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The Standard Two-Sided Power Distribution and its Properties:

With Applications in Financial Engineering
J. René VAN DORP and Samuel KOTZ

This article discusses a family of distributions which would
seem not to receive proper attention in the literature. The two-
parameter distribution is introduced with an application in the
financial engineering domain. Special cases of this family in-
clude the triangular distribution, the standard power function
distribution, and the uniform distribution. Properties of the dis-
tribution are investigated and the maximum likelihood estima-
tion procedure for its two parameters is derived. The flexibility
of the family as compared to that of the beta family is discussed.
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1. INTRODUCTION

We shall introduce the standard two-sided power (STSP)
distribution using data on monthly interest rates for 30-year
treasury maturity rates over the period from 1977–2001 (see
http://www.economagic.com/popular.htm). The time series of
the monthly interest rates is displayed in Figure 1(a) totaling
295 data points. Denoting the interest rate after month k by ik,
two simple financial engineering models for the random behav-
ior of the interest rate are the additive model: ik+1 = ik + εk;
and the multiplicative model: ik+1 = ikνk, where εk and νk are
iid random variables (see, e.g., Leunberger 1998). Figure 1(b)
depicts the time series of εk = ik+1 − ik. Taking logarithms in
the multiplicative model yields log(νk) = log(ik+1)− log(ik).
Figure 1(c) displays the time series of log(νk).

A popular model for describing the uncertainty in the obser-
vations log(νk) is the normal distribution. Hence, νk are log-
normally distributed (see, e.g., Leunberger 1998). Klein (1993)
studied interest rate data on 30-year Treasury bond data from
1977–1990, finding that the empirical distribution of log(νk) is
“too peaky” and “fat tailed” to have been obtained from a normal
distribution and rejected the lognormal hypothesis. Kozubowski
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and Podgórski (1999) proposed to use the asymmetric Laplace
(AL) distribution with probability density function (pdf)

f(x|µ, σ, κ) =
{ 1

σ
κ

1+κ2 exp(−σ
κ |x − µ|) x < µ

1
σ

κ
1+κ2 exp(−kσ|x − µ|) x ≥ µ,

(1)

where σ > 0 and k > 0 to capture the “peak” observed in
the empirical distribution in Klein’s (1993) data. Figure 2(a)
displays a histogram of the differences log(ik+1) − log(ik) for
the extended dataset of 295 data points in Figure 1 (using 10
years of additional data).

Figure 2(b) provides the empirical density function of log(νk)
for the data in Figure 2(a), the pdf of the normal distribution
and the pdf of the AL distribution, where the parameters have
been estimated using maximum likelihood procedures [see, e.g.,
for MLE for normal distributions Johnson et al. (1994) and
Kozubowski and Podgórski (1999) for MLE for AL distribu-
tions]. Both the histogram and the empirical density function
exhibit the observed peak in the data. The AL distribution cap-
tures the peak in and aligns better with the empirical distribution
function and may thus be considered a “better” fit. This is consis-
tent with the conclusion in Kozubowski and Podgórski (1999).

The normal distribution has also been proposed as the un-
certainty model for εk in the additive model (see, e.g., Leun-
berger 1998). However, since the support of a normal distribu-
tion ranges from −∞ to ∞, interest rates ik may take on neg-
ative values which causes lack of realism in the additive model
(see Leunberger 1998). Figure 1(b) indicates that monthly dif-
ferences of 30-year treasury bond interest rates vary in a range
from −2% to 2% for the whole period 1977–2001 (with a suffi-
cient safety margin). Hence, we propose as an uncertainty model
for εk the beta distribution with support (−0.02, 0.02) and pdf

f(x|α, β) =
1

(0.04)α+β−1

(x+ 0.02)α−1(0.02− x)β−1

B(α, β)
,

(2)

α > 0, β > 0, B(α,β)= (Γ(α)Γ(β)/Γ(α+ β)). The beta dis-
tribution is known for its flexibility allowing a great variety of
asymmetric forms (see, e.g., Johnson et al. 1995). Figure 3(a)
displays the histogram of the differences ik+1 − ik associated
with the 295 data points in Figure 1. Figure 3(b) provides the em-
pirical density function of εk for the data in Figure 3(a). Note
that, a “peak” is observed in the histogram and the empirical
distribution in Figure 3(b). Figure 3(b) also displays the pdf of
the beta distribution where the parameters α and β have been
assessed using the MLE procedure (see, e.g., Mielke 1975). In
addition, the pdf of a two-sided power distribution, to be
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Figure 1. 30-year Monthly Treasury Bond Data from 1977–2001. (a) Interest rates; (b) monthly differences in interest rate; (c) monthly differences
in log(interest rate).

(b)(a)

Figure 2. (a) Histogram for differences of log(interest rate)’s for the data in Figure 1(c). (b) Empirical PDF ——-; Normal PDF – - – - – - (µ̂ =
−0.00051, σ̂ = 0.01441); asymmetric Laplace PDF - - - - - - (µ̂ = −0.00051, σ̂ = 0.01121, κ̂ = 1.02309).
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Figure 3. (a) Histogram for differences of interest rates for the data in Figure 1(b). (b) Empirical PDF ——-; Beta PDF – - – - – - (α̂ = 18.227, β̂ =
18.366); two-sided power PDF - - - - - - (see Equations (43) and (47)).

discussed in the sequel, with support [−0.02, 0.02] is also pre-
sented. The two parameters of the two-sided power distribution
have been estimated using the MLE procedure developed in this
article. One observes from Figure 3(b) that the two-sided power
distribution captures the peak in the empirical density function
and aligns “better” with the empirical density function than the
beta distribution. Section 4 contains additional comments con-
cerning this comparison.

In Section 2, the standard two sided power (STSP) distribution
is introduced and some basic properties are briefly discussed. In
Section 3, the MLE procedure for the two parameter STSP is
developed and applied to the data to the data in Figure 1(b).
In Section 4, moment ratio diagrams of STSP distributions are
compared with the corresponding diagrams of beta distributions.
We present some brief concluding remarks in Section 5. To the
best of our knowledge the STSP family is mentioned only in
passing by Nadarajah (1999). We were unable to locate other
literature citations.

2. STANDARD TWO-SIDED POWER
DISTRIBUTIONS

Let X be a random variable with density function given by

f(x|θ, n) =

 n
(

x
θ

)n−1
0 < x ≤ θ

n
(

1−x
1−θ

)n−1
θ ≤ x < 1.

(3)

X will be said to follow a standard two-sided power distribution
STSP(θ, n), 0 ≤ θ ≤ 1, n > 0, where n is not necessarily an
integer. For 0 ≤ θ ≤ 1 and n > 0, the density in (3) is unimodal
with the mode at θ. For0 < θ < 1 and0 < n < 1, the form of the
density function in (3) takes U-shaped forms with mode at 0 or 1.
Forn = 1, the density given by (3) simplifies to the uniform|0, 1|
density, corresponds to a triangular density on [0, 1] forn = 2
and to a power function distribution for θ = 1. Figure 4 pro-
vides some examples of STSP(θ, n) distributions, including the
uniform, a triangular and a power function distribution. From
(3) we obtain the cumulative distribution function (cdf) of a

STSP(θ, n) distribution

F (x|θ, n) =
{

θ
(

x
θ

)n 0 ≤ x ≤ θ

1− (1− θ)
(

1−x
1−θ

)n

θ ≤ x ≤ 1.
(4)

2.1 Moments

The kth moment of a STSP(θ, n) derived from (3) is given
by

E[Xk] =
nθk+1

n+ k
+

k∑
i=0

(−1)i
(

k

k − i

)
n

n+ i
(1− θ)i+1. (5)

Hence,

E[X] =
1

n+ 1
0 +

(n − 1)
n+ 1

θ +
1

n+ 1
1 =

(n − 1)θ + 1
n+ 1

.

(6)

From (5) and (6) it follows that

var(X) =
n − 2(n − 1)θ(1− θ)

(n+ 2)(n+ 1)2
. (7)

The manner in which formula (6) is written allows us to rec-
ognize the formula for the mean of the triangular distribution
(n = 2) on [0, 1] as a simple average of the lower bound 0,
the mode θ, and the upper bound 1, from which the triangu-
lar distribution derives its intuitive appeal (see, e.g., Williams
1992). For the STSP distribution the mean is a weighted av-
erage of the lower bound 0, the location parameter θ, and the
upper bound 1, where the weights are determined solely by n.
Forn = 1, (6) simplifies to 1/2, the mean of a uniform[0, 1]
variable. Forn > 1, more weight is assigned to the mode θ and
less to the lower (0) and upper (1) bounds as the values of n
increase. In the extreme case,n → ∞, no weight is assigned to
the bounds and the mean simplifies to θ. Forn < 1, the mean is
discounted by θ at an increasing rate asn decreases while assign-
ing more weight to the bounds. In the extreme case , n ↓ 0,the
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Figure 4. Some examples of STSP( θ,n) distributions.

mean simplifies to 1 − θ. See also Section 2.4 for a discussion
of the limiting distributions.

A simple relationship between the mean of a STSP(θ, n)
variable and its parameters (see Equation (6)) renders this family
intuitive transparency, also enjoyed by the triangular distribution
(see, e.g., Johnson 1997; Williams 1992).

2.2 Properties of CDF

Similarly to the beta distribution, the STSP distribution satis-
fies stochastically increasing and decreasing properties.

Theorem 1.
A. The cdf given by (4) is stochastically increasing for n > 1;
that is,

θ1 < θ2, x ∈ (0, 1) ⇒ F (x|θ1, n) > F (x|θ2, n). (8)

B. The cdf given by (4) is stochastically decreasing for 0 <
n < 1; that is,

θ1 < θ2, x ∈ (0, 1) ⇒ F (x|θ1, n) < F (x|θ2, n). (9)

Proof: We shall prove statement A only. (The proof of state-
ment B is analogous.) Let 0 < θ1 < θ2 < 1, n > 1, x ∈ (0, 1).
Three cases will be considered

(a) 0 < x < θ1, (b) θ2 < x < 1, (c) θ1 < x < θ2. (10)

Cases (a) and (b) are straightforward. Consider Case (c). From
(4) it follows that

F (x|θ1, n) = 1− (1− x)n

(1− θ1)n−1 , F (x|θ2, n) =
xn

θn−1
2

. (11)

For 0 < θ1 < θ2 < 1 one derives

θ1 < x < θ2 ⇔
{

θ1
θ2

< x
θ2

< 1
1 > 1−x

1−θ1
> 1−θ2

1−θ1
.

(12)

From (12),n > 1 and x ∈ (0, 1)we have 1− x < 1− x
(

x
θ2

)n−1

(1− x)
(

1−x
1−θ1

)n−1
< (1− x).

(13)

Hence,

(1− x)n

(1− θ1)n−1 < 1− xn

θn−1
2

⇔ 1− (1− x)n

(1− θ1)n−1 >
xn

θn−1
2

,

(14)

which proves statement A.

2.3 Quantile Properties

Denote by xp the pth percentile—that is, F (xp|θ, n) = p.
Properties 2, 3, and 4 below may be used for an initial estimation
of the parameter θ. Properties 3 and 4 involve two somewhat
unexpected relations satisfied by its quantiles xp and x1−p.

Property 1: From the cdf (4) it follows that:xp < p ⇔ p < θ.
Property 2: Analogously, xp = θ ⇔ p = θ, regardless of the

value of n. Hence, for all STSP distributions the probabil-
ity mass is split at θ into θ and (1− θ).

Property 3: Consider values of p such that p < min(θ, 1−θ).
From (4) and Property 1, dealing separately with the dual
definition of F (·|θ, n), we have

xn
p

θn−1 =
(1− x1−p)n

(1− θ)n−1 ⇔ xp

1− x1−p
=

(
θ

1− θ

)n−1
n

.

(15)

Hence the ratio xp/1− x1−p does not depend on p for
p < min(θ, 1− θ).
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Property 4: Analogously, for p > max(θ, 1− θ)

x1−p

1− xp
=

(
θ

1− θ

)n−1
n

(16)

is independent of p.

2.4 Limiting Distributions

Let X ∼ STSP(θ, n). Setting θ = 0 and letting n → ∞ it
follows from (6) and (7) that the distribution of X converges
to a degenerate distribution with a point mass of 1 at 0. Analo-
gously, setting θ = 1 as n → ∞ the distribution of X converges
to a degenerate distribution of 1 at 1. Setting 0 < θ < 1, and
letting n → ∞ it follows that the distribution of X converges to
a degenerate distribution with a point mass of 1 at θ. As n ↓ 0
and 0 < θ < 1 we obtain from (5) that limn↓0 E[Xk] = (1− θ)
for all k. Hence, whenn ↓ 0E[Xk] converges to the moments of
a Bernoulli distribution with a point mass of 1−θ at 1. As both
X and a Bernoulli variable have bounded support, it thus follows
by the uniqueness theorem for distributions with a bounded sup-
port that the Bernoulli distribution with a point mass of 1−θ at
1 is the limiting distribution of X for 0 < θ < 1 as n ↓ 0 (see,
e.g., Harris 1966, p. 103). These limiting distributions coincide
with the related limiting distributions of the beta distribution
(see, e.g., van Dorp and Mazzuchi 2000). In other words, the
flexibility of the STSP(θ, n) class is comparable to that of the
beta family.

Another interesting limiting distribution (relevant to the ex-
ample in Section 1) can be derived using the linear transforma-
tion

Y = (n − 1)A
(
X − θ

θ

)
, (17)

where A > 0 is an abritrary positive constant. From (3), (17),
and n > 1 it follows that

f(y|θ, n,A)

=


nθ

(n−1)A

(
1 + 1

(n−1)
Y
A

)n−1
−(n − 1)A < Y ≤ 0

nθ
(n−1)A

(
1− 1

(n−1)
θY

(1−θ)A

)n−1
0 ≤ Y < (1−θ)(n−1)A

θ .

(18)

Letting n → ∞, we have

f(y|θ, n,A) → f(y|θ,A) =
{

θ
Aexp

(
Y
A

)
Y ≤ 0

θ
Aexp(− θ

1−θ
Y
A ) Y ≥ 0.

(19)

Hence, f(y|θ, n,A) converges to the density f(y|θ,A) of an
“asymmetric Laplace” variable (see, e.g., Johnson et al. 1994)
where its probability mass is split at 0 into θ and (1−θ), regard-
less of the value of the parameter A. The AL distribution consid-
ered by Kozubowski and Podgórski (1999) (see (1)) simplifies
to (19) by setting µ = 0, κ =

√
1− θ/θ, σ = 1

A

√
1− θ/θ.

2.5 Relative Entropy

The relative entropy (also known as cross entropy or discrim-
ination function) of an absolute continuous probability density
function f(x|Θ)with respect to a probability mass function g(x)
is defined as

E(f : g|Θ) =
∫

log
f(x|Θ)
g(x)

dF (y|Θ), (20)

and is used as a measure for comparing information content
of distributions. The term discrimination, reflects the fact that
E(f ; g|Θ) ≥ 0 and the equality holds if and only if f(x|Θ) =
g(x) almost everywhere (see, e.g., Soofi and Retzer 2002).

We compare the information contents of STSP distributions
on [0, 1| to the information content of a uniform|0, 1| distribu-
tion. The relative entropy of beta distributions with respect to a
uniform|0, 1| distribution has been studied (see, e.g., Soofi and
Retzer 2002) resulting in the expression

E(f : g|α, β) = log(B(α, β))
−(α−1)(ψ(α)−ψ(α+β))−(β−1)(ψ(β)−ψ(α+β)) (21)

where

f(x|α, β) = 1
B(α, β)

xα−1(1− x)β−1, (22)

α > 0, β > 0, B(α, β) = Γ(α)Γ(β)/Γ(α+ β), g is the
uniform[0, 1] pdf and ψ(·) = Γ

′
(·) is the psi-function.

The relative entropy of STSP distributions with respect to a
uniform|0, 1| distribution, using (3) and (20), results in

E(f : g | θ, n) = logn − n − 1
n

, (23)

where f is the STSP density given by (3) and g is as above.
E(f : g | θ, n) attains its minimal value 0 when the STSP vari-
able coincides with a uniform|0, 1| variable—that is, n = 1.
Note that the forms of (23) and (21) are similar, except that
E(f : g | θ, n) is constant for fixed n regardless of the value θ.
Hence, no information is added to or subtracted from the infor-
mation content of a STSP distribution by varying the parameter
θ, while keepingnfixed. Consequently, the relative entropy of all
triangular distribution on [0, 1] equals −1/2+log(2), regardless
of the location of the mode θ. It is worth noting that the vari-
ance (which is intuitively related to entropy) of an STSP(θ, n)
variable does depend on θ.

3. MLE METHOD FOR TWO PARAMETER STSP
DISTRIBUTION

The proposed derivation of the MLE procedure of a STSP
distribution is quite instructive. Let for a random sample X=
(X1, . . . , Xs) the order statistics beX(1) < X(2) < · · · < X(s).
By definition the likelihood for X is

L(X; θ, n) = ns

{ ∏r
i=1 X(i)

∏s
i=r+1(1− X(i))

θr(1− θ)s−r

}n−1

,

(24)

where X(r) ≤ θ < X(r+1), with X(0) ≡ 0, X(s+1) ≡ 1.
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Theorem 2. Let X= (X1, . . . , Xs) be an iid sample from a
STSP(θ, n) distribution. The MLE estimators maximizing (24)
are

{
θ̂ = X(r̂)
n̂ = − s

log M(r̂)
,

(25)

where r̂ = argmaxr∈{1,...,s} M(r) and

M(r) =
r−1∏
i=1

X(i)

X(r)

s∏
i=r+1

1− X(i)

1− X(r)
. (26)

Proof: To maximize the likelihood (24), we set

max
n>0, 0≤θ≤1

L(X; θ , n) = max
n>0

[
ns · M̂n−1

]
, (27)

where M̂ is given by

M̂ = max
0≤θ≤1

[∏r
i=1 X(i)

∏s
i=r+1(1− X(i))

θr(1− θ)s−r

]
, (28)

and as above X(r) ≤ θ < X(r+1),with X(0) ≡ 0, X(s+1) ≡
1. Now

log
{
nsM̂n−1

}
= (n − 1)log M̂ + s logn, (29)

and

∂

∂n
log

{
nsM̂n−1

}
= log M̂ +

s

n
. (30)

Equating (30) to zero yields n̂ = −(s/logM̂). From (30) it
follows that

∂

∂n
log

{
nsM̂n−1

}
> 0 ⇔ n̂ < − s

logM̂
. (31)

Hence n̂ corresponds to a global maximum of both (29) and (27).
Note that for i < r it follows that0 < X(i)/θ < 1 and for i > r it

follows that 0 < (1−X(i))/(1−θ) < 1.Hence, 0 < M̂ < 1 and

thus n̂ > 0. Using (28) we may write M̂ = maxr∈{0,...,s } H(r)
where

H(r) = max
X(r)≤θ≤X(r+1)

[ ∏r
i=1 X(i)

∏s
i=r+1(1− X(i))

θr · (1− θ)s−r

]
.

(32)

We shall discuss separately the three cases: r ∈ {1, . . . , s− 1 },
r = 0 and r = s.

Case r ∈ {1, . . . , s − 1}: Here,X(r) ≤ θ ≤ X(r+1). The
function g(θ) = θ r(1 − θ)s−r is proportional to a unimodal
beta density. Thus,

min
X(r)≤θ≤X(r+1)

g(θ) = min
θ∈{X(r),X(r+1)}

g(θ) (33)

and, from (32),

H(r) = max
r′∈{r,r+1}

r′−1∏
i=1

X(i)

X(r′)

s∏
i=r′+1

1− X(i)

1− X(r′)
. (34)

Case r = 0 : Here 0 ≤ θ ≤ X(1). From (32) it follows that
in this case

H(0) = max
0≤θ≤X(1)

[
s∏

i=1

1− X(i)

1− θ

]
. (35)

Hence,

H(0) =
s∏

i=1

1− X(i)

1− X(1)
=

s∏
i=2

1− X(i)

1− X(1)
. (36)

Case r = s : HereX(s) ≤ θ ≤ 1.From (32) it follows that
in this case

H(s) = max
X(s)≤θ≤1

[
s∏

i=1

X(i)

θ

]
. (37)

Hence

H(s) =
s∏

i=1

X(i)

X(s)
=

s−1∏
i=1

X(i)

X(s)
. (38)

From (34), (36), and (38) we obtain thatM̂ = maxr∈{1,...,s} M(r)
where

M(r) =
r−1∏
i=1

X(i)

X(r)

s∏
i=r+1

1− X(i)

1− X(r)
. (39)

Note that, M̂ is attained at θ̂ = X(r̂) where r̂ =
argmaxr∈{1,...,s} M(r).

The estimates given in (25) are quite intuitive. In particular
the estimator of the parameter θ (governing location and skew-
ness of the distribution) is a specific order statistic. We note,
in passing, that the approach for determining the MLE esti-
mate θ̂ for a STSP(θ,n) distribution is similar (though simpli-
fied) to the approach for determining the MLE estimate θ̂ for a
triang(0, θ, 1) distribution (see Johnson and Kotz 1999).

We shall illustrate the MLE procedure for an STSP(θ, n)
distribution using the following fictitious order statistics

(X(1), . . . , X(10)) = (0.340, 0.395, 0.413, 0.420, 0.423,
0.429, 0.465, 0.513, 0.564, 0.588).

(40)

Consider the matrix A = [ai,r] where

ai,r =

{ X(i)

X(r)
i < r

1−X(i)

1−X(r)
i ≥ r.

(41)

Table 1 summarizes the calculation of the matrix A for order
statistics given by (40).The last row in the table contains the
products of the matrix elements in the rth column which are
equal to the values of M(r) given by (39). Numerical calcula-
tions yield

M̂ = 0.304; r̂ = 5;
θ̂ = X(r̂) = 0.423;

n̂ =
−10

log(M̂)
= 8.399. (42)
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Table 1. Example of MLE Estimation for STSP( θ, n)

r 1 2 3 4 5 6 7 8 9 10
X(r ) 0.340 0.395 0.413 0.420 0.423 0.429 0.465 0.513 0.564 0.588

i X(i )

1 0.340 1.000 0.861 0.823 0.810 0.804 0.793 0.731 0.663 0.603 0.578
2 0.395 0.917 1.000 0.956 0.940 0.934 0.921 0.849 0.770 0.700 0.672
3 0.413 0.889 0.970 1.000 0.983 0.976 0.963 0.888 0.805 0.732 0.702
4 0.420 0.879 0.959 0.988 1.000 0.993 0.979 0.903 0.819 0.745 0.714
5 0.423 0.874 0.954 0.983 0.995 1.000 0.986 0.910 0.825 0.750 0.719
6 0.429 0.865 0.944 0.973 0.984 0.990 1.000 0.923 0.836 0.761 0.730
7 0.465 0.811 0.884 0.911 0.922 0.927 0.937 1.000 0.906 0.824 0.791
8 0.513 0.738 0.805 0.830 0.840 0.844 0.853 0.910 1.000 0.910 0.872
9 0.564 0.661 0.721 0.743 0.752 0.756 0.764 0.815 0.895 1.000 0.959

10 0.588 0.624 0.681 0.702 0.710 0.714 0.722 0.770 0.846 0.945 1.000

M (r ) 0.134 0.252 0.293 0.303 0.304 0.299 0.239 0.159 0.093 0.068

Maximum likelihood estimation for X ∼ STSP(θ, n) dis-
tribution can be modified to two parameter maximum likeli-
hood estimation for Z ∼ TSP(a,m, b, n), where Z = (b −
a)X + a, the parameters a and b are fixed and the parameter
m = (b − a)θ + a. We have for the pdf of Z

f(z|a,m, b, n) =


n

(b−a)

(
z−a
m−a

)n−1
a < z ≤ m

n
(b−a)

(
b−z
b−m

)n−1
m ≤ z ≤ b.

(43)

The maximum likelihood estimates for the parameters m and n
in (43) using order statistics (Z(1), . . . , Z(s)) are{

m̂(a, b) = Z(r̂(a,b))
n̂(a, b) = − s

log M(a,b,̂r(a,b))
,

(44)

where, as above,

r̂(a, b) = arg max
r∈{1,...,s}

M(a, b, r), (45)

and

M(a, b, r) =
r−1∏
i=1

Z(i) − a

Z(r) − a

s∏
i=r+1

b − Z(i)

b − Z(r)
. (46)

The MLE’s in (44) were used in the example of Section 1, with
fixed a = −0.02 and b = 0.02, yielding

m̂(−0.02, 0.02) = 0.0, n̂(−0.02, 0.02) = 7.6365 (47)

The authors have also studied four parameter MLE estima-
tion for the TSP(a,m, b, n) distribution (see (43)) which will
hopefully be presented in a follow-up article.

4. MOMENT RATIO DIAGRAMS

Moment ratio plots popularized for Pearson-type distributions
by Elderton and Johnson (1969) seem to provide a useful visual
(graphical) assessment of the skewness (asymmetry) and elusive
kurtosis (peakedness) inherent in any particular family of asym-
metric distributions. The classical form of the diagram shows
the values of the ratios

β1 =
E2[(X − E[X])3]
E3[(X − E[X])2]

=
µ2

3

µ3
2
,

β2 =
E[(X − E[X])4]
E2[(X − E[X])2]

=
µ4

µ2
2

(48)

withβ1 as abscissa andβ2 as ordinate. This diagram suffers from
the defect that the sign ofµ3 (indicating left skewness or right
skewness) is lost. A moment ratio diagram that retains this in-
formation is a plot with

√
β1 as abscissa and β2 as ordinate, with

the convention that
√
β1 retains the sign of µ3 (see, e.g., Kotz

and Johnson 1985).
Values for

√
β1 and β2 for STSP distributions can be cal-

culated using (5) and the relationship between central mo-
ments µk, k = 2, . . .,4. and the moments around the origin
µ′

k = E|Xk|, k = 1, . . . , 4, µ2 = µ′
2 − µ′

1
2

µ3 = µ′
3 − 3µ′

2µ
′
1 + 2µ′

1
3

µ2 = µ′
4 − 4µ′

3µ
′
1 + 6µ′

2µ
′
1
2 − 3µ′

1
4

(49)

(see, e.g., Stuart and Ord 1994). An explicit form of
√
β1 and

β2 for STSP distributions results in cumbersome and not very
informative expressions and have therefore been omitted. Figure
5 displays the moment ratio diagram coverage for the STSP
family restricted to a parameter range of

0.1 ≤ n ≤ 25, 0 ≤ θ ≤ 1. (50)

The range indicated by (50) is a plausible range for practical
purposes and includes unimodal forms (0 ≤ θ ≤ 1, n > 1),
U-shaped forms (0 ≤ θ ≤ 1, n < 1) as well as the uniform
distribution (n = 1), triangular distributions (n = 2), J-shaped
power function distributions (θ = 1, n > 0) and their J-shaped
reflection (θ = 0, n > 0). Figure 5 also shows the effect of
the parameters (θ, n) on (

√
β1, β2) for specific examples of

these cases indicated by solid lines in the moment ratio diagram.
The shaded region in the moment ratio diagram is called the
infeasible region since for all distributions

β2 ≥ (
√

β1)2 + 1, (51)

(see, e.g., Kotz and Johnson 1985). The horizontally (vertically)
hatched area indicates the coverage of (

√
β1, β2) for unimodal

(U-shaped) STSP distributions. The only J-shaped members in
the STSP family are the power function distribution (θ = 1) and
its reflection (θ = 0) indicated by solid lines in Figure 5.
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Figure 5. (
√

β1, β2 ) moment ratio diagram for STSP distributions with parameter range 0 ≤ θ ≤ 1,0.1 ≤ n ≤ 25.

For comparison purposes, we have generated a moment ratio
diagram for beta densities (see (22)) using expressions for the
moments of the beta distribution (see, e.g., Johnson et al. 1994).
From (3) and (22) it follows that for θ = 1 (θ = 0) and β = 1
(α = 1) the STSP density and beta density both coincide with
the density of a (reflected) power function distribution. Hence, a
comparable parameter range for the parameters α and β in (22)
follows from (50) to be

0.1 ≤ α ≤ 25, 0.1 ≤ β ≤ 25. (52)

Figure 6 displays the moment ratio diagram for beta densities
restricted to (52). The range indicated by (52) includes all forms
of the beta density; that is, unimodal, J-shaped and U-shaped.
The coverage area for (

√
β1, β2) for unimodal, U-shaped, and

J-shaped beta densities are indicated in Figure 6 by horizontal,
vertical, and cross hatched areas, respectively. The effect of the
parameters α and β in (22) on (

√
β1, β2) are indicated by solid

lines for those cases of beta densities that identify the boundaries
of the hatched areas. The top boundary (not solid) was generated
by interpolation using moment ratio curves for the cases of the
form α = c, 1 ≤ β ≤ 25 and β = c, 1 ≤ α ≤ 25 with
c ∈ {0.5, 2, 5, 10}. These curves are not included in Figure 6 to
amplify identification of the hatched areas.

The comparison of Figures 5 and 6 is illuminating. First, Fig-
ure 6 shows that, in terms of moment ratio coverage, the beta
family is richer than the STSP family when restricted to J-shaped
forms. The only J-shaped STSP distributions—that is, the power
function distribution and its reflection—are represented within
the beta family as indicated by the only common solid lines in

Figures 5 and 6. The intersection of these lines identifies the only
other common member of the STSP family and beta family—
that is, the uniform|0, 1| distribution. Second, the coverage areas
associated with U-shaped forms in Figure 5 and Figure 6 is com-
parable in size indicating similar flexibility between the STSP
family and beta family when restricted to these forms. Finally,
possibly most importantly, the coverage area of the beta family
restricted to unimodal forms in Figure 6 is completely contained
within the coverage area of the STSP family restricted to uni-
modal forms. The latter observation indicates greater flexibility
by the STSP family than the beta family when modeling uni-
modal phenomena where the mode is not at a support boundary
and smooth behavior of the density function at its mode is not a
requirement.

The STSP distribution may be considered as an alternative
to the beta distribution when sample estimates for skewness√
β1 and kurtosis β2 fall outside the coverage area indicated

in Figure 6. For example, from the data in Figure 1(b) we es-

timate
√

β̂1 = −0.05451 and β̂2 = 6.07494 outside the cov-
erage area in Figure 6. For the beta distribution with parame-
ters α̂ = 18.227, β̂ = 18.366 associated with Figure 3 we get
skewness

√
β1 = 0.00242 and kurtosis β2 = 2.84847. For the

STSP distribution with parameters θ̂ = 0.5, n̂ = 7.6365 asso-
ciated with Figure 3 we get skewness

√
β1 = 0.0 and kurtosis

β2 = 4.03448 . Although the estimated STSP distribution does
not totally capture kurtosis β̂2 observed in the data, the STSP

family provides a better fit in terms of β̂2 (and
√

β̂1) than the esti-
mated beta distribution. It is worth noting that values for kurtosis
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Unimodal

Figure 6. (
√

β1, β2 ) moment ratio diagram for Beta distributions with parameter range 0.1 ≤ α ≤ 25, 0.1 ≤ β ≤ 25.

β2 for symmetric unimodal beta distributions with parameters
restricted to 1 < α < 25, β = α are strictly less than 2.88679
and values for kurtosis β2 for symmetric unimodal STSP distri-
butions with parameters restricted to θ = 0.5, 3.0745 < n < 25
are strictly larger than 2.88679.

Finally, from Figure 5 it may be observed that the parame-
ter θ of an STSP density primarily affects skewness

√
β1 which

reemphasizes the role of θ as a location parameter. The param-
eters α and β of the beta distribution affect both skewness

√
β1

and kurtosis β2 in a similar manner and henceforth do not allow
for such an interpretation.

5. CONCLUDING REMARKS

A new family of distributions is proposed which possesses
attractive properties, especially those related to the meaning of
the parameters, the structure of its expected value as a function
of parameters, a closed form expression for its cdf, a MLE pro-
cedure involving only elementary functions and a transparent
form of its entropy function. These properties are not shared
by the beta family. Similar to the beta family, the new family
allows for U-shaped, J-shaped and unimodal forms. The den-
sity of the new family is non-smooth (non-differentiable) at θ
(cf. (3)). This “drawback” seems to be of a lesser importance
in modern engineering, economic, and financial data. It is worth
noting that for some 65 years after Karl Pearson’s death no se-
rious attempts have been made to offer an alternative to the beta
density of comparable flexibility, which shows the prominence
of Karl Pearson’s discovery of the beta distribution.

For parameter values in the range 1 ≤ n ≤ 3 (see (3)) the
new family displays unimodal forms with a modest peak at θ and
complements the beta family when smooth behavior at the mode
is not a crucial requirement while any of the above properties
are desirable. For parameter values of n > 3 the family adds
to existing modeling capabilities of unimodal phenomena on a
bounded domain in particular when a peak in data is observed
(see, e.g., Figure 3). For parameters values in the range of 0 ≤
n < 1, the family primarily exhibits U-shaped forms similarly
to the beta distribution. The only J-shaped distribution within
the new family is the power function distribution (θ = 1) (cf.
(3)) and its reflection (θ = 0) which are also shared by the
beta family. Hence, the beta distribution enjoys greater flexibility
among the J-shaped distributions. Summarizing, the differences
between the new family and the beta family are quite similar
to those between the Laplace family (which is becoming more
popular) and the normal family (see, e.g., Kotz, Kozubowski,
and Podgórski (2001), but restricted to a bounded support.

The analysis of the two parameter two-sided power distri-
bution can be extended to the four parameter case involving
the boundary parameters. Although the MLE procedure is more
delicate in this case, it is algorithmically straightforward using
modern computational facilities. It is our hope that the intro-
duction of the proposed distribution into statistical theory and
practice will contribute to the basic goals of applied statistical
work: reaching the point when accumulation of data on a specific
issue is directly followed by an understanding of the meaning
of its parameters.

98 General



[Received October 2000. Revised December 2001.]

REFERENCES

Elderton, W. P., and Johnson, N. L. (1969), Systems of Frequency Curves, Lon-
don: Cambridge University Press.

Harris, B. (1966), Theory of Probability, Reading, MA: Addison Wesley.
Johnson, D. (1997), “The Triangular Distribution as a Proxy for the Beta Dis-

tribution in Risk Analysis,” The Statistician, 46, 387–398.
Johnson, N. L, and Kotz, S. (1999), “Non-Smooth Sailing or Triangular Distri-

butions Revisited after Some 50 Years,” The Statistician, 48, 179–187.
Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994), Continuous Univariate

Distributions–1 (2nd ed.), New York: Wiley.
(1995), Continuous Univariate Distributions - 2, (2nd ed.), Wiley, New

York.
Klein, G. E. (1993), “The Sensitivity of Cash-Flow Analysis to the Choice of

Statistical Model for Interest Rate Changes” (with discussions), TSA XLV,
79–186.

Kotz, S., and Johnson N. L., (eds.) (1985), “Moment Ratio Diagrams,” in Ency-
clopedia of Statistical Sciences (vol. 5), New York: Wiley, pp. 602–604.

Kotz, S., Kozubowski, T. J., and Podgórski, K. (2001), The Laplace Distribu-
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