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Abstract 

Several major risk studies have been performed in recent years in the maritime 

transportation domain. These studies have had significant impact on management 

practices. The first, the Prince William Sound Risk Assessment, was reviewed by the 

National Research Council and found to be promising but incomplete, as the uncertainty 

in its results was not assessed. The difficulty in incorporating this uncertainty is the 

different techniques that need to be used to model risk in a dynamic and data-scarce 

application area. In this paper, we combine a Bayesian simulation of the occurrence of 

situations with accident potential and a Bayesian multivariate regression analysis of the 

relationship between factors describing these situations and expert judgments of accident 

risk. These techniques are applied to a risk case study involving an assessment of the 

effects of proposed ferry service expansions in San Francisco Bay. This paper can be 

considered an innovative application of Bayesian simulation and Bayesian multivariate 

regression to assess uncertainty in risk analysis of a maritime transportation system. 

Keywords: Uncertainty Analysis; Risk Analysis; Bayesian simulation; Bayesian 

multivariate regression; Maritime Transportation; Expert judgment. 
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1. Introduction 

Maritime transportation is a critical part of the US economy; excluding Mexico and 

Canada, 95 percent of foreign trade and 25 percent of domestic trade depends on 

maritime transportation, cargo worth a total of $1.0 trillion of per year (National 

Research Council 2000, page 53). However, examples of accidents are easy to recollect; 

the grounding of the Exxon Valdez, the capsize of the Herald of Free Enterprise and the 

Estonia passenger ferries are some of the most widely publicized accidents in maritime 

transportation. The consequences of these accidents ranged from severe environmental 

damage to large-scale loss of life, but also severe economic problems for the companies 

involved. The Exxon Valdez disaster cost Exxon $2.2 billion in clean up costs alone. This 

leads to the immediate questions of how to prevent such accidents in the future and how 

to mitigate their consequences if they should occur.  

Risk management has become a major part of operating decisions for companies 

in the maritime transportation sector and thus an important research domain (National 

Research Council, 2000). Early work concentrated on assessing the safety of individual 

vessels or marine structures, such as nuclear powered vessels (Pravda & Lightner, 1966), 

vessels transporting liquefied natural gas (Stiehl, 1977) and offshore oil and gas 

platforms (Paté-Cornell, 1990). More recently, Probabilistic Risk Assessment (Bedford 

and Cooke, 2002) has been introduced in the assessment of risk in the maritime domain 

(Roeleven et al., 1995; Kite-Powell, 1996; Slob, 1998; Fowler and Sorgard, 2000; 

Trbojevic and Carr, 2000; Wang, 2000; Guedes Soares and Teixeira, 2001).  

The Prince William Sound (PWS) Risk Assessment (Merrick et al., 2000, 2002), 

Washington State Ferries (WSF) Risk Assessment (van Dorp et al. (2001) and an 
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exposure assessment for ferries in San Francisco Bay (Merrick et al., 2003) are three 

examples of successful risk studies in this domain, combining system simulation with 

probabilistic risk assessment techniques. Their results have been used in major 

investment decisions and have played a significant role in the management of maritime 

transportation in the US. Figure 1 shows the risk intervention effectiveness estimates 

from the WSF Risk Assessment. The actual risk intervention cases modeled are described 

in van Dorp et al. (2001). The figures shows the total percentage reduction in collision 

probability for the WSF system for various risk management alternative broken down by 

the severity of the accidents, classified as Minimum Required Response Times (MRRT): 

less than one hour, between one and six hours and above six hours.  
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Figure 1. An assessment of risk intervention effectiveness for proposed safety 

improvements for the Washington State Ferries. 

As another example, Figure 2 shows the results from an analysis of proposed ferry 

service expansions in San Francisco Bay. The estimates show the frequency of 

interactions between ferries and other vessels for the current ferry system (Base Case) 
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and three alternative expansion scenarios which increase the total number of ferry transits 

per year.  
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Figure 2. An assessment of alternative expansion scenarios for ferries in San 

Francisco Bay. 

One problem with the representations in Figure 1 and Figure 2 is the apparent 

finality of the results. The decision-maker is led to believe that the results are definitive 

and are in no way uncertain. In fact, the National Research Council performed a peer 

review of the PWS Risk Assessment and concluded that the underlying methodology 

shows “promise” to serve as a systematic approach for making risk management 

decisions for marine systems (National Research Council 1998). However, to speak the 

truth in maritime risk assessments, the degree of uncertainty needed to be communicated 

(Kaplan 1997). “Risk management … should answer whether evidence is sufficient to 

prove specific risks and benefits” (A. Elmer, President, SeaRiver Maritime, Inc. in 

National Research Council, 2000).   
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In this article, we discuss an innovative application of Bayesian simulation and 

Bayesian multivariate regression to perform a complete assessment of risk and 

uncertainty for dynamic systems. These techniques have not been applied previously in a 

risk assessment setting. The methodology has applications beyond maritime accident risk, 

such as port security and aviation safety and security. A summary of the article is as 

follows. Section 2 discusses uncertainty and how it is best represented in risk analysis. 

The framework for a full uncertainty analysis of the results of the maritime probabilistic 

risk assessment models is summarized in Section 3. The results of an uncertainty case 

study are offered in Section 4, where the robustness of conclusions drawn in a study of 

ferry expansions in San Francisco Bay are assessed. Conclusions are drawn in Section 5. 

2. Uncertainty Analysis 

The presence of uncertainty in analyzing risk is well recognized and discussed in the 

literature. However, these uncertainties are often ignored or under-reported in studies of 

controversial or politically sensitive issues (Pate-Cornell, 1996). Two types of uncertainty 

are discussed in the literature, aleatory uncertainty (the randomness of the system itself) 

and epistemic uncertainty (the lack of knowledge about the system). In a modeling sense, 

aleatory uncertainty is represented by probability models that give probabilistic risk 

analysis its name, while epistemic uncertainty is represented by lack of knowledge 

concerning the parameters of the model (Parry, 1996).  In the same manner that 

addressing aleatory uncertainty is critical through probabilistic risk analysis, addressing 

epistemic uncertainty is critical to allow meaningful decision-making. Cooke (1997) 

offers several examples of the conclusions of an analysis changing when uncertainty is 

correctly modeled. 
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While epistemic uncertainty can be addressed through frequentist statistical 

techniques such as bootstrap or likelihood based methods (Frey and Burmaster, 1999), 

the Bayesian paradigm is widely accepted as a method for dealing with both types of 

uncertainty (Apostolakis, 1978; Mosleh et al., 1988; Hora, 1996; Hofer, 1996; Cooke, 

1991). However, as pointed out by Winkler (1996), there is no foundational Bayesian 

argument for the separation of these types of uncertainty. Ferson and Ginzburg (1996) 

use the terminology variability for aleatory uncertainty and ignorance for epistemic. 

Winkler’s argument essentially says that variability is purely ignorance of which event 

will occur. 

The distinction of types of uncertainty, however, does have certain uses in the risk 

assessment process (Anderson et al., 1999). Specifically, the distinction is useful when 

explaining model results to decision-makers and the public and when expending 

resources for data collection. In the communication case, the distinction must be drawn 

between the statements “we don’t know if the event will occur” and “we don’t know the 

probability that the event will occur.” In the data collection case, epistemic uncertainty 

can be reduced by further study and data collection, whereas aleatory uncertainty is 

irreducible, as it is a property of the system itself (Hora, 1996). Bayesian modeling can 

allow for the distinction and handle the underlying differences inherently. Monte Carlo 

simulation (Vose, 2003) can be used to propagate uncertainty through a model (requiring 

significant computer power), while Bayesian analytical techniques can be used for 

analyzing data and expert judgments (Cooke, 1991).  
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3. Modeling Uncertainty in Dynamic Risk Assessment 

We will use the examples of ferry risk assessment to demonstrate the application of 

Bayesian simulation and Bayesian multivariate regression to assessing risk for a dynamic 

system, such as a maritime transportation system. We shall use the expert judgments 

from the Washington State Ferries Risk Assessment analyzed using the Bayesian 

multivariate regression techniques developed in Merrick et al. (2004b) and apply them to 

the output from the Bayesian simulation of San Francisco Bay ferries described in 

Merrick et al. (2004a). While both studies considered ferries, these results should not be 

taken as a definitive analysis for either application as the experts from WSF were not 

considering San Francisco Bay when responding to the expert surveys. In each of these 

studies, one type of accident was considered, specifically collisions between a ferry and 

another vessel. Collisions occur within a situation defined by factors that affect the 

probability of occurrence. Table 1 shows the factors that were used to describe the 

situations in the WSF Risk Assessment.  

3.1 A Probabilistic Risk Framework 

The accident probability model is based on the notion of conditional probability, 

conditioning on the factors that determine the level of accident potential in a situation. To 

estimate the probability of a collision, we sum over the possible situations giving 

 )()|()(
1
∑
=

=
k

j
jj SituationPSituationCollisionPCollisionP   (1) 

where jSituation  denotes the possible combinations of values of the factors in Table 1 

for 1,...,j k=  and k is the total number of possible combinations (2,163,200 in Table 1). 
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Table 1. The risk factors included in the expert judgment questionnaires. 

Variable Description  Notation Values 

1X  Ferry route and class FR_FC 26 

2X  Type of 1st interacting vessel TT_1 13 

3X  Scenario of 1st interacting vessel TS_1 4 

4X  Proximity of 1st interacting vessel TP_1 Binary 

5X  Type of 2nd interacting vessel TT_2 5 

6X  Scenario of 2nd interacting vessel TS_2 4 

7X  Proximity of 2nd interacting vessel TP_2 Binary 

8X  Visibility VIS Binary 

9X  Wind direction WD Binary 

10X  Wind speed WS Continuous 

 

Thus the accident probability model consists of two parts: 

• ( )jP Situation : the probability that particular combination of values of the factors 

occurs in the system 

• )|( jSituationCollisionP : the probability that an accident occurs in the defined 

situation. 

To perform an assessment of the risk of an accident using this model, both terms in the 

probability model need to be estimated.  
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The system simulation is used to count the occurrence of situations with different 

values of the defining factors. A simulation of the maritime transportation system is 

created incorporating vessel movements and environmental conditions. A situation is 

counted for each situation with accident potential, in the case of collisions this occurs 

when a vessel is considered to be interacting with a ferry (see van Dorp et al. (2001) for a 

definition of interactions with collision potential). A multi-year simulation is run and for 

each time period in the simulation the situations that occur are counted. Thus the average 

yearly frequency of situations with particular values of the factors, denoted 

( )jP Situation , could be estimated using the simulation. The use of a system simulation 

also allows for the system wide evaluation of risk reduction and risk migration effects 

potentially associated with the implementation of particular risk intervention measures 

(see, e.g., Merrick et al., 2000, Merrick et al., 2002). Classical simulation techniques 

were used in the PWS and WSF studies, thus only point estimates of ( )jP Situation  were 

obtained. 

The next step in the estimation of accident frequency is to estimate the conditional 

probability of accidents )|( jSituationCollisionP . The preferred method for estimating 

these probabilities is through the statistical analysis of accident data. However, expert 

judgment elicitation is often crucial in performing risk analyses (Cooke, 1991). In both 

the PWS and WSF Risk Assessments less than three relevant accidents had been 

recorded. Thus the analysis had to rely, at least in part, on expert judgment. The expert 

judgment method used to estimate )|( jSituationCollisionP  was based on pairwise 

comparisons and the expert responses were analyzed using classical statistical regression 

techniques. Thus again, only point estimates were obtained. 
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To address the uncertainties in the PWS/WSF Risk Assessment approach in a 

comprehensive and coherent manner we need to separately address uncertainty in the 

simulation estimates of ( )jP Situation  and uncertainties in the experts’ assessments of the 

conditional probabilities and )|( jSituationCollisionP .  We must then propagate these 

uncertainties though the framework expressed by (1).  

3.2 Bayesian Simulation of a Maritime Transportation 

Bayesian simulation differs from classical simulation analysis in that probability 

distributions are used to represent the uncertainty about model parameters rather than 

point estimates and confidence intervals. Such treatment is applied to both random inputs 

to the model and the outputs from the model. In the language of uncertainty, classical 

simulation models only aleatory uncertainty, while Bayesian simulation models both the 

aleatory and epistemic uncertainty. In this section, we discuss the development of a 

Bayesian simulation of the San Francisco Bay area. A classical simulation was developed 

by the authors for a study examining the effect of proposed service expansions under 

consideration by the California legislature (Merrick et al. 2003). As part of our 

uncertainty modeling, Merrick et al. (2004a) extended the SF Bay simulation model using 

Bayesian input and output modeling techniques.  

In the existing simulation, the ferry transits were based on fixed schedules for the 

current ferry system and for each of the alternative expansion plans. Visibility and wind 

conditions were incorporated by tracing large databases of environmental data obtained 

from National Oceanographic and Atmospheric Administration (NOAA) observation 

stations in the study area. However, the arrivals for non-ferry traffic was based an 

historical data. Input uncertainty should be incorporated in the analysis to reflect the 
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limited data available to populate the parameters of the arrival processes in a simulation 

model (Chick 2001). Thus Bayesian renewal process models of traffic arrivals were 

created in Merrick et al. (2004a) for all 5,277 arrivals processes. 

The presence of input uncertainty means that there will be uncertainty in the 

outputs as well. This will include aleatory uncertainty as this is a stochastic simulation, 

but also epistemic uncertainty as the simulation is run for a finite period. In our risk 

assessment methodology, the data obtained from the simulation in each replication will 

be the number of vessel interactions occurring in each replication of the simulation, 

denoted ,r jN , for the r -th replication ( 1,...,r s=  for s  replications) and the j -th 

combination of values of the factors ( 1,...,j k= ). However, as we wish to propagate 

uncertainty throughout the overall model, a probability model will be hypothesized for 

these output statistics. Chick (1997) notes that this can be thought of as a Bayesian 

version of metamodeling (Law and Kelton 2001).  

As our output data is in the form of a count, the number of vessel interactions for 

the j -th combination of values of the factors can be naturally modeled using a Poisson 

distribution with rate jµ , with a conjugate gamma distributed prior on jµ  with shape jα  

and scale jγ .  The posterior distribution of the expected vessel interactions frequency for 

the j -th combination of values of the factors is given by  

( ) 







++∑

=

s

i
jjijjsjj sngammann

1
,,,1 ,~,,| γαµ …    (2) 

The predictive distribution of  ( )jP Situation  is then a Poisson-gamma distribution in the 

sense of Bernado and Smith (2000). Note that the epistemic uncertainty here can be 
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reduced by running longer simulations, the aleatory uncertainty cannot; this would 

require additional traffic data.  

3.3 Bayesian Multivariate Regression for Expert Judgments 

Merrick et al. (2004b) propose a multivariate Bayesian analysis of expert judgments for 

an extended form of pairwise comparisons (Bradley and Terry, 1952) that accounts for 

correlations between the experts’ responses (Clemen and Reilly, 1999). The aim of the 

expert elicitation method, as applied to maritime risk, is to estimate the effect of multiple 

factors on the probability of a collision, denoted )|( jSituationCollisionP . An example of 

the form of the questions drawn from the WSF risk assessment project is shown in Figure 

3. Note that in each comparison, the situation is completely described in terms of the 

factors and only one factor is changed between the two situations the expert is asked to 

compare.  

Situation 1 Attribute Situation 2 

Issaquah Ferry Class - 

SEA-BRE(A) Ferry Route - 

Navy 1st Interacting Vessel Product Tanker 

Crossing Traffic Scenario 1st Vessel - 

< 1 mile Traffic Proximity 1st Vessel - 

No Vessel 2nd Interacting Vessel - 

No Vessel Traffic Scenario 2nd Vessel - 

No Vessel Traffic Proximity 2nd Vessel - 

> 0.5 Miles Visibility - 

Along Ferry Wind Direction - 

0 Wind Speed - 

 Likelihood of Collision   

 9   8   7   6   5   4   3   2   1   2   3   4   5   6   7   8   9  

Figure 3.  An example of the question format 
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The responses to the questions are in terms of relative probabilities of the event in the two 

situations. Thus, if the expert circles a “1”, this means they believe that the two 

probabilities would be equal, or if the expert circles a “9” on the right (left) then they 

believe the ratio of the probabilities is 9 (1/9) (Saaty, 1977). 

The form of the underlying probability model is assumed to be  

{ }βT
jj SituationpSituationCollisionP exp)|( 0= ,   (3)

 

where 0p  is a baseline probability of a collision and β  is a vector of factor effect 

parameters. Due to this choice of form, the ratio of probabilities will be equal to 

( )( )exp T
L RSituation Situation β− , where LSituation  and RSituation  are the vectors of 

factors for the situations on the left and right sides of the question respectively. Thus, if 

we equate the natural logarithm of the experts’ responses and the corresponding model 

terms, the analysis can be performed using linear regression techniques.  

Szwed et al. (2004) develop a conjugate Bayesian analysis assuming that the 

experts respond independently. Merrick et al. (2004b) extend this Bayesian analysis to 

account for the correlations between the responses of the experts by assuming a 

multivariate normal distribution on the experts’ judgment errors in the manner of Winkler 

(1981). Suppose we ask p  experts to respond to N  such questions about q  factors. We 

use the notation ( ),1 ,,...,j j j qSituation x x=  to denote the differences between the q  factors 

for the j -th question and ,j ey  for the response to the j -th question by expert e . The 

multivariate regression model used can be written as 

 1Tβ= +Y X U , (4) 
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where X  is a ( )N q×  matrix of differences between the q  covariates for N  questions, 

U  is a ( )N p×  vector of residual errors, ( )1,...,
T

qβ β β=  is the vector of regression 

parameters from (3) and ( )11 1 ,...,1
T

q=  is a vector of p  1’s. The multivariate regression 

model is completed by assuming that the rows of U  are distributed according to a 

multivariate normal with a zero mean vector and covariance matrix Σ .  

 A natural conjugate analysis is possible by assuming that Σ  has an inverse 

Wishart prior distribution of dimension p  with parameter matrix G and m degrees of 

freedom and, conditioned on Σ , β  has a multivariate normal prior distribution with 

mean φ  and variance A2
Σσ , where 111

2
2 ΣΣ

T

p
=σ  is the average variance across all 

experts. φ , A , G  and m  are arbitrary prior hyperparameters determined by the decision 

maker. Given the responses of the experts and applying the minimum variance weighted 

average of Newbold and Granger (1974), the posterior predictive distribution of y  is 

shown in Merrick et al. (2004b) to be a student-t distribution with 1−++ qpm  degrees 

of freedom given by 

( ) ( ) ( ) ( ) ( )( )∗∗−−∗ +++++− xAXXxVGABXXAXXx TTTTTT qmtstudenty 11,~ 11* φ    (5) 

To complete the prediction recall that the regression was on the natural logarithm of the 

experts’ assessments of the ratios of probabilities, so the actual predictions of the 

probability is a log student-t distribution. 

3.4 Propagating Uncertainties 

To perform a full uncertainty analysis of such a maritime risk model, we had to obtain 

Bayesian predictive distributions for each term in the model, ( )jP Situation  and 
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)|( jSituationCollisionP , and then propagate the uncertainty expressed in these 

distributions through the calculations in (1). Given the development in Sections 3.2 and 

3.3, the predictive distribution of ( , )jP Collision Situation  in (1) cannot be obtained in 

closed form as the multiplication of a Poisson-gamma distribution with a log student-t 

distribution does not result in a known form. Monte Carlo simulation is the most 

commonly used tool for propagating uncertainty through a risk analysis model (Vose 

2003). As noted by Winkler (1996) analytical solutions should be used if at all possible. 

In most cases though, closed form solutions are not possible and the brute force 

simulation method must be used (Pate-Cornell 1996). To perform Monte Carlo analysis 

for our model, values for all the parameters of the model are sampled at the beginning of 

each calculation of (1). These values are then used in the calculation and the value of 

( )P Collision  recorded. Thus samples of the posterior distribution of  ( )P Collision  are 

obtained and descriptive statistics of the distribution can be estimated. 

Such calculations do require significant computational effort. The samples from 

( )jP Situation  include a sample from the posterior distribution of jµ  in (2) and |j jN µ , a 

Poisson distribution, for 1,...,j k= . The samples for the conditional probabilities 

)|( jSituationCollisionP  are taken from the log student-t distribution in (5). For the 

simulation of the current SF Bay ferry system, the calculation time for a sample of 1000 

values takes approximately 16,000 seconds or about 4½ hours. This does not include the 

2 hours that 10 replications of a one-year simulation takes before this analysis can be 

performed. These times increase significantly as the number of ferry transits increase in 

the alternatives considered. Thus such uncertainty analysis on a large-scale model like 
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this is highly computationally intensive even with the efficient sampling algorithms we 

applied. 

However, such Monte Carlo analysis is referred to in the language of parallel 

computing as embarrassingly parallel. This means that the computation can be broken 

down in to independent pieces for calculation on parallel processors or separate 

computers and then the reconstituted for final analysis. For a 10 processor set-up, we may 

run one-year of the simulation on each processor instead of 10 years on one processor. As 

the sufficient statistics for the Bayesian meta-model on the simulation are the sum of the 

number of occurrences and the number of years simulated, the results from each 

processor are combined by summing the number of occurrences of each combination of 

values of the factors. The combined simulation data can then be passed back to the 10 

processors for each to sample 100 values from the posterior distribution of ( )P Collision . 

The total run time will now be one-tenth as long plus a small time for passing data after 

the simulation runs and the sampling. While this is not the frontier of work on parallel 

computing, this simple application can make the difference between running all the 

analysis needed for a complete decision and not.  

4. An Uncertainty Analysis Case Study 

In an effort to relieve congestion on freeways, the state of California is proposing to 

expand ferry operations on San Francisco (SF) Bay by phasing in up to 100 ferries in 

addition to the 14 currently operating, extending the hours of operation of the ferries, 

increasing the number of crossings, and employing some high-speed vessels. The state of 

California has directed the San Francisco Bay Area Water Transit Authority to determine 

whether the “safe” operation of ferries in San Francisco Bay can continue with the new 
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pressures of aggressive service expansion. The three proposed expansion scenarios are: 

(1) Alternative 3: Enhanced Existing System; (2) Alternative 2: Robust Water Transit 

System and (3) Alternative 1: Aggressive Water Transit System. Of these alternatives, 

Alternative 3 is the least aggressive expansion scenario and Alternative 1 is the most 

aggressive one. The WTA tasked the author’s to investigate the impact of ferry service 

expansion on maritime traffic congestion in the SF Bay area by developing a maritime 

simulation model of the SF Bay.  

Merrick et al. (2004b) used the Bayesian simulation of the SF Bay area to analyze 

the effect of ferry expansions on the number of situations occurring with accident 

potential. Figure 6 shows a comparison plot of Alternatives 1 and 2.  

 

Figure 6. Alternative 2 compared to Alternative 1. 
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The geographic regions that are colored black show that almost surely more situations 

will occur in these areas if Alternative 1 is implemented than if Alternative 2 is 

implemented. The yellow regions show no dominance, with the predictive distributions 

of the number of situations for the two alternatives being approximately the same. A blue 

region would indicate the reverse, but does not occur as Alternative 1 will almost surely 

have as many or more situations occurring in all regions.  

Figure 7A shows an aggregate comparison of the alternatives by the total 

expected yearly number of situations, in this case interactions with other vessels that 

could lead to a collision.  
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Figure 7. Expected Yearly Situations Comparison. 
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The lines in Figure 7A are actually box plots of showing the predictive distribution with 

the interquartile range as the box and the 5th and 95th percentiles of the distribution as the 

whiskers. However, as the remaining uncertainty in these estimates is low, they do not 

show up on this comparison scale and are repeated Figures 7B through 7D. It is evident 

from Figure 7 that there is an increase in the number of situations across the alternatives 

and this result is not subject to epistemic or aleatory uncertainty. 

However, the results of Merrick et al. (2004a) count each such situation equally. 

Merrick et al. (2004b) analyzed the expert judgments from the WSF Risk Assessment 

considering both dependencies between the experts’ responses and the remaining 

uncertainty in the estimates. Figure 8 shows the marginal posterior distributions of the β  

parameters for the factors listed in Table 1 and six interaction terms. The prior 

distributions used in Merrick et al. (2004b) were vague. For the model form in (3), a 

value of zero for these parameters implies that the corresponding factor does not affect 

the collision probability. A positive (negative) value indicates that an increase in the 

factor would increase (decrease) the collision probability.  
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Figure 8. The marginal posterior distribution of the factor effect parameters. 
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 As the factors describing the situations effect the probability of a collision given 

that a situation occurs, )|( jSituationCollisionP ,  the analysis from Merrick et al. (2004a) 

is useful, but not definitive. Instead we must examine the collision probability itself, 

( )P Collision . Figure 9A shows a similar pattern of increase for the expected yearly 

number of accidents as seen for the expected yearly situations. However, with the 

introduction of estimated accident probabilities based on expert judgments, there is 

significantly more uncertainty evident in these results and this uncertainty cannot be 

removed by simply running more simulations. The largest uncertainty remains about 

Alternatives 2 and 1. However, there are almost certainly a higher expected number of 

accidents in Alternative 1 than Alternative 2. There is not such certainty when comparing 

the Base Case to Alternative 3.  

Whereas there was an almost certain ranking in terms of the expected yearly 

number of situations, this is not true for the expected yearly number of accidents. As the 

comparison is not clear on a scale that includes Alternatives 2 and 1, Figures 9B and 9C 

show the box plots for the Base Case and Alternative 3 respectively; the 90% credibility 

intervals for the two alternatives are ( 55.28 10−× , 56.52 10−× ) for the Base Case and 

( 56.19 10−× , 57.77 10−× ). Thus these distributions do indeed overlap and the best we can 

say is that Alternative 3 stochastically dominates the Base Case in the sense that their 

cumulative distribution functions to do cross. This result seems questionable given the 

results in Figure 7 and to explain why this occurs we must consider the accident 

probabilities calculated for the occurring situations. 



20 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

Base Case Alternative 3 Alternative 2 Alternative 1

Ex
pe

ct
ed

 Y
ea

rly
 A

cc
id

en
ts

A

0.00005

0.00006

0.00007

0.00008

Base Case

E
xp

ec
te

d 
Y

ea
rly

 A
cc

id
en

ts

B

0.00005

0.00006

0.00007

0.00008

Alternative 3

E
xp

ec
te

d 
Y

ea
rly

 A
cc

id
en

ts

C

 

Figure 9. Expected Yearly Accidents Comparison. 

 It is evident from Table 1 that there will be many possible situations that can be 

counted in the simulation and from Figure 8 that these situations can have significantly 

different accident probabilities when they occur. Thus to compare the accident 

probabilities in the situations occurring in the different alternatives, we take the average 

accident probability across all situations that occurred in the simulation of each 

alternative. For each alternative, this involves taking the number of times that a given 

situation defined by the factors in Table 1 occurs and multiplying by the accident 

probability given that the situation occurs. We then add these results up for all possible 

situations and divide by the total number of situations that occurred.  

Figure 10 shows the results of these calculations and the remaining uncertainty 

about the results for each alternative. Note that the result in Figure 9 can now be 

explained. Whereas the expected yearly number of interactions increases from the Base 



21 

Case to Alternative 3, the average probability of an accident actually decreases, thus 

causing the distributions of the multiple of these two quantities, the expected yearly 

number of accidents, to overlap. The average accident probabilities for Alternatives 2 and 

1 are about the same as the Base Case, but there is more uncertainty. 
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Figure 10. Average Probability of an Accident across Occurring Situations. 

While Figure 10 does explain how the strange result in Figure 9 occurs, it does 

not explain why. What changes occur in Alternative 3 that reduce the average accident 

probability compared to the Base Case? In Alternative 3, only one additional route is 

added to the Base Case schedule. However, as discussed in Merrick et al. (2004b), there 

was a problem with the proposed schedules for the alternatives; they consisted of a start 

time, end time and time between ferries. For example, the Sausalito and Tiburon ferry 

schedule starts at 7 am and runs every 30 minutes until 10 pm during the week. At the 

weekend they run every 60 minutes. This is significantly more than in the Base Case, but 

this means that there are definite patterns to the transits that are not reflective of a more 

mature schedule where all vessels don’t start on the hour and run every 15, 30 or 60 

minutes. With artificial schedules the ferries do not interact as much because of the 



22 

timing of the transits. The question then is what effect this has that can make the average 

accident probabilities reduce from the Base Case to Alternative 3? 

 The analysis can be decomposed by any of the factors in Table 1. By this we 

mean that we can examine the expected yearly number of situations or accidents where 

the first interacting vessel was a navy vessel compared to a product tanker or where there 

was good visibility versus bad visibility. We can also calculate the average accident 

probabilities in situations of different types. To explain the decrease in average accident 

probability from the Base Case to Alternative 3, we broke down the analysis by each of 

the factors in Table 1 and discovered that, while other smaller effects were contributing 

to the result, the main effect was a change in the proximities of not the closest interacting 

vessel, but the second closest interacting vessel. This factor is included in the analysis as 

multiple nearby vessels are more confusing and thus lead to a higher chance of human 

error and thus collision. 

Figure 11B shows the average accident probabilities for the Base Case for a 

second vessel within 1 mile of the ferry, the second vessel over 1 mile away (but still 

closer than 15 minutes away) and for no interacting vessel. It is evident that having a 

second vessel is considerably more risky than not and that the second vessel being closer 

in is more risky than further away. This is a logical result. While the exact values in 

Figure 11B are for the Base Case, they do not change significantly in the other 

alternatives, so these are omitted. Figure 11A shows the percentage of situations in each 

alternative that occur in these three classifications for the second interacting vessel. Note 

that in Alternative 3 there are proportionally fewer situations that have a second 

interacting vessel within 1 mile, the riskier situation, and proportionally more situations 
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where the second interacting vessel is over 1 mile away, the less risky situation. This is a 

result of the artificial timings of the schedule tested for Alternative 3. As the average 

accident probability is averaged over all situations occurring in the simulated alternative, 

this will mean that the average accident probability will be lower for Alternative 3 than 

the Base Case. 
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Figure 11. Explaining the Average Probabilities in Terms of the Proximities of 2nd 

Interacting Vessels. 

What would these results mean in terms of the decision to build out the San 

Francisco Bay ferries if they could be considered more than an academic demonstration 

of the techniques? Firstly, while Alternative 3 does significantly increase the number of 

ferries and thus the expected yearly number of situations from the Base Case, there is a 

decrease in the risk of the situations that occur and thus the comparison in terms of 
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expected yearly accidents is not conclusive. However, as this result appears to be caused 

by the artificial nature of the schedule tested, the actual schedule to be implemented 

should be tested in this manner before any decisive conclusions could be reached. We 

note that such caution would not be engendered by an analysis without uncertainty as the 

mean values would have implied a definitive ranking and led to the conclusions that 

Alternative 3 was less safe. Alternatives 2 and 1 do almost certainly increase the expected 

yearly number of accidents as ferries are added to the schedule. Merrick et al. (2003) 

concludes that with such a result, measures to reduce accident probability and control the 

occurrence of interactions should be considered before implementing such a major build 

out of the San Francisco Bay ferry system.  

As a final remark, alternative comparison maps for the expected yearly number of 

collisions, like that in Figure 6 for the expected yearly number of situations, would be 

desirable.  They would show where the accidents were most likely to occur and help 

design effective risk reduction measures. However, as the location would become an 

extra factor in the analysis with many possible values, this analysis is currently not 

computationally feasible, even with parallel implementation of the calculations. 

5. Conclusions 

We have developed an overarching Bayesian framework for addressing uncertainty when 

simulation of situations that have accident potential is combined with expert judgment to 

assess risk and uncertainty in a dynamic system, applying this framework to maritime 

transportation. The combination of the Bayesian simulation and a Bayesian multivariate 

regression of expert judgments is an original contribution to the field of uncertainty 

assessment in risk analysis. In the case study, the results in Merrick et al. (2003) were 
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shown to be robust to the aleatory and epistemic uncertainty inherent in assessing risk in 

such a dynamic and data-scarce system, though surprising results did occur. 

The broader impact of this work is primarily drawn from its applicability to areas 

other than maritime accident risk. Port security risk (intentional as opposed to accidental 

events) has now been recognized as an integral part of homeland security. Subsequent 

uncertainty assessment of security risk and propagation in security intervention 

effectiveness needs to be accounted for, since lack of data will be of even greater concern 

than for accident risk. Furthermore, despite our focus on maritime risk, the framework 

and methodologies developed will be applicable to other transportation modes as well, 

such as aviation safety including the ever-increasing problem of runway incursions at 

our national airports (FAA 2003).  
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