 

a widely applicable expert judgment elicitation technique is an important contribution to 

the literature on aggregation of expert opinion. 
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Appendix A - The Likelihood 

In this appendix, we follow the development of the likelihood for the full multivariate 

regression model in (9). At the appropriate point, we make an appropriate modification to 

find the likelihood for the restricted multivariate regression model in (8). Consider the 

likelihood for the full multivariate model in (9) 

= +Y XB U . 

We assume that the rows of U  are independent vectors distributed according to a 

multivariate normal with a zero mean vector and covariance matrix Σ , which gives the 

likelihood (Press 1982) as 

 ( ) ( )( ){ }2 11
2( | , , ) exp

N Tp tr− −∝ − − −Y B Σ X Σ Y XB Y XB Σ  (A.1) 

Considering the main part of the term in the exponent, we may introduce terms in each 

bracket a term that sums to zero giving 
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If we let ( )ˆ -1T TB = X X X Y , then 
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This makes the last two terms in (A.2) zero and our expression becomes 

( ) ( )

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ

T

T T T

− −

= − − + − −

Y XB Y XB

Y XB Y XB B B X X B B
 

Substituting back in to the likelihood in (A.1) yields  

( ) ( ) ( ) ( )( ){ }2 1 11
2

ˆ ˆ ˆ ˆexp
N T T Ttr− − −− − − + − −Σ Y XB Y XB Σ B B X X B B Σ , 

which can be written as 

( ) ( )( ){ } ( ) ( )( ){ }2 1 11 1
2 2

ˆ ˆ ˆ ˆexp exp
N T T Ttr tr− − −− − − − − −Σ Y XB Y XB Σ B B X X B B Σ

 

(A.3)
 

The first exponential term in (A.3) involves only Σ  as a parameter, while the second 

involves both B  and Σ . Letting ( ) ( )ˆ ˆ=
T

V Y - XB Y - XB  and multiplying each bracket 

in the quadratic form in the exponent by -1 leaves 

( ){ } ( ) ( )( ){ }2 1 11 1
2 2

ˆ ˆexp exp
N T Ttr tr− − −− − − −Σ VΣ B B X X B B Σ  

Substituting this result in to the likelihood in (A.3) gives  

( ) ( ){ } ( ) ( )( ){ }.2
1exp  2

1exp,,| 112 −−− −−−−∝ ΣBBXXBBVΣΣΣBXY
�� TTN

trtrp
 

(A.4)
 

The first term in (A.4) can be considered the likelihood of Σ , while the second term is 

the likelihood of B  given Σ . In fact, the likelihood of Σ  is already in the form of the 

inverted Wishart distribution. However, while the likelihood of B  given Σ  resembles a 

multivariate normal distribution, we must convert B  in to a vector. Press introduces a 

stacked vector form of B , which we will denote *β . The exact form of *β  is 
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( )1,1 ,1 1,2 ,2 ,1 ,

T

q q q q pβ β β β β β" " " "  or the vector of parameters for 

each expert stacked on top of each other.  

 Press shows that the likelihood can be re-written in terms of *β  as 

( ) ( ){ } ( ) ( )( ) ( ) ,ˆˆ
2

1exp  2
1exp,,|

1112














 −⊗−−−∝ ∗∗

−−∗∗−− βββββ XXΣVΣΣΣXY TTN

trP

(A.5)
 

where *β̂  is the stacked vector form of B̂ . The second term is now the likelihood of *β  

given Σ  and is in the form of a multivariate normal with mean *β̂  and covariance matrix 

( ) 1T −
⊗Σ X X . 

 To this point, we have been considering the full multivariate regression model (9). 

Let us now consider the restricted model in (8). The only difference is that the matrix B  

is replaced by the expression 1Tβ , with each expert having the same regression 

parameters in β . If we stack the matrix defined by 1Tβ  in the same manner as in (A.5), 

we obtain a vector  ( )1 1 1

T

q q qβ β β β β β" " " " . 

 Consider the ( )pq q×  matrix E , defined by 1⊗ I , where I  is a ( )q q×  identity 

matrix. This matrix is a series of p  identity matrices stacked on top of each other. If we 

take *1 T
p βE  under the restricted model, we obtain β , as the matrix E  sums the 

parameters for each of the experts. Recall that the likelihood of *β  given Σ  in (A.5) is in 

the form of a multivariate normal with mean *β̂  and covariance matrix ( ) 1T −
⊗Σ X X . 

Dawid (1981) states that if z  is a multivariate normal of dimension a  with mean µ  and 

covariance matrix Σ , then if A   is a ( )b a×  matrix, then zA  will also be a multivariate 
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normal of dimension b  with mean µA  and covariance matrix TAΣA . Thus *1 T
p βE  will 

be a multivariate normal distribution of dimension q  with mean *1 ˆT
p βE  and variance 

( )2

1
1 T T
p

−
⊗E Σ X X E . The mean evaluates to 1 1 1

1, ,
1 1

ˆ ˆˆ1
Tp p

i q ip p p
i i

B β β
= =

 
= =  

 
∑ ∑B " , 

where ( )ˆ -1T TB = X X X Y , and the variance evaluates to ( ) 12 Tσ
−

Σ X X , where 2σΣ  is the 

given by  2
1 1 1T
p

Σ .   

 This arrangement is interesting as B  is the average across the individual experts 

of the standard least squares estimates of the parameters of the full multivariate 

regression model, while 2σΣ  is the average across the individual experts of the variance of 

their residuals and ( ) 1T −
X X  represents the covariance between the parameters induced by 

the design matrix X . 

 With all these manipulations, we may rewrite the likelihood for the restricted 

model in (8) as 

( ) ( ){ } ( ) ( )( ) ( ) .2
1exp  2

1exp,,|
11212














 −−−−∝

−−

Σ
−− BXXBVΣΣΣXY βσββ TTN

trP
 

(A.6)
 

Appendix B - Prior Distributions 

Assume that Σ  is a priori distributed according to an inverse Wishart distribution with 

parameters G  and m , and the single covariate effect vector β  conditional on Σ  is a 

priori distributed according to a multivariate normal with mean vector φ  and covariance 
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matrix 2σΣA . Again, φ , A , G  and m  are arbitrary prior hyperparameters determined by 

the decision maker. 

 Thus, the prior distribution on Σ  can be written 

( ) ( ){ }- 2 1exp - 2
m

p m tr∝ -1Σ | G, Σ GΣ ,   (B.1) 

while the prior distribution of β  given Σ  can be written 

( ) ( ) ( )1
2 - -Tβ φ σ β φ β φσ

−
Σ

Σ

 ∝  
 

1p | X, , A,Σ exp - A .2
  (B.2) 

Thus the joint prior distribution obtained by multiplying (B.1) by (B.2) is 

( ) ( ){ } ( ) ( ) .2
1exp  2

1exp,,,,|, 2
112







 −−−Σ−Σ∝Σ

Σ

−
Σ

−− φβφβσσφβ AGGAX Tm
trmp

 

(B.3) 

Multiplying (B.3) by the likelihood in (A.6) gives 

( ) ( ){ } ( ) ( )

( ) ( ) ( ) .2
1exp  

2
1exp

2
1exp  2

1exp,,,,,,|,

2
12

2
112




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
 −−−







 Σ−Σ

×






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Σ

−−

Σ

−
Σ

−−

BBtr

trmpp

TTN

Tm

ββσ

φβφβσσφβ

XXV
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and combining like terms yields 

( )
( )

( )( ){ }
( ) ( ) ( ) ( ) .2

1
2

1exp

2
1exp,,,,,,|,

22
1

12







 −−−−−−

×Σ+−Σ∝Σ

ΣΣ

−
Σ

−
+−

BB

trmpp

TTT

Nm

ββσφβφβσσ

φβ

XXA

VGGAXY

(B.4)

 The first term in (B.4) indicates that the posterior distribution of Σ  is again an inverse 

Wishart distribution with posterior parameters G + V  and m q+ . The second term in 

(B.4) needs further simplification, so we consider just the exponent to yield 
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( ) ( ) ( ) ( )( )2
1- - - - -2

T TB Bβ β β φ β φσΣ
+TX X A .

 

Expanding the quadratic forms and grouping like terms yields 

( ) ( ) ( )( )2
1- constant( , ),2

T TB Bβ β β φ φ β βσΣ

− + − + +T T T T TX X + A X X A X X A Σ  

where TX X  and A  are symmetric, yielding 

( ) ( ) ( )( )2
1- constant( , ),2 B Bβ β β φ φ β βσΣ

− + − + +
TT T T T TX X + A X X A X X A Σ  

Completing the square to form a quadratic form and using the symmetry of TX X  and A  

we obtain 

( ) ( )( ) ( ) ( ) ( )( )




 ++−+++−−

−−

Σ

φβφβ
σ

AXXAXXAXXAXXAXX BB TTT
T

TT 11

22
1

 

(B.5) 

plus term that is constant with respect to β  conditional on Σ  and so can be dropped 

while maintaining proportionality. (B.5) implies that β  conditional on Σ  and the design 

matrix X  is a posteriori distributed according to a multivariate normal with mean vector 

( ) ( )1
B φ

−
+ +T TX X A X X A  and precision ( )2σΣ +TX X A . 
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