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ABSTRACT

It will be shown that a solution exists for the parameters of a beta distribution given any
combination of a lower quantile and upper quantile constraint. A numerical procedureis
developed to solve for the parameters of the beta distribution given these quantile constraints.

Example solutions are provided.
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1. INTRODUCTION

Many authors (e.g. Gavaskar, 1988) have quoted the suitability of the beta distribution in
different applications because of its flexibility. In classical analyses, estimation of the parameters
of a beta distribution have concentrated on maximum likelihood estimation (Lau and Lau, 1991).
In Bayesian analyses, methods for eliciting the parameters of a beta distributions have focused on
eliciting: (a) ameasure of central tendency such as the mean and a measure of dispersion such as
the variance (e.g. Press, 1989, p. 40), (b) the mean and an additional quantile (e.g. Martz and
Waller, 1982), or (c) equivalent observations (e.g. Gavaskar, 1988, Chaloner and Duncan, 1983,
Cooke, 1991).
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This paper will address the topic of solving for the parameters of a beta distribution given
two distinct quantiles. Solving for the parameters of a beta distribution using two distinct

quantilesinvolves using the incomplete beta function B(z| a, b) given by

B(z|a,b) = IB%(;, ) /Omual(l — )’ ldu, (1)

I(a)-T'(b

wherea > 0, b > 0 and B(a,b) = F(a-i—b)) . The incomplete beta function B(z| a, b) hasno

closed form. Weller, 1965, resorts to solving for the parameters of the beta distribution given the
p-thand (1 — p)-th quantile graphically. This graphical approach, however, islimited to the
number of graphs plotted. For intermediate solutions interpolation methods must be used, which
may result in an interpolation error.

In this paper, the flexibility of the beta distribution will be reconfirmed by proving that a
solution exists for the parameters of a beta distribution for any combination of alower quantile
and upper guantile constraint. Next, a numerical procedure will be described which solves for
parameters of a beta distribution given alower quantile and upper quantile constraint. The
numerical procedure can be easily adapted to the case of Weiler, 1965, and improves the
graphical method. In addition, the numerical procedure can be adapted to the case where the
median and an additional quantile are specified as measures of central tendency and dispersion.
In the next section, some properties of the beta distribution will be derived that are used to prove

the theoretical result and to design the numerical procedure.

2. SOME PROPERTIESOF THE BETA DISTRIBUTION
Let X ~ Beta(B-a,B-(1—«)), i.e

— ! * . o _ )P (1-a)=
PT{XSSCM’Q}_B(ﬂ-a,ﬁ-(l—a))/o w1 — )Py, 2)
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where0 < o < 1, 8 > 0. Note that the chosen parameterization in (2) is different from the
conventional parameterization in (1). Any beta distribution using the parameterization of (1) has

aunigue parameterization in (2) and vice versa. Using the parameterization of (2) it follows that

ﬁ(ﬁ-a+m—i) Tﬁl(ﬁ-a—i—m—i)
E[X"|a, 8] = = o ,m=1,2,3,... (3)
[1(8+m—1i) [T (B+m—1)

i=1 i=1

0
with the convention that []{ - } = 1. From (3) it easily follows that
i=1

ElX|a, 8] = o (4)
Var[X|a, g] = % (5)

Consider the two different classes of degenerate distributions presented in Figure 1.
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Figure 1. Two classes of degenerate beta distributions.

From (4) and (5) follows that the degenerate distribution in Class 1 of Figure 1 isthe limiting
distribution obtained by letting 3 — oo. With (3) follows that the moments of the limiting

distribution by letting 3 | 0 coincide with the moments of the degenerate distribution in Class 2
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in Figure 1 (i.e. aBernoulli with apoint mass of « at 1). Asboth X and the degenerate
distribution of Class 2 have a bounded support, it follows that the degenerate distribution in
Class 2 isthe limiting distribution by letting 3 | 0 (see e.g. Harris, 1966, p. 103). Using the
notation of (1), it has been shown (see e.g. Proschan and Singpurwalla, 1979) that for b > 0

0<a <as= B(z|a,b) > B(x|ag,b), VX e (0,1), (6)
andfora > 0

by > by > 0= B(z|a,b)) > B(x|a,bs), VX € (0,1), (7)
From (6) and (7) it may be derived that

as>a;>0,>0 = Pr(X <z|ag, ) < Pr(X < z|ai, ). (8)

3. THEORETICAL RESULT
Definition 1 below introduces the quantile constraint concept used in the remainder of

this paper.

Definitionl : Let0 < z, < 1, 0 < ¢ < 1. Arandomvariable X with support [0, 1]

satisfies quantile constraint (x4, q) < Pr{X < z,} =q.

As previously stated, the motivation of this paper is derived from the following problem..

Problem P : Solve aand 3 for X ~ Beta(f- «, (- (1 — a)) under the two quantile

constraints (x4, qr) and (x4, , qu), where qr, < qu.

Solving problem P involves the use of the incomplete beta function given by (1) and
therefore has no closed form solution. Also, the quantile constraints in problem P can be
considered a set of two nonlinear constraints in two unknowns, i.e. o and 3, and as such does not

necessarily have afeasible solution. To construct a numerical procedure with solves problem P
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in afinite number of iterations, it is necessary to prove that problem P has a solution for any
combination of the two quantile constraints. This assertion will be proved in Theorem 1 through

limiting arguments.
Theorem 1 : Thereexist a solution (o, 5*) to problem P.

Proof : The proof involves four steps. In thefirst step it will be proved, using the notation in
(2), that for agiven 8 > 0 and a quantile constraint (x,, ¢), aunique a° exist such that

X ~ Beta(f-a°, 8- (1— «°)) satisfies that quantile constraint. In the second step it will be
shown that for 3 | 0 the parameter a° — (1 — ¢). In the third step it will be shown that for

B — oo the parameter a° — x,,. Finally, in the fourth step, the statement of this theorem will be

utilized.

Step1l : Let aquantile constraint (x,, ¢) be specified for X. Assumethat 5 > 0is given and
introduce the function &(«, ) in o and 3, where

&(a, B) = Pr{iX <zjlo,0} —¢, 0 <a<1,5>0. 9)

From the structure of (2) it follows that £(«, 3) isacontinuous differentiable function for
0<a<l B>0.Consder(a, 5) whena | 0and g > Ofixed. From (4) and (5) it follows,
respectively, that

Lim E|X|a,B8 =0

am [Xla, 6]

Lim Var[X|a,6]=0 "~

al0

for any fixed 3 > 0. Hencewhen « | 0, the distribution of X convergesto a degenerate
distribution with asingle point massat 0. With0 < z, < 1, 0 < ¢ < 1 it thusfollows from (9)

that
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Lim &(a,B)=1—q>0, (11)

for any fixed 8 > 0. Similarly, using (4), (5) and using that the distribution of X convergesto a

degenerate distribution with asingle point massat 1 when « 1 1, it follows that

Lim &, f) = —q <0, (12)
all

for any fixed 8 > 0. From (11), (12) and £(«, [3) being a continuous function, it follows that
Ja® € (0,1):&(a”,B) =0,V 3> 0. (13)

Utilizing expression (8), it follows that £(«, 3) isastrictly decreasing function in « for any fixed
B > 0. Thus, given fixed 5 > 0, o° isthe unique solution to («, ) = 0 and

X ~ Beta(f-a°, - (1— «o°)) satisfies the quantile constraint (x,, ¢) given fixed 5 > 0. Before
we proceed with Step 2, note that the solution «° depends on z,, (cf. (9)) and 3 (cf. (13))

motivating the following notation

a® =G, (9), (14)

where G, (-): (0,00) — (0,1),0 <z, < 1,0 < ¢ < 1,suchthat
§(Gz,(6), 8) =0,V 5> 0. (15)

From the structure of (2), (15), and the implicit function theorem, it followsthat G, (5) isa
continuous function for 5 > 0. Using the definition of («, 5) given by (9),and (15) it follows
that

Pr{X <z, G.,,(0),5} = q,V3 > 0. (16)

Step 2 : Consider X ~ Beta(f-a°,-(1—a°)), wherea® = G, (), andlet 3 | 0. From
continuity of Pr{X < z,|G,, (6), 3} in 3 for fixed z, it follows with (16) that
LﬂinfOPr{X <, G:,(8),8} = q (17)

From the structure of (2) it has been shown that when 3 | 0, the distribution of X convergesto a
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degenerate distribution of Class 2, indicated in Figure 1. The limiting expectation of X when
B | 0 thus follows as the expectation of a Bernoulli random variable and from (17) it follows that

Lim (FIX1 6. (9) 61 = 1= g (18)

However, from (4) followsthat

E[X] Ga,(8), 8] = G, (B, (19)

for any 5 > 0 and it may be concluded with (18) and (19) that

Lim G () =1~ (20)

Or in other words,when 3 | 0, the parameter a° — (1 — q).

Step 3 : Consdder X ~ Beta(8-a°,3-(1—a°)), wherea® = G, (0), andlet 3 — oo. From
(5) followsthat when 5 — oo the distribution of X converges to a degenerate distribution of
Class 1 in Figure 1 with asingle point mass at some z* € [0, 1].

From continuity of Pr{X < z,|G, (), 5} in 3 for fixed z, it follows from (16) that

z* =z, (21)
However, this means that,
Lim  E[X| G, (8), 3] = z,. (22)
f— o0
Again from (4) it thus follows that
Lim G, (B8) = x,. (23)
f— o0

Or in other words, when 3 — oo, the parameter o° — z,.
Step 4: Let X ~ Beta(B-o,3-(1—«)). Let (zy,, qr) and (z4,, qv) be two quantile
constraints specified for X, such that ¢; < qi. Consider the associated functions Gz, (6) and

Gy (8) each defined implicitly by (9) and (15). Introducing the function
H(ﬂ) - gq:qL (ﬂ) - gqu (ﬁ)? (24)
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it follows from (20) that

Lﬂ”'f OH(@ =(l-q)-1-q)=q —q>0. (25)

Similarly, from (23) it follows that

Lim H(B) =z, — x4, <0. (26)
— 00

From the continuity of G, (8) andG,, (), (25) and (26) it follows that
38> 0: H(B") =0. (27)

Denoting o* = G, (8%) (cf. (14)), it follows from (27) that
o =Gy, (B7) =Gz, (59 (28)

In other words, X ~ Beta(5* - a*, 5* - (1 — o)) satisfies both quantile constraints (z,, , ¢1,) and

(x4, ,qu) and thus (a*,5*) is asolution to problem P. O

Theorem 1 proves the existence of a solution to problem P. The uniqueness of the
solution (a*, %) to P would follow by showing that; (1) H (/) has 0 or 1 stationary points for
B> 0; (2) if H(B) hasastationary point for 5 > 0 this stationary point coincides with a global
maximum. It is conjectured that the above assertion holds. Numerical analysesin the examples
below support this conjecture. In case multiple solutions exist to problem P, the numerical
algorithm below is designed so that the selected solution coincides with the solution with the
lowest value for 5*, and thus the highest level of uncertainty. The later solution would be a

preferred solution in case x,, and =, are elicited through expert judgment.

4. DESIGN OF A NUMERICAL PROCEDURE
Asproblem P cannot be solved in closed form, a numerical procedure that finds a
solution to problem P with a prescribed level of accuracy in afinite number of iterations, is

desirable. Below, such a numerical procedure will be described informally. The numerical
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method uses a procedure to solve for the ¢-th quantile of a beta distribution with known
parameters. Such a procedure is described in the appendix.

With (4) and (5) follows that « is alocation parameter and 3 is an uncertainty parameter
given the value of «, where higher values of (3 coincide with lower uncertainty levels. These
interpretations of the parameters o and 5 are used in the design of the numerical procedure to
find asolution to P. Assume for now that an interval [a;, b;] isestablished containing 5* which
yieldsasolution (a*, 3*) of P, where a* = G, (). Let 3, be the midpoint of thisinterval. The
k-th iteration of the numerical procedure is described below.

To solve (a°);, satisfying the quantile constraint (x,, , qi) of P given avauefor j;,
successive shrinking intervals [d,,, e,,] will be calculated containing the solution (a°);. With (2)
followsthat (a°); € [0,1]. Hence, [dy,e1] = [0,1]. Next, «, isset to the midpoint of [d,,, e,,]
after which the probability mass (¢i), = Pr{X < z,,|a., Ox} iscaculated. Incase
(qu)n < qu,thebetadistribution is skewed too much towards 1. Therefore, with (4) it follows
that the value of the location parameter «,, istoo high. Hence, the nextinterval containing (a° )y
iS[dyi1, €nt1] = [dn, o). Viceversa, incase (qu ), > qu, the betadistribution is skewed too
much towards 0. Therefore, with (4) it follows that the value of the location parameter «, istoo
small. Hence, the next interval which contains (a°); can be set to [d,, 11, €n+1] = [, €n].
Finally, the next estimate «,,..; 1S set to be the midpoint of the interval [d,, 1, e,-1]. The above
procedureis repeated until (qy ), iscloseto gy with adesired level of accuracy. The quantile
constraint (z,, , g) of Pismet once this accuracy has been reached and (a°),, is set equal to the
last generated o),

After solving for (a°);,, the procedure calculates the ¢ -th quantile (z,, ) of
Beta(Br - (a®)k, Br - (1 — (a°)r)).Incase (z,,)r < x,, theuncertainty in Beta (S - (a°)y,

B - (1 — (a°)y)) istoo high. Therefore, the current estimate of the uncertainty parameter gj, is
too low. Hence, the next interval which contains 5* can be set to (a1, bx+1] = [Ok, bi]. Vice
versy, if (zg, ) > x4, theuncertainty in Beta (5, - (o°)g, Bk - (1 — (a®)x)) istoo low. Therefore,

the current estimate of the uncertainty parameter ;. is too high. Hence, the next interval which
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contains 3* can be set to (a1, by+1] = [ak, Bx]. Findly, the next estimate ;. istaken to bethe
midpoint of theinterval [ay 1, bi+1]. The above procedure is repeated until the current estimate
(x4, )r iscloseto x,, with adesired level of accuracy. The quantile constraint (z, , 1) of P is
met once this accuracy has been reached. The parameters(a*, 5*) solving P are set equal to the
last generated tuple ((a°)g, Ok )-

To establish astarting interval [a;, b;] containing 5* the following steps may be adopted
in the procedure. Set the lower bound a; = 0. To obtain the upper bound b,, set 3, = 1, where
k =1, and solve for (a°) 1, satisfying the quantile constraint x,,, of problem P as described in
the previous paragraph. Next, solve for the ¢ -th quantile (x,, )1z of Beta (51 - ()
1k B - (L= (a®) 1x)). Incase(zy, )1 < x4, theuncertaintyin Beta(f, - (o°)
1k Bk - (1 — (a°) 1)) istoo high. Therefore, 5, < B*. Inthat case, set 51441 = 2- (1 and
repeat the above procedure. Vice Versa, in case (z,, )11 > x4, theuncertainty in
Beta(Bi - (@) 14, B1p - (1 — (a°) 1)) istoo low. Therefore, 8, > 5. Inthat case, set
by = (1 and the starting interval [a1, b;] has been established. Note that, in case multiple
solutions exist to problem P, the starting interval is chosen such that the selected solution to P by
the algorithm coincides with the solution with the lowest value for 5%, and thus the highest level
of uncertainty.

The numerical procedure described in this section can be summarized by three different
bisection methods (See for example Presset al., 1989) BISECT 1, BISECT2and BISECT
3 and are described in the Appendix in Pseudo Pascal.

4. EXAMPLES

The authors implemented the bisection methods described in the previous sectionin a
PC-based program BETA-CALCULATOR. The accuracy for ¢ in the bisection methods
BISECT1and BISECT?2was set to 10~8. The accuracy in the bisection method BISECT'3
was set to 10—, Table | contains solutions to problem P for 5 different combinations of alower

guantile and upper quantile constraint calculated using BETA-CALCULATOR. In addition,
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Table | provides the maximum number of iterations in each bisection method to yield the
solutions with the above settings of error tolerances.

Table I. Some Calculation Examples

q x, at G #1|#2|#3
Examplel | L | 0.05 | 0.15 | 0.886 | 0.540 |23 |25 |12
U |0.15|0.75
Example2 | L | 0.65 | 0.65 | 0.615 | 32.000 | 28 [ 26 |1
U095 |0.75
Example3 | L | 0.49 | 0.25 | 0.267 | 11.390 | 71 |24 | 11
U |0.99 | 0.60
Exampled4 | L | 0.25 | 0.25 | 0.338 | 14.375 | 45 |24 |8
U |0.95 | 0.55
Exampled | L | 0.05 | 0.45 | 0.633 | 19.562 | 44 | 25 | 10
U |0.95 | 0.80

The figures below have been generated using BETA-CALCULATOR. Figure 2 and
Figure 3 contain examples of the implicit functions G, (8) and G, (/3) associated with
Example 1 and Example 5, respectively. Finaly, Figure 4 contains plots of the function H (/3) for
the examplesin Table . It may be observed from the examplesin Figure 4 that: (a) H () has0
or 1stationary pointsfor 5 > 0and (b) if H(3) hasastationary point for 5 > 0 this point
coincides with a global maximum. The analysisin Figure 4 supports the conjecture in Section 3,
i.e. that the solution of the parameters of a beta distribution subject to alower quantile constraint

and upper quantile constraint exists and is unique.
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Figure 2. A plot of G,, (8) and G,, () for Example 1 in Table I.
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Figure 3. A plot of G, () and G, (53) for Example 5 in Table I.
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H(B)

/ Example/ Example/ Example/ Example/ Example
1 2 3 4 5

Figure 4. Plot of the function H(3) for the Examples in Table I.

REFERENCES

Chaloner, K.M and Duncan, G.T. (1983). Assessment of a Beta Prior Distribution: PM
Elicitation. The Satistician, 32, 174 - 181.

Cooke, R.M. (1991). Expertsin Uncertainty: Opinions and Subjecive Probability in Science.
Oxford University Press, Oxford.

Gavaskar, U. (1988). A Comparison of Two Elicitation Methods for a Prior Distribution for a
Binomial Parameter. Management Science, 34, 784 - 790.

Harris, B. (1966). Theory of Probability. Addision-Wesley, Reading.

Lau, H. and Lau, A. (1991). Effective Procedures for Estimating Beta Distribution's Parameters
and their Confidence Intervals. Journal of Satistical Computation and Simulation, 38, 139-150.

Martz, H.F. and Waller, R.A. (1982). Bayesian Reliability Analysis. Wiley, New Y ork.

Press, S.J. (1989). Bayesian Statistics, Principles, Models and Applications. Wiley, New Y ork.

Journal of Statistical Computation and Simulation, 2000, Vol. 67, pp. 189 - 201 13



VAN DORP AND MAZZUCH]I (2000) SOLVING FOR BETA PARAMETERS

Press, W.H., Flannery, B.P., Teukolsky S.A. and Vettering W.T. (1989). Numerical Recipesin
Pascal, Cambridge University Press, Cambridge.

Proschan, F. and Singpurwalla, N.D. (1979). Accelerated Life Testing - A Pragmatic Bayesian
Approach. In: J. Rustagi, Optimizing Methods in Statistics, Academic Press, New Y ork, 385 -
401.

Weller, H. (1965). The Use of Incomplete Beta Functions for Prior Distributions in Binomial
Sampling. Technometrics, 7, 335 - 346.

APPENDI X

Let X ~ Beta(f- «, (- (1 — «)). The bisection methods below use a numerical agorithm
givenin Presset al. (1989) to evaluate the incomplete beta function B( - | a, b) given by (1).
BISECT1(«, 3, q) solvesfor the g-th quantile z, of X. BISECT2(x,, 5, q) solvesfor the
parameter o° satisfying the quantile constraint (x,, q). BISECT3(zy, , x4, ,q5, qu) Solvefor a
solution (o, §*) solving P. A method to determine a starting interval [a;, b;] containing 3* is

gvenin STEP 1, STEP 2,and STEP 3of BISECT 3.

BISECT1(a,3,9) :
STEP1 m: =1; Set[dy,el] =[0,1];
STEP2 gy : =%t g, = Bz, 8-a,8- (1—a));
STEP 3 If gn <qthendpi1: =Tgm;emt1: = €m;
Else epi1: =Tgm; A1 @ = dp;
STEP4 If|qm—q| < 6then Stop
FElse m: =m+ 1;Goto STEP 2;

BISECT2(z,,,9) :
STEP1 n: =1; Set[di,e1] =[0,1];
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STEP?2
STEP 3

STEP4

Qpy1 @ = %; dn - = B(Iq ’ ﬂ Oanrl,ﬁ' (1 - anJrl));

If qn < qthenepir: = any1; dpgr 0 = dy;
Elsedpi1 = apy1ieni1 0 = €y

If|q,—q| <6 then Stop;

FElsen: =n+1; Goto STEP 2;

BISECT3(x,,,%q,,4r5,qU):

STEP1

STEP 2

STEP3

STEPA4

STEPH

STEPG6

STEPT7

ke=1 bk =1,

(@°)15: = BISECT2(zy,, Bk, qu);

(@g )iy o = BISECTL((a®) 15, Bik, qL);

If (g )1k < g then Brjpi1: =2 B1x; Goto STEP 2;
Else [a1,b1] : =0, Bk

1. . aitby,
k=10 =g

(ao)k L= BISECT2($quﬂk7QU)7 (qu)k L= BISECTl((aO)kaﬁkacJL)’

If(xg)k < xg then agpyr @ = Br; b1 @ = by
Else apy1: = ag;bryr @ = By;
If |(zg)r — xq,| < 6then Stop

Flsek: =k+1; Goto STEP 5;
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