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Abstract A prevalence of heavy-tailed, peaked and skewed uncertainty phe-
nomena have been cited in literature, dealing with economic, physics, and
engineering data. This fact has invigorated the search for continuous distribu-
tions of this nature. In this paper we shall generalize the two-sided framework
presented in Kotz and van Dorp (2004) for the construction of families of distri-
butions with bounded support via a mixture technique utilizing two generating
densities instead of one. The family of Elevated Two-Sided Power (ETSP) dis-
tributions is studied as an instance of this generalized framework. Through
a moment ratio diagram comparison, we demonstrate that the ETSP family
allows for a remarkable flexibility when modeling heavy-tailed and peaked, but
skewed, uncertainty phenomena. We shall demonstrate its applicability via an
illustrative example utilizing 2008 US income data.
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1 Introduction

Further confirmation that financial and insurance data reveal a heavy-tailed,
peaked and skewed behavior have appeared in the relevant literature (e.g.,
Levy and Duchin 2004; McFall Lamm 2003; Kotz et al. 2001; Solomon and
Levy 2000; Fernandez and Steel 1998; Embrechts et al. 1997; McCulloch 1996).
Other areas where a prevalence of heavy tails have been cited are physics, hy-
drology, meteorology and engineering (see, e.g., Gomez et al. 2007; Douglas and
Barros 2003; Lu and Molz 2001; Barkai et al. 2000; Adler et al. 1998; Fernan-
dez and Steel 1998; Resnick 1997; Samorodnitsky and Taqqu 1994). Naturally,
this has sparked the search for distribution models that reflect these proper-
ties. Early developments in this domain can be traced back to Lévy (1925),
who introduced Lévy stable distributions with support (−∞,∞) that rely on
a power law behavior to model tail obesity. Other proposed distributions that
share the same power law tails and real line support are the Student t (e.g.,
Zabell 2008), Pearson-type IV (e.g., Nagahara 1999) and the Doubly-Pareto
Uniform (DPU) distributions (Singh et al. 2007), amongst others. Contrary to
the Student t, Pearson-type IV and Lévy stable distributions, a DPU cumu-
lative distribution function (cdf) can be expressed in closed form using only
elementary functions. DPU distributions generalized the Pareto distributions
with support [a,∞], a ∈ R+ originally introduced by Vilfredo Pareto (1897)
to study wealth and income distributions. Recently, Aban et al. (2006) stud-
ied truncated Pareto distributions with bounded support [a, b] and probability
density function (pdf)

f(x|a, b, c) = cac (x)
−c−1

1−
(
a
b

)c , 0 < a < x ≤ b, c > 1, (1)

as an example of a bounded distribution with heavy-tails. Aban et al. (2006)
too cited applications in finance, groundwater hydrology and atmospheric sci-
ence in their motivation for the heavy-tailed but bounded truncated Pareto
distribution.

Even today, the multitude of existing unbounded continuous distributions
developed during the 20th century contrasts sharply with the relative scarcity
of bounded distributions. This especially applies to bounded heavy-tailed dis-
tributions. While distributions with unbounded support rely on the power law
to model tail obesity, this is not a requirement when dealing with a bounded
support. Hahn (2008) constructed a heavy-tailed distribution with bounded
support as a mixture of a uniform and the classical beta distribution, denot-
ing them beta-rectangular (BR) distributions. A BR pdf with support [0, 1] is
given by:

f(x|α, β, δ) = δ + (1− δ)b(x|α, β), δ ∈ [0, 1]where

b(x|α, β) = Γ (α+ β)

Γ (α)Γ (β)
xα−1(1− x)β−1, α, β > 0.

(2)

Hahn (2008) mentioned the pervasiveness of heavy-tailed phenomena in busi-
ness contexts as his motivating argument for (2). Similar to truncated Pareto
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distributions (1),BR densities (2) allow for strictly positive densities at their
lower- and upper bounds, albeit requiring them to be of the same value. Con-
trary to truncated Pareto distributions, BR distributions offer the flexibil-
ity of a modal value location over the range of their entire support, whereas
truncated Pareto distributions only allow for a mode at their lower bound.
However, if heavy-tailed bounded distributions with strictly positive density
values at their bounds and a modal value somewhere in between are to be
considered useful, one could argue that it could also be desirable to allow for
strictly positive but different density values at their lower and upper bounds,
respectively.

In this paper we shall consider Elevated Two-Sided Power distributions
(ETSP) that allow for that flexibility. The functional form of an ETSP pdf
with support [0, 1] will be constructed in this paper and is given by:

g{x|Θ} = C−1(Θ)×{
{δ + (1− δ)n}{λ+ (1− λ)m(xθ )

m−1}, for 0 < x ≤ θ

{λ+ (1− λ)m}{δ + (1− δ)n( 1−x
1−θ )

n−1}, for θ < x < 1,

(3)

where Θ = {θ,m, n, λ, δ}, the threshold parameter 0 ≤ θ ≤ 1, elevation pa-
rameters 0 ≤ λ, δ ≤ 1 and the power parameters m,n > 0. The normalization
constant C(Θ) is given by:

C(Θ) = (1− θ){λ+ (1− λ)m}+ θ{δ + (1− δ)n}. (4)

Figure 1 plots example ETSP and BR distributions fitted utilizing the least
squares method to standardized 2008 US Census Bureau annual income data
for black females in the income range [$2, 500; $250, 000) covering 78.34% of
that population. Of black females, 0.10% have an income larger than $250, 000
(with no upper bound specified by the US Census Bureau) and 21.56% fall in
the category of [0; $2, 500), which also includes those with no income at all.
Hence the income bracket [$2, 500; $250, 000) is thought to be representative of
the predominant black female sub-population that have annual income arising
from remuneration for employment, and was therefore selected for the analysis
in Figure 1. Observe from Figure 1A a larger positive ETSP density value
at the lower than at its upper bound. The BR density in Figure 1B also
has positive, but equal, density values at its boundaries. Figures 1C and 1D
present QQ-plots for the fitted ETSP and BR cdf’s, respectively. While both
demonstrate a good fit to the income data, one visually observes from Figures
1C and D a better fit for the ETSP cdf at the lower income ranges than the
BR cdf. The ETSP distribution in Figures 1A and C also fits “better” than
the BR one in Figures 1B and 1D in the least squares sense, and in terms of
the log-likelihood and Kolmogorov-Smirnov statistics (see Section 5).

The additional flexibility depicted in Figure 1A naturally comes at a price
when compared to the density in Figure 1B. Whereas the distribution in Figure
1B belongs to a three parameter family (two parameters of the beta distribu-
tion and one mixture parameter, see (2)), the distribution in Figure 1A has
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Fig. 1 Comparison of ETSP (3) and BR (2) fitted densities to standardized US 2008 annual
income data for black females within the range [$2, 500; $250, 000]; A: ETSP density (3)
with λ = 0.659, δ = 0.009, θ = 0.0169, m = 3.007, n = 9.949; B: BR density (2) with
δ = 0.020, α = 1.229, β = 11.731; C: QQ-plot ETSP cdf; D: QQ-plot BR cdf.

five parameters: a threshold parameter, two power parameters, one for each
tail, and two elevation parameters for its two branches, see (3). This does not
have to be a drawback, however, when an abundance of data is available not
uncommon when dealing with, for example, financial data. A similar argument
applies to the US 2008 income distribution data used in Figure 1 which is con-
structed from thousands of households. In that case the task of a distribution
modeler becomes to device one that “best” describes the data and essentially
parsimony of the fitted distribution is not the issue it is when dealing with a
lack of data.

To construct the ETSP pdf (3) we shall first, in Section 2, present a gen-
eralized two-sided framework of distributions where two separate generating
densities describe each branch while maintaining continuity at the threshold θ.
We shall derive the general expressions for the cdf and moments for this frame-
work. In Section 3, we shall present an instance of this generalized two-sided
framework, by providing the two generating densities that yield the pdf (3).
We shall also further develop the properties for the ETSP family of distribu-
tions utilizing its generating densities and the generalized two-sided framework
in Section 2. Skewness and kurtosis behavior of ETSP distributions is studied
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in Section 4 using various moment ratio diagram comparisons involving those
of Asymmetric Laplace (AL), Two-Sided Power (TSP) and beta distributions
(see, e.g., Kotz and van Dorp, 2004). While it should be no surprise that ETSP
distributions indeed allow for higher kurtosis values (reflecting “heavier tails”)
than TSP, AL and beta distributions, it is perhaps surprising that they too
allow for a larger skewness coverage in their moment ratio diagrams when
considering only unimodal ETSP distributions. In Section 5 we shall present
a more detailed analysis of 2008 US income data using fitted ETSP and BR
distribution by gender and race demonstrating an overall preference of ETSP
distributions over BR fitted ones in more cases than not.

2 Generalized two-sided power distributions

Van Dorp and Kotz (2003) deal with the following family of two-sided proba-
bility density functions (pdf’s)

g{x|θ, p(·|Ψ)} =

{
p(xθ |Ψ), for 0 < x ≤ θ

p( 1−x
1−θ |Ψ), for θ < x < 1,

(5)

where p(·|Ψ) is a generating density function with bounded support (0, 1).
Substitution in (5) of, e.g., the power density p(·|n) = nxn−1 leads to the
Two-Sided Power (TSP) family of distributions studied in detail in their first
paper on this topic, van Dorp and Kotz (2002). Other related contributions
by these authors appearing prior to this paper have been summarized in the
monograph by Kotz and van Dorp (2004).

Consider now the following generalization of (5) with pdf’s defined by:

g{x|θ, p(·|Ψ), q(·|Υ )} =

{
π
θ p(

x
θ |Ψ), for 0 < x ≤ θ

1−π
1−θ q(

1−x
1−θ |Υ ), for θ < x < 1,

(6)

where 0 ≤ π ≤ 1 and p(·|Ψ) and q(·|Υ ) are continuous generating densities
with support (0, 1]. While the pdf (5) is continuous at the threshold θ, the
following condition

π

θ
p(1|Ψ) = 1− π

1− θ
q(1|Υ ) (7)

must hold for the pdf (6) to be continuous. From (7) one obtains

π =
θq(1|Υ )

(1− θ)p(1|Ψ) + θq(1|Υ )
⇒

{
θ = 0 ⇒ π = 0,

θ = 1 ⇒ π = 1.
(8)

Substitution of (8) into (6) yields the framework of continuous Generalized
Two-Sided (GTS) distributions with support (0, 1) and density functions

g{x|θ, p(·|Ψ), q(·|Υ )} =

{
q(1|Υ )

(1−θ)p(1|Ψ)+θq(1|Υ )p(
x
θ |Ψ), for 0 < x ≤ θ,

p(1|Ψ)
(1−θ)p(1|Ψ)+θq(1|Υ )q(

1−x
1−θ |Υ ), for θ < x < 1.

(9)
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The advantage of (9) over (5) is that it allows for separate branch specification
via two generating densities p(·|Ψ) and q(·|Υ ) thereby (substantially) enhanc-
ing framework’s (5) flexibility. Observe from (9) that the members of the GTS
family too hinge at θ, which can be interpreted as the pivotal point of the dis-
tribution. Note the conceptual difference between the threshold parameter θ
which determines the “turning point” of the distribution under consideration
and the parameters included in Ψ and Υ , which control the form of the two
sides of the distribution (to the left and the right of θ).

Continuing our investigation of the general structure of GTS families of
distributions it is at times convenient to rewrite (9) in its mixture form:

g{x|θ, p(·|Ψ), q(·|Υ )} = π
p(xθ |Ψ)

θ
+ (1− π)

q( 1−x
1−θ |Υ )
1− θ

, (10)

where the mixture weight π is given by (8). Observe from (8) that π solely
follows from the threshold θ and the generating density values at 1, q(1|Υ )
and p(1|Ψ), and not the shape of the generating densities p(·|Ψ) and q(·|Υ ) up
to 1 (which is perhaps counterintuitive). If X ∼ g{x|θ, p(·|Ψ), q(·|Υ )}we have
from (10) and the (0, 1] support for both p(·|Ψ) and q(·|Υ ) that

Pr(X ≤ θ) = π. (11)

When q(1|Υ ) = p(1|Ψ) we have from (8) and (11) that Pr(X ≤ θ) = θ. In
the special case that q(·|Υ ) ≡ p(·|Ψ), Pr(X ≤ θ) = θ holds regardless of the
generating density’s shape and the framework (9) reduces to the framework of
two-sided distributions (5).

From (9) we immediately obtain the cdf for X

G{x|θ, p(·|Ψ), q(·|Υ )} =

{
πP (xθ |Ψ), for 0 < x < θ

1 − (1− π)Q( 1−x
1−θ |Υ ), for θ ≤ x < 1,

(12)

where P (·|Ψ) and Q(·|Υ ) are the cdf’s of the generating densities p(·|Ψ) and
q(·|Υ ), respectively. From (12) we derive for the quantile function of X

G−1{y|θ, p(·|Ψ), q(·|Υ )} =

{
θP−1( yπ |Ψ), for 0 < y < π

1− (1− θ)Q−1( 1−y
1−π |Υ ), for π ≤ y < 1,

(13)

where P−1(·|)Ψ) and Q−1(·|Υ ) are the quantile functions of the generating
cdf’s P (·|Ψ) and Q(·|Υ ), respectively.

If X ∼ g{·|θ, p(·|Ψ), q(·|Υ )}, Y ∼ p(·|Ψ),Z ∼ q(·|Υ ) the following relation-
ship between the moments around zero of X, Y and Z can straightforwardly
be derived:

E[Xk|θ, Ψ, Υ ] = πθkE[Y k|Ψ ] + (1− π)
k∑

i=0

(
k

i

)
(−1)i(1− θ)i+1E[Zi|Υ ]. (14)

where π is given by (8). From (14) and (8), utilizing modern computational
facilities (especially for large values of k), moments of generalized two-sided
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distributions can be calculated at least in the case when closed form expres-
sions for the central moments of Y and Z are available. In particular, we have
for the first two moments

E[X|θ, Ψ, Υ ] = πθE[Y |Ψ ] + (1− π){1− (1− θ)E[Z|Υ ]}, (15)

E[X2|θ, Ψ, Υ ] = πθ2E[Y 2|Ψ ] + (1− π)×
{1− 2(1− θ)E[Z|Υ ] + (1− θ)2E[Z2|Υ ]}.

Note that utilizing (8) we can consider the following special cases of (15) :

E[X|θ, Ψ, Υ ] = θ2E[Y |Ψ ]− (1− θ)2E[Z|Υ ] + (1− θ), q(1|Υ ) = p(1|Ψ),
E[X|1, Ψ ] = E[Y |Ψ ], θ = 1,
E[X|0, Υ ] = 1− E[Z|Υ ], θ = 0,
E[X|θ, Ψ ] = (2θ − 1)E[Y |Ψ ] + (1− θ), q(·|Υ ) ≡ p(·|Ψ),
E[X| 12 , Ψ ] =

1
2 , for q(·|Υ ) ≡ p(·|Ψ), θ = 1

2 .

3 Construction and properties of ETSP distributions

Consider the following two generating densities and their cdf’s:{
p(x|λ,m) = λ+ (1− λ)mxm−1, P (x|λ,m) = λx+ (1− λ)xm,

q(x|δ, n) = δ + (1− δ)nxn−1, Q(x|δ, n) = δx+ (1− δ)xn,
(16)

where x, λ, δ ∈ [0, 1] and m,n > 0. Observe from (16) that these generating
distributions themselves are mixtures of a uniform and power distributions
both with support [0, 1] and thus are members within Hahn’s (2008) class of
distributions. Substitution of p(1|λ,m), q(1|δ, n) into (8) yields

π(Θ) =
θ{δ + (1− δ)n}

(1− θ){λ+ (1− λ)m}+ θ{δ + (1− δ)n}
, (17)

where Θ = {θ,m, n, λ, δ}. Substitution of the pdf’s (16) and π(Θ) (17) into
(9) yields the pdf (3). From (3) and (4)we have

g(0|Θ)

g(1|Θ)
=

{δ + (1− δ)n}λ
{λ+ (1− λ)m}δ

,

which does not depend on the threshold parameter θ, is not necessarily equal
to 1, and thus the pdf (3) allows for different strictly positive values of its
density at the lower and upper bounds. Observe from (17) that π → 0 as
m → ∞ keeping n fixed and 0 < θ, λ < 1. Hence, in that case the pdf (3)
converges to the density

g(x|θ, δ, n) = 1

1− θ

{
δ + (1− δ)n

(1− x

1− θ

)n−1}
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with support [θ, 1]. Vice versa, π → 1 as n → ∞ keeping m fixed and 0 <
θ, δ < 1. Hence, in that case the pdf (3) converges to the density

g(x|θ, λ,m) =
1

θ

{
λ+ (1− λ)m

(x
θ

)m−1}
with support [0, θ]. Substitution of the cdf’s P (x|λ,m) and Q(x|δ, n) (see (16))
into (12) yields the cdf of (3):

G(x|Θ) =x
{

π(Θ)
θ

}
{λ+ (1− λ)(xθ )

m−1}, for 0 < x < θ

1 − (1− x)
{

1−π(Θ)
1−θ

}
{δ + (1− δ)(1−x

1−θ )
n−1}, for θ ≤ x < 1,

(18)

where π(Θ) is given by (17).Figure 2 plots an ETSP pdf with g(0|Θ) = 1 and
g(1|Θ) = 0.25. From its parameters settings θ = 0.25, m = 3.059, n = 4, λ =
0.661, δ = 0.301, we obtain from (17) that π(Θ) = 0.378. Hence, from (11) we
have that the median of this pdf is located within its second branch.

Various subclasses may be of interest within the ETSP class. These can be
constructed with additional parameter restrictions. We have

m = n, λ = δ = 0 : ETSP (5 parameters) → TSP ( 2 parameters)

λ = δ = 0 : ETSP (5 parameters) → GTSP ( 3 parameters)

0 ≤ λ = δ ≤ 1 : ETSP (5 parameters) → UTSP ( 4 parameters)

Hence, by forcing the same power parameters in both branches and no el-
evation in its tails, the ETSP distribution reduces to the TSP distribution
(see van Dorp and Kotz, 2002). Allowing for separate power parameters, but
no tail elevation, the ETSP distribution simplifies to the GTSP distribution
only mentioned in passing in Kotz and van Dorp (2004) and investigated re-
cently in more detail in Herreŕıas-Velasco et al. (2008). If one next allows
for elevation in both tails but requires this elevation to be the same in both
branches, we obtain Uniform TSP (UTSP) distributions that are reminiscent
of BR distributions (2) introduced by Hahn (2008).

Unfortunately, the quantile functions P−1(y|λ,m) and Q−1(y|δ, n) are not
available in a closed form, and we devised the numerical algorithm (19) below
to evaluate them. In Steps 1 and 2 we take advantage of the mixture structure
of P (y|λ,m) when constructing the starting interval for the search algorithm.
Note, that E1 and E2 in Step 1 are the quantile functions of the mixture
components of P (x|λ,m) and by design the interval [LB,UB] constructed in
Step 2 contains the solution to the equation y = P (x|λ,m). Please observe
that Steps 3 through 6 in (19) follow the structure of a standard bisection
algorithm. Obvious modifications to the algorithm (19) can be made to solve



Modeling Heavy-Tailed Uncertainty Phenomena with Bounded Support 9

Fig. 2 An example ETSP distribution with θ = 0.25, m = 3.059, n = 4, λ = 0.661, δ =
0.301 and a median at 0.302;A: ETSP pdf (3); B: ETSP cdf (18).

for the equation y = Q(x|δ, n).

STEP1:E1 = y, E2 = y
1
m .

STEP 2: If E1 < E2 thenLB = E1, UB = E2,

Else LB = E2, UB = E1.

STEP 3:x = (LB + UB)/2.

STEP 4: If |P (x|λ,m)− y| < ϵ then Stop.

STEP 5: If P (x|λ,m) < y then UB = x, x = (LB + UB)/2,

Go to STEP 4.

STEP 6: If P (x|λ,m) > y then LB = x, x = (LB + UB)/2,

Go to STEP 4.

(19)

Combination of both algorithms for evaluation of P−1( yπ |λ,m) andQ−1( 1−y
1−π |δ, n)

with expression (13) yields the following master algorithm for the evaluation
of G−1(y|m,n, θ, λ, δ) :

If (y < π) then y = y/π, x = P−1(y|λ,m), x = θx

Else y = (1− y)/(1− π), x = Q−1(y|δ, n), x = 1− (1− θ)x,

(20)

where π in (20) is given by (17). The algorithm (20) was used to solve for
the median value 0.302 of the ETSP distribution displayed in Figure 2. The
algorithm (20) used 6 iterations, with a setting of ϵ = 0.001 in the algorithm
(19). The algorithm (20) can be considered somewhat efficient since the gen-
erating cdf’s P (x|λ,m), Q(x|δ, n) used in their versions of the sub-algorithm
(20) are available in a closed form. In contrast, the cdf’s of beta distributions
(and thus the cdf’s of BR distributions (2)) are not available in a closed form,
and a separate numerical routine is required to evaluate the incomplete beta
function (i.e. the beta cdf).
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If X ∼ g{·|θ, p(·|Ψ), q(·|Υ )} given by (5), Ψ = {λ,m}, Υ = {δ, n} and
Y ∼ p(·|Ψ),Z ∼ q(·|Υ ) are given by (16), we derive the following expressions
for the moments of Y and Z

E[Y k|λ,m] = m(k+1)+λ(1−m)k
(k+1)(m+k) ,

E[Zk|δ, n] = n(k+1)+δ(1−n)k
(k+1)(n+k) ,

(21)

and substitution of (21) into (14) yields the following moments expression for
X

E[Xk|Θ] = π(Θ)× θk
{m(k + 1) + λ(1−m)k

(k + 1)(m+ k)

}
+ (22)

{1− π(Θ)} ×
k∑

i=0

(
k

i

)
(−1)i(1− θ)i

{n(i+ 1) + δ(1− n)i

(i+ 1)(n+ i)

}
,

where Θ = {θ,m, n, λ, δ} and π(Θ) is given by (17). For example, substitution
of k = 1 in (22) yields the following expression for the mean E[X]:

E[X|Θ] = π(Θ)× θ
{2m+ λ(1−m)

2(m+ 1)

}
+

{1− π(Θ)} ×
[
1− (1− θ)

{2n+ δ(1− n)

2(n+ 1)

}]
.

(23)

Explicit forms for the variance var[X] = E[X2] − E2[X], skewness
√
β1 and

kurtosis β2 for ETSP distributions result in cumbersome expressions and are
omitted. However, values for the variance, skewness and kurtosis can be calcu-
lated directly using the general expression for the moments around the origin
µ′
k = E[Y k], k = 1, . . . , 4, (23) and their relationship with the central moments

µk=E[(Y − E[Y ])k], k = 2, 3, 4, (e.g., Stuart and Ord 1994). Upon request, a
Microsoft Excel spreadsheet is available from the authors which evaluates the
measures var[X],

√
β1 and β2 for ETSP distributions. In addition, this spread-

sheet facility allows one to graph the pdf and cdf of an ETSP distribution,
and contains a macro implementation of the algorithm (20) to evaluate its
quantiles at arbitrary quantile levels.

4 A moment ratio diagram comparison

Moment ratio diagrams, popularized for Pearson-type distributions by Elder-
ton and Johnson (1969), provide a convenient means to study skewness and
kurtosis behavior of a particular family of distributions. A moment ratio dia-
gram is a plot with the skewness

√
β1 on the horizontal axis and the kurtosis

β2 on the vertical axis, with the convention that
√
β1 retains the sign of µ3

(e.g., Kotz and Johnson, 1985). Values of
√
β1 and β2 for ETSP distributions

can be straightforwardly evaluated as outlined in the previous section. A com-
parison of the moment ratio diagram’s coverage of two separate families may
provide a direct visual assessment of a contrast between each family’s flexibility
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Fig. 3 Moment ratio diagrams; A: Beta distributions; B: TSP distributions; C: U-Shaped
and unimodal ETSP distributions λ = δ = 0.1, 1 ≤ m ≤ 9, m = n; D: U-Shaped and
unimodal ETSP distributions λ = δ = 0.25, 1 ≤ m ≤ 9, m = n.

to model peaked, heavy-tailed and skewed phenomena. Consider for example
the moment ratio diagrams in Figure 3A and 3B for beta distributions and
TSP distributions respectively. A synopsis of the moment ratio comparison
between beta and TSP distribution is helpful for the appreciation of Figures
3C-D.

The central (checkered) part of both diagrams in Figures 3A and 3B rep-
resent the coverage of the unimodal forms of both beta and TSP distributions
and we immediately observe a larger coverage for the TSP distributions in
this domain. The coverage of the TSP distributions towards the feasibility
boundary (vertically hatched) represents the coverage of the U-Shaped TSP
distribution and we observe the same coverage for the U-shaped beta distri-
butions. The feasibility boundary arises from Bernoulli distributions which
are a limiting distribution for both the TSP and beta family of distributions.
The coverage area between the central unimodal coverage and U-shaped cov-
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erage (dotted) for beta distributions in Figure 3A arises from the J-shaped
beta distributions. J-shapes cannot be modeled by TSP distributions (due to
a requirement of equal power parameters in both branches) and hence this J-
shaped coverage is lacking in Figure 3B. Figures 3A and 3B also indicate the
(skewness, kurtosis) locations for the Gaussian (0, 3), Uniform (0, 1.8), Expo-
nential (2, 9),Reflected Exponential (−2, 9). The dark solid line in Figure 3B
represents the skewness-kurtosis combination of the Asymmetric Laplace (AL)
distribution. Van Dorp and Kotz (2002) studied a version of the diagrams in
Figures 3A and 3B with restricted parameter ranges which did not include the
AL boundary. Kotz and van Dorp (2005) showed that the AL distribution is
a limiting distribution of the TSP family of distributions. Hence, both Figure
3A and 3B provide a complete coverage for beta and TSP distributions.

Figure 3C shows the coverage (checkered) of unimodal ETSP distributions
with the parameter restrictions λ = δ = 0.1, 1 ≤ m ≤ 9, m = n. The dotted
lines in Figure 3C indicate the contours of the TSP boundaries in Figure 3B.
From these dotted boundaries, however, we can draw the perhaps surprising
conclusion that the coverage of unimodal ETSP distributions transitions into
the J-shaped domain of the beta distributions in Figure 3A. This indicates an
additional skewness flexibility of unimodal ETSP distributions over beta and
TSP distributions. Moreover, we observe a larger coverage of the unimodal
domain, even with the limited parameter settings λ = δ = 0.1, 1 ≤ m ≤
9, m = n, than the complete unimodal coverage of TSP distributions in Figure
3B (even beyond the limiting boundary represented by the AL distribution).

Figure 3D shows the coverage (checkered) of unimodal ETSP distributions
with the parameter restrictions λ = δ = 0.25, 1 ≤ m ≤ 9, m = n. We continue
to observe a “filling in” of the J-shaped beta domain by unimodal ETSP
distributions. However, even though these distributions have a heavier tail
(λ = δ = 0.25 in Figure 3D as opposed toλ = δ = 0.1 in Figure 3C), we now
observe smaller values for the kurtosis range in Figure 3D than in Figure 3C.
This demonstrates once more that kurtosis is both a measure of peakedness
and heavy-tailedness of distributions and that those distributions in Figure 3D
are considered less peaked (i.e. more uniform due to the higher λ and δ weight).
Indeed, when λ, δ → 1 the coverage area for the unimodal domain of ETSP
distributions with parameter restriction 1 ≤ m ≤ 9, m = n converges to the
single point skewness kurtosis combination (0, 1.8) of the uniform distribution
displayed in Figure 3.

TSP distributions are members within the ETSP class and hence Figure 3C
and 3D also includes the U-shaped coverage of Figure 3B. Finally, for clarity of
presentation we have omitted from Figures 3C and 3D the coverage of J-shaped
ETSP distributions. J-shaped ETSP distribution arise when λ = δ = 0 and
either m or n having a value strictly less than 1. With this additional flexibility
J-shaped ETSP distributions cover the same area as that of the J-shaped
beta distributions displayed in Figure 3A. Summarizing, ETSP distribution
provide a complete coverage of skewness and kurtosis combinations of the
moment ratio diagrams in Figure 3, and even higher kurtosis values than the
maximum value 12 indicated in Figure 3 can be attained. Said differently, any
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skewness-kurtosis combination in the feasible moment-ratio Figure 3 can be
represented by a member within the ETSP family of distributions which is a
testament to its flexibility.

5 Modeling US 2008 income data by gender and ethnicity

A leading article of the 459 issue of the Journal of the American Statistical
Association (2002, Vol. 97, pp. 663-673) by Barsky et al. (2002) presents an
illuminating and comprehensive analysis of the African-American and Cau-
casian (Non-Hispanic) wealth gap based on a longitudinal survey of approxi-
mately over 6000 households over the period 1968-1992. Barsky et al. (2002)
conclude that the role of earnings differences is largest at the lower tails of
the wealth distribution, and decreases dramatically at higher wealth levels. In
fact, their results indicate that differences in household income account for all
of the racial wealth difference in the first quartile of the wealth distribution.
This latter observation emphasizes the relevance of modeling the lower parts
of income distributions, whereas over the course of many years, starting with
Viflredo Pareto (1897), a larger emphasis has been put on modeling the upper
parts, in particular the upper tails (see also, e.g., Arnold 1983; Coelho et al.
2008; Miyazima and Yamamoto 2006; Clementi and Gallegatib 2005).

Herein we shall present an illustrative analysis of modeling income distri-
butions by gender and race, less focused on upper tail behavior, using BR (2)
and ETSP (3) fitted distributions to 2008 US income data provided in Table
1. The data in Table 1 is extracted from the U.S. Census Bureau 2009 current
population survey. We have from Table 1 that for each class by gender or
by gender and ethnicity, the percentage of people that have an income larger
than $250, 000 ranges from 0.03% (Hispanic females) to 1.69% (Asian males).
No upper bound is specified by the US Census Bureau for this latter class and
thus we shall focus our analysis on the subpopulation that have annual income
less than $250, 000. Moreover, as per the US Census Bureau, the income class
[0,$2, 500) in Table 1 also includes those that have no income at all. Since no
means is provided for separating the population in the bracket [0,$2, 500) into
those that have no income from the ones that do, this class is also omitted
from our income distribution analysis. Summarizing, we shall model the US
income distributions for the range from [$2, 500, $250, 000) focused on a US
sub-population that have income and by inference have some level of remuner-
ation for employment. No doubt this income range may be thought of as being
representative for the mainstream of the US population that have income and
covers the lower parts of their income distributions (recall the discussion in
the first paragraph).

Figures 4 and 5 plot fitted ETSP (3) and BR (2) densities to standard-
ized annual income data in Table 1 for the range [$2, 500, $250, 000). Hence,
the origins in Figures 4 and 5 coincide with $2, 500 annual income and the
upper boundary x = 1 coincides with the value $250, 000. These distributions
were fitted by means of a least squares method. Specifically the distribution
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Table 1 US 2008 male and female annual income data (Numbers in thousands. In-
come category under $2,500 includes people with no income.) Source: U.S. Census
Bureau, Current Population Survey, 2009 Annual Social and Economic Supplement,
http://www.census.gov/hhes/www/cpstables/032009/perinc/new11 000.htm.

parameters, say Θ, in Table 2 for the ETSP (3) and BR (2) distributions
were estimated by minimizing for a subpopulation by gender, or gender and
ethnicity, the objective function

43∑
i=2

{F (xi|Θ)− F̂ (xi)}2, (24)
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where F̂ (xi) =
1
n

∑i
j=2 ni, ni =#households in bracket [xi−1, xi), i = 2, . . . , 43

andn =
∑43

j=2 ni is the total number of households in that class within the
income range [$2, 500, $250, 000) specified in Table 1. Starting values for the
parameters Θ in the least squares procedure (24) were selected by visually
matching an ETSP or BR density to the empirical density functions also dis-
played in Figures 4 and 5 for overall shape. Comparable QQ-plots to the ones
displayed in Figures 1C and Figure 1D were obtained for all income distribu-
tions that were fitted in Figures 4 and 5, but are omitted here.

Table 3 provides the density values by gender and by gender and ethnicity
at the lower (x = 0) and upper bounds (x = 1) in Figures 4 and 5. One observes
from Table 3, with the exception of the density values at the lower bound for
Hispanic and white males, that all density values are strictly positive. By
design, the strictly positive density values at the lower and upper bound for
the BR fitted densities are the same, whereas the density values at the bounds
in Table 3 for the fitted ETSP densities differ without exception (recall the
discussion in the introduction). This demonstrates the usefulness of allowing
for such a flexibility if indeed those ETSP densities provide a “better” fit than
the BR fitted ones. While QQ- plots for the fitted distributions in Figures 4
and 5 demonstrate a goodness-of-sit similar to that demonstrated in Figures
1C and D, observed differences in them between ETSP and BR do not offer a
means for formal discrimination between the two. Hence, to that end Tables
4 and 5 provides the sum-of-squares statistic (SS) (24), the Log-Likelihood
statistic (Ln-L)

43∑
i=2

ni × Ln{F (xi|Θ)− F (xi−1|Θ)} (25)

and the Kolmogorov-Smirnov statistic (KS)

max
i=2,...,43

|F (xi|Θ)− F̂ (xi)| (26)

for the fitted income distribution to the data in Table 2 within the range
[$2, 500, $250, 000). In Tables 4 and 5 values appearing in a bold font indicate
that density that outperforms the other one in that particular statistic. Next,
favoring that distribution in Tables 4 and 5 that outperforms the other one in
at least 2 out of the three statistics (24), (25) and (26) leads to six out of the
ten cases preferring the fitted ETSP density (3), with different strictly positive
density values at their bounds, over the BR (2) fitted one. In particular in the
case of the female subpopulation (Table 5), the ETSP density is selected in
four out of the five fitted cases. Certainly, it is no stretch to observe that no
evidence in the empirical densities in Figure 4 and 5 calls for equality of density
values at their boundaries, nor is their any evidence within these figures that
suggest that zero density values at the boundaries are a requirement. Thus, in
a broader sense, the analysis above supports both the usefulness of the ETSP
(3) and BR (2) densities.

In Table 6 we present some statistics for the selected fitted income distri-
butions by gender and by gender and ethnicity. Some interesting observations
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Table 2 Parameter estimates of LSQ (24) fitted distributions in Figures 4 and 5 by gender.

Table 3 Density values at lower and upper bounds for ETSP (3) and BR (2) fitted densities
displayed in Figures 4 and 5 and by gender only.

Table 4 Sum of Squared (SS) error, Log-Likelihood (Ln-L) and Kolmogorov- Smirnov (KS)
statistics for ETSP (3) and BR (2) densities displayed in Figure 4.

Table 5 Sum of Squared (SS) error, Log-Likelihood (Ln-L) and Kolmogorov- Smirnov (KS)
statistics for ETSP (3) and BR (2) densities displayed in Figure 5.
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Fig. 4 A Comparison of ETSP (3) and BR (2) fitted densities to standardized US 2008
annual income data for males by ethnicity within the range [$2, 500; $250, 000]; A: White
males; B: Black males; C: Asian males; D: Hispanic males.

follow immediately from Table 6. Firstly, the average annual income distribu-
tion for all females ($31, 248) is less than the minimum average annual income
by male and ethnicity, i.e. that of Hispanic males ($32, 712). Secondly, from
the mean income analysis by gender, one immediately observes that the mean
income for the Asian subpopulations exceeds those of the others regardless
of gender ($51, 793 for Asian males and $37, 769 for Asian females), whereas
the mean income of the Hispanic subpopulations are the lowest ($32, 712 for
Hispanic males and $24, 636 for Hispanic females). Of male to female compar-
isons, the difference in mean annual income is least for the black subpopulation
($33, 625−$27, 510 =$6, 115). Similar conclusions follow by comparing other
locations statistics provided in Table 6, including the 1st quartile of the income
distributions. Observe from the skewness and kurtosis values in Table 6 that
the fitted distributions may be considered quite skewed, peaked and heavy-
tailed when plotting their relative locations in the moment-ratio diagram in
Figure 3.

An income distribution analysis would not be complete without an evalu-
ation of what is called the Gini-index also provided in Table 6 for the fitted
distributions therein. The Gini-index is a measure of income inequality and
is derived from the Lorentz curve. The Lorentz curve plots the cumulative %
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Fig. 5 A Comparison of ETSP (3) and BR (2) fitted densities to standardized US 2008
annual income data for females by ethnicity within the range [$2, 500; $250, 000]; A: White
females; B: Black females; C: Asian females; D: Hispanic females.

Table 6 US 2008 income statistics derived from distributions in Figures 4 and 5. Rows
with (E) use ETSP (3) fitted pdf’s, rows with (B) use BR(2) fitted pdf’s (see Table 3).

income made by a population against the cumulative % of that population,
and may be conveniently plotted using the following relationship given a cdf
F (·) and pdf f(·)

L{F (x)} =

∫ F (x)

0
F−1(v)dv

E[X]
=

∫ x

0
uf(u)du

E[X]
, (27)
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see, e.g., Sarabia (2008). For the ETSP distributions (3) we have∫ x

0

ug{u|Θ}du =π(Θ)θ
{

λ
2 (

u
θ )

2 + (1−λ)m
m+1 (uθ )

m+1
}
, for 0 < x ≤ θ,

π(Θ)θ
{

λ
2 + (1−λ)m

m+1

}
+ 1−π(Θ)

1−θ

∫ x

θ
x
{
δ + (1− δ)n( 1−x

1−θ )
n−1

}
dx, for θ < x < 1,

where∫ x

θ

x{δ + (1− δ)n
(1− x

1− θ

)n−1}
dx = (1− θ)

{
1− δ

(1− u

1− θ

)
− (1− δ)

(1− u

1− θ

)n}
−(1− θ)2

[
δ

2

{
1−

(1− u

1− θ

)2}
+

(1− δ)n

n+ 1

{
1−

(1− u

1− θ

)n+1
}]

.

For the BR distributions (2), plotting of the Lorentz curves require the use
of the incomplete beta B(x|α, β) function in both evaluations of the left and
right hand sides of (27), where

B(x|α, β) =
∫ x

0

uα−1(1− u)β−1, α, β > 0.

Figure 6 plots the Lorentz curves for the male and female fitted BR and ETSP
fitted distributions in the first two rows of Table 6, whereas Figure 7 plots
them by gender and ethnicity for the other rows. The y = x line in Figure
6 represents complete equality of income amongst all within a population in
question. Complete inequality would be represented by one individual making
all the income and a Lorentz curve equal to 0%, up to but not including 100%
and jumping to y = 100%at x = 100%. Please observe from Figure 6 that
approximately the lower 80% of the female or male population accounts for
about 50% of the cumulative annual income in both of these subpopulations.

The Gini-index for a particular Lorentz curve is given by a/(a+b) or 1−2b
since a+ b = 0.5, where the areas a and b are indicated in Figure 6. Thus the
Gini-index ranges from 0 to 1, but is often expressed as a percentage (see,
e.g., Kleiber and Kotz, 2003). One concludes that the larger the area a (or
the lesser the area b), the larger the income inequality within the correspond-
ing population. Observe from Figure 6 that, perhaps surprisingly, the income
inequality as measured by the fitted distributions in Table 6 for the male sub-
population is less than the income inequality for the female subpopulation,
given the higher average income for males in Table 6 ($46, 020) compared to
that of the females in Table 6 ($31, 248). Hence, one concludes that the Gini-
index measures income inequality within a given subpopulation, but does not
provide for a means for comparing income levels across subpopulations. One
observes from Figure 7A no particular ordering in terms of income inequality
amongst the fitted Lorentz curves for males, whereas in Figure 7B one ob-
serves more of an ordering with the highest income inequality attributable to
the Asian female subpopulation (49.2%). The lowest value for the Gini-index
in Table 6 follows for the white male subpopulation (44.2%). Along the same
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Fig. 6 Lorentz Curves (27) for ETSP (3) and BR (2) fitted densities by gender indicated in
Table 6; Vertical and horizontal dotted lines show that top 20% within the male and female
sub-groups make about 50% of total cumulative income; Gini-indeces in Table 6 follow from
ratios a/(a+ b) = 1− 2b, where areas a and b are indicated above.

Fig. 7 Lorentz Curves (27) for ETSP (3) and BR (2) fitted densities indicated in Table 6
by ethnicity; A: Males; B: Females.

lines it is interesting to note that the Gini-index for the fitted distribution for
the Asian female subpopulation (49.2%) ranks highest amongst all, whereas
amongst the female subpopulations they too rank highest in terms of average
annual income. Finally, please observe a similar income inequality measured
by the fitted distributions for the black male (45.8%) and female (45.6%) pop-
ulations, whereas, as mentioned above, the average annual income for black
males is $6, 115 higher than that of black females.

Given than that the Gini-index only measures income inequality within
a subpopulation, a natural question would be which of the characteristics:
mean, median, mode, 1st quartile, standard deviation, coefficient of variation
(CV), skewness and kurtosis listed in Table 6 (which can be used to described
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Table 7 Best subset regression results using the Gini-index in Table 6 as the dependent
variable and the mean, median, mode, 1st quartile (x0.25), standard deviation, coefficient
of variation, skewness (β1), kurtosis (β2) as independent variables.

differences in income levels across subpopulations) are also determinants for
the Gini-index values provided in Table 6. Hence to that end, a best subset
regression was performed utilizing the off-the-shelf statistical software Minitab
and the results thereof are displayed in Table 7. Please observe from Table 7
that the first quartile x0.25 of the fitted income distributions appears in all but
two of the subset regressions, whereas the first quartile x0.25 and the standard
deviation combined account for 92.5% of the sample variance of the Gini-
indeces values in Table 6. In fact, if one regresses the Gini-indeces in Table 6
against the first quartile and the standard deviation one obtains

Gini = 0.477− 0.00973× x0.25 + 0.00399× St.Dev., (28)

where in (28) x0.25 and St.Dev. are measured in terms of thousands of dollars.
Hence, from (28) one may cautiously infer that an increase of $1, 000 in the
first quartile x0.25 of one of the income distributions in Table 6 would result in
about a decrease of 1% in the Gini-index value, given that an increase in x0.25

would not result in an increase of the standard deviation (which is unlikely
since a decrease could be expected). These analysis results therefore reinforce
the relevance of the first quartile of an income distribution in describing racial
and gender income gaps across subpopulations as earlier concluded by Barsky
et al. (2002). Please recall the introduction of this illustrative US 2008 income
distribution analysis example.
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