Managing Port Safety and Security Risk Using Dynamic Simulation

Jason R. W. Merrick
Virginia Commonwealth University

Jack Harrald, J. Rene van Dorp
The George Washington University
Thesis Statement

• Risk interventions are the tool for making ports safer.
 – Historically aimed at oil spills.
 – Later efforts aimed at passenger safety.
 – Now we must turn our efforts to security.

• Risk management must be sustainable
 – Ensuring the ongoing economic viability of a port or waterway

• Port must be considered as a system
Research in a Nutshell

• “One of the ironies of globalization is that, besides being a potential motivation of attacking America, growing global trade may also provide the delivery mechanism for a devastating attack on the U.S.” [USCG Commandant James Loy (retired)]

• Research objectives:
 – Enable decision-makers to manage security and safety in an economically sustainable manner
 – Simulation models show systemic effects of proposed interventions
 – In a data-sparse environment, eliciting the knowledge of experts is critical to meaningful decision making
Previous Work

- Prince William Sound Risk Assessment
 - Site of the Exxon Valdez Disaster
 - Model used system simulation, data analysis and expert judgment
 - Capable of modeling systemic effects of proposed interventions
 - Multi-million dollar investments made to reduce risk of further oil spills
Previous Work

- Washington State Ferries Risk Assessment
 - Largest ferry system in the United States
 - Simulation/expert judgment model improved based on NRC review of PWS study
 - Legislature approved funding of Safety Management System, training and emergency preparedness exercises
Previous Work

- San Francisco Bay Exposure Assessment
 - California legislature examining the effects of major expansion of ferry services
 - Simulation model tested the impact of proposed expansion on vessel interactions
 - Legislature considering implementing proposed expansions
Previous Work

- **Ports and Waterways Safety Assessment**
 - Federal decisions require examination of numerous ports
 - Multi-attribute model created from expert and stakeholder sessions
 - Model used in resource allocation for new vessel traffic management technology
Accident Event Chain

ORGANIZATIONAL FACTORS
- Vessel type
- Vessel age
- Pilot/officers on bridge
- Individual/team training
- Flag/classification society
- Management type/changes
- Vessel incident/accident history
- Safety management system

SITUATIONAL FACTORS
- Type of waterway
- Traffic situation
- Traffic density
- Visibility
- Wind
- Current
- Time of day

Stage 3 Accident
- E.g. Collisions, Groundings, Founderings, Allisions, Fire/Explosion
Accident Event Chain

ORGANIZATIONAL FACTORS
- Vessel type
- Vessel age
- Pilot/officers on bridge
- Individual/team training
- Flag/classification society
- Management type/changes
- Vessel incident/accident history
- Safety management system

SITUATIONAL FACTORS
- Type of waterway
- Visibility
- Traffic situation
- Wind
- Traffic density
- Current
- Visibility
- Time of day

Stage 2: Incident
- E.g., Propulsion Failure, Steering Failure, Hull Failure, Nav. Aid. Failure, Human Error

Stage 3: Accident
- E.g., Collisions, Groundings, Founderings, Allisions, Fire/Explosion
Accident Event Chain

ORGANIZATIONAL FACTORS
- Vessel type
- Vessel age
- Pilot/officers on bridge
- Individual/team training
- Flag/classification society
- Management type/changes
- Vessel incident/accident history
- Safety management system

SITUATIONAL FACTORS
- Type of waterway
- Visibility
- Traffic situation
- Wind
- Traffic density
- Current
- Visibility
- Time of day

Stage 1
Root Causes
- E.g.
 - Inadequate Skills,
 - Knowledge,
 - Equipment,
 - Maintenance,
 - Management

Stage 2
Incident
- E.g.
 - Propulsion Failure,
 - Steering Failure,
 - Hull Failure,
 - Nav. Aid. Failure,
 - Human Error

Stage 3
Accident
- E.g.
 - Collisions,
 - Groundings,
 - Founderings,
 - Allisions,
 - Fire/Explosion
Accident Event Chain

ORGANIZATIONAL FACTORS
- Vessel type
- Vessel age
- Pilot/officers on bridge
- Individual/team training
- Flag/classification society
- Management type/changes
- Vessel incident/accident history
- Safety management system

SITUATIONAL FACTORS
- Type of waterway
- Traffic situation
- Traffic density
- Visibility
- Wind
- Current
- Time of day

Stage 1
Root Causes
- E.g. Inadequate Skills, Knowledge, Equipment, Maintenance, Management

Stage 2
Incident
- E.g. Propulsion Failure, Steering Failure, Hull Failure, Nav. Aid. Failure, Human Error

Stage 3
Accident
- E.g. Collisions, Groundings, Founderings, Allisions, Fire/Explosion

Stage 4
Consequence
- E.g. Oil Outflow, Persons in Peril
Accident Event Chain

ORGANIZATIONAL FACTORS
- Vessel type
- Vessel age
- Pilot/officers on bridge
- Individual/team training
- Flag/classification society
- Management type/changes
- Vessel incident/accident history
- Safety management system

SITUATIONAL FACTORS
- Type of waterway
- Traffic situation
- Traffic density
- Visibility
- Wind
- Current
- Time of day

Stage 1
Root Causes
- E.g. Inadequate Skills, Knowledge, Equipment, Maintenance, Management

Stage 2
Incident
- E.g. Propulsion Failure, Steering Failure, Hull Failure, Nav. Aid. Failure, Human Error

Stage 3
Accident
- E.g. Collisions, Groundings, Founderings, Allisions, Fire/Explosion

Stage 4
Consequence
- E.g. Oil Outflow, Persons in Peril

Stage 5
Impact
- E.g. Environmental Damage, Loss of Life
Accident Interventions

1. **Stage 1: Root Causes**
 - E.g., Inadequate Skills, Knowledge, Equipment, Maintenance, Management

2. **Stage 2: Incident**
 - E.g., Propulsion Failure, Steering Failure, Hull Failure, Nav. Aid. Failure, Human Error

3. **Stage 3: Accident**
 - E.g., Collisions, Groundings, Founderings, Allisions, Fire/Explosion

4. **Stage 4: Consequence**
 - E.g., Oil Outflow, Persons in Peril

5. **Stage 5: Impact**
 - E.g., Environmental Damage, Loss of Life

Risk Reduction/Prevention

1. **Stage 1**
 - 1. Decrease Frequency of Root/Basic Causes
 - E.g., ISM, Training, Better Maintenance

2. **Stage 2**
 - 2. Decrease Hazardous Exposure
 - E.g., Traffic Sep. Scheme, Nav. Aids for Poor Visibility, Work Hour Limits, Drug/Alcohol Tests

3. **Stage 3**
 - 3. Intervene to Prevent Accident if Incident Occurs
 - E.g., Emergency Repair or Assist Tug, Emergency Response Coordination, VTS Watch

4. **Stage 4**
 - 4. Reduce Consequence (Oil Outflow) if Accident Occurs
 - E.g., Double Hull, Double Bottom

5. **Stage 5**
 - 5. Reduce Impact if Oil Outflow Occurs
 - E.g., Pollution Response Vessel, Oil Boom, Pollution Response Coordination

Merrick, Harrald, van Dorp (GWU)
Attack Event Chain

Stage 1: Threat Factors
- E.g. Terrorist Planning combined with Hazardous Cargo Vessels, Terminals Hazmat Storage Areas, Critical Infrastructure such as Bridges

Stage 2: Attack Attempt
- E.g. Internal to Vessel (Crew Member?), External to Vessel (Recreational?), on Facility or Infrastructure (Vessel is weapon)

Stage 3: Attack
- E.g. Hazmat Cargo Explosion near Populated Area, Cargo Explosion To Disable Infrastructure (E.g. Bridges)

Stage 4: Consequence
- E.g. Persons in Peril, Fatalities, Vessel Damage, Port Damage, Other Infrastructure Damage

Stage 5: Impact
- E.g. Terror, Loss of Life, Environmental Damage, Economic Downturn

ORGANIZATIONAL SUB SYSTEM FACTORS
Two Markets, Industrial Trade of Vessels, Owned Chartered by Oil Companies, spot market trade vessels, Tankers often escorted, Maritime Routes Not Designed with Security in Mind

SITUATIONAL FACTORS
Closeness of Explosion to Population Area, Chemical Facilities or Infrastructure (e.g. Port Assets, Bridges). Traffic Density, Time of Day, Weather Conditions
Attack Interventions

Petrochemical Subsystem: Interventions and Organizational Responsibilities

<table>
<thead>
<tr>
<th>Interventions</th>
<th>Examples of Organizational Responsibility for Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reduce Threat Factors</td>
<td>U.S. Coast Guard</td>
</tr>
<tr>
<td>e.g.</td>
<td>Oil Companies</td>
</tr>
<tr>
<td>Disrupt Terrorist Activities</td>
<td>MARAD</td>
</tr>
<tr>
<td>Identify Owner and Crew List</td>
<td>Pilots</td>
</tr>
<tr>
<td>Locate Chem. Plants away from population areas,</td>
<td>DOD</td>
</tr>
<tr>
<td>Trusted Vessels Program</td>
<td>VTS/VTIS</td>
</tr>
<tr>
<td>2. Reduce Likelihood of Attack Attempt</td>
<td>State/Local Law Enf.</td>
</tr>
<tr>
<td>e.g.</td>
<td>TSA</td>
</tr>
<tr>
<td>Arm Vessels,</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>Board Vessels at Port of Entry,</td>
<td>EPA</td>
</tr>
<tr>
<td>Improved Intelligence and Detection,</td>
<td>FEMA</td>
</tr>
<tr>
<td>Escort Vessels</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>3. Reduce Likelihood of Attack Success</td>
<td>Local Fire/Rescue</td>
</tr>
<tr>
<td>e.g.</td>
<td>MARAD</td>
</tr>
<tr>
<td>Escort Vessels,</td>
<td>Oil Companies</td>
</tr>
<tr>
<td>Ship Riders,</td>
<td>TSA</td>
</tr>
<tr>
<td>Improve Terminal Security</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>4. Reduce Immediate Consequences</td>
<td>EPA</td>
</tr>
<tr>
<td>e.g.</td>
<td>FEMA</td>
</tr>
<tr>
<td>On Board Fire Suppression,</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>Escort Vessel Fire,</td>
<td>Port Contingency Plans & Experience.</td>
</tr>
<tr>
<td>Facility Fire,</td>
<td>Port Contingency Plans & Experience.</td>
</tr>
<tr>
<td>Resp. Resp.</td>
<td>Port Contingency Plans & Experience.</td>
</tr>
<tr>
<td>5. Reduce Delayed Consequences</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>e.g.</td>
<td>EPA</td>
</tr>
<tr>
<td>Pollution Response,</td>
<td>FEMA</td>
</tr>
<tr>
<td>Mass Casualty Response.</td>
<td>Acute Medical Care</td>
</tr>
<tr>
<td>Port Contingency Plans & Experience.</td>
<td>Acute Medical Care</td>
</tr>
</tbody>
</table>

Examples

- PETROCHEMICAL SYSTEM: Interventions and Organizational Responsibilities

- **Merrick, Harrald, van Dorp (GWU)**

June 25, 2003
Modeling Approach

• Port Simulation
• Definition of Critical Infrastructure at Risk
• Exposure Counting Model
• Multi-attribute Security Vessel Risk Model
 – Owner/Operator, Type of charter, Cargo Broker, Officers/crew id, Nationality, Background, Crew agent, Flag State, Agent, Last Port, Voyage Route, Unique voyage or routine route, Loading Facility.
Benefit to Defense and Homeland Security

• Base model outputs:
 – Geographic Profile of Security Risk
 – Geographic Profile of Safety Risk

• Model proposed security interventions:
 – Systemic impact on security risk
 – Systemic impact on safety risk
 – Impact on efficiency and economics of port operations
Research Sponsors

- Prince William Sound Shipping Companies.
- Prince William Sound Regional Citizens’ Advisory Council
- United States Coast Guard
- Washington State Ferries
- Washington State Transportation Commission
- San Francisco Bay Water Transit Authority
- National Science Foundation

See NSF Project Web-Site for Journal Papers, Technical Reports and Simulation Movies:
http://www.seas.gwu.edu/~dorpjr/tab3/NSFProject_GWU_VCU/NSFMain.html
Contact Information

Jason R. W. Merrick
Virginia Commonwealth University
(804) 828 1301 ext. 136
jrmerric@vcu.edu

Jack Harrald, J. Rene van Dorp
The George Washington University
(202) 994 6638
harrald@gwu.edu, dorpjr@gwu.edu