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ABSTRACT

 It will be shown that a solution exists for the parameters of a beta distribution given any

combination of a  lower quantile and upper quantile constraint. A numerical procedure is

developed to solve for the parameters of the beta distribution given these quantile constraints.

Example solutions are provided.
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1. INTRODUCTION

 Many authors (e.g. Gavaskar, 1988)  have quoted the suitability of the beta distribution in

different applications because of its flexibility. In classical analyses, estimation of the parameters

of a beta distribution have concentrated on maximum likelihood estimation (Lau and Lau, 1991).

In Bayesian analyses, methods for eliciting the parameters of a beta distributions have focused on

eliciting: (a) a measure of central tendency such as the mean and a measure of dispersion such as

the variance (e.g. Press, 1989, p. 40), (b) the mean and an additional quantile (e.g. Martz and

Waller, 1982), or (c) (e.g. Gavaskar, 1988, Chaloner and Duncan, 1983,equivalent observations 

Cooke, 1991).

*Department of Engineering Management and Systems Engineering, 2130 H Street, Suite 704, Washington, DC
20052, E-mail: dorpjr@seas.gwu.edu.
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 This paper will address the topic of solving for the parameters of a beta distribution given

two distinct quantiles. Solving for the parameters of a beta distribution using two distinct

quantiles involves using the incomplete beta function given byFÐBl +ß ,Ñ

FÐB +ß ,Ñ œ ? Ð"  ?Ñ .?ß Ð"Ñ
"

Ð+ß ,Ñ
 | 


(
!

B
+" ,"

where incomplete beta function has no+  !ß ,  ! Ð+ , œ and , ) . The   > >
>
Ð+Ñ† Ð,Ñ
Ð+,Ñ FÐBl +ß ,Ñ

closed form. Weiler, 1965, resorts to solving for the parameters of the beta distribution given the

: Ð"  :Ñ-th and -th quantile graphically. This graphical approach, however, is limited to the

number of graphs plotted. For intermediate solutions interpolation methods must be used, which

may result in an interpolation error.

 In this paper, the flexibility of the beta distribution will be reconfirmed by proving that a

solution exists for the parameters of a beta distribution for any combination of a lower quantile

and upper quantile constraint. numerical procedure will be described which solves for Next, a 

parameters of a beta distribution given a lower quantile and upper quantile constraint. The

numerical procedure can be easily adapted to the case of Weiler, 1965, and improves the

graphical method. In addition, the numerical procedure can be adapted to the case where the

median and an additional quantile are specified as measures of central tendency and dispersion.

In the next section, some properties of the beta distribution will be derived that are used to prove

the theoretical result and to design the numerical procedure.

2. SOME PROPERTIES OF THE BETA DISTRIBUTION

Let (1 i.e.\ µ F/>+Ð † ß †  ÑÑß" α " α

T<Ö\ Ÿ Blα "
 " α " α

ß × œ ? Ð"  ?Ñ .? Ð#Ñ
"

Ð † ß † Ð"  ÑÑ
(
!

B
† " †Ð" Ñ"" α " α
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where Note that the chosen parameterization in is different from the!   "ß  ! Þ Ð#Ñα "

conventional parameterization in . Any beta distribution using the parameterization of  hasÐ"Ñ Ð"Ñ

a unique parameterization in and vice versa. Using the parameterization of it follows thatÐ#Ñ Ð#Ñ

IÒ\ l ß Ó œ œ † ß 7 œ "ß #ß $ßá Ð$Ñ

Ð †  7 3Ñ Ð †  7 3Ñ

Ð  7 3Ñ Ð  7 3Ñ

7 3œ" 3œ"

7 7"

3œ"

7

3œ"

7"
α " α

" α " α

" "

# #
# #

with the convention that . From it easily follows that#
3œ"

0
Ö † × œ " Ð$Ñ

IÒ\l ß Ó œ Ð%Ñα " α 

Z +<Ò\l ß Ó œ Þ Ð&Ñ
† Ð"  Ñ

Ð  "Ñ
α "

α α

"

Consider the two different classes of degenerate distributions presented in Figure 1.

0 1

α
1- α

0 1

1

α

0 < α < 1

CLASS 1 CLASS 2

0 < α < 1

 
Figure 1. Two classes of degenerate beta distributions.

From and follows that the degenerate distribution in Class 1 of Figure 1 is the limitingÐ%Ñ Ð&Ñ

distribution obtained by letting . With follows that the moments of the limiting" Ä ∞ Ð$Ñ

distribution by letting coincide with the moments of the degenerate distribution in Class 2" Æ !



VAN DORP AND MAZZUCHI (2000) SOLVING FOR BETA PARAMETERS

Journal of Statistical Computation and Simulation, 2000, Vol. 67, pp. 189 - 201 4

in Figure 1 (i.e. a Bernoulli with a point mass of  at ). As both and the degenerateα " \

distribution of Class 2 have a bounded support, it follows that the degenerate distribution in

Class 2 is the limiting distribution by letting  (see e.g. Harris, 1966, p. 103). U" Æ ! sing the

notation of , that for Ð"Ñ ,  !it has been shown (see e.g. Proschan and Singpurwalla, 1979)

!  +  + Ê + + ß a − Ð!ß "Ñ Ð'Ñ" # " #FÐB ß ,Ñ  FÐB ß ,Ñ |  | x , 

and for +  !

,  ,  ! Ê + + ß a − Ð!ß "Ñ Ð(Ñ" # FÐB ß , Ñ  FÐB ß , Ñ |  | " # x , 

From  and it may be derived thatÐ'Ñ Ð(Ñ

α α " α " α "# " # "  !ß  ! Ê ß Ñ  ß Ñ Ð)ÑT <Ð\ Ÿ Bl T<Ð\ Ÿ Bl .

3. THEORETICAL RESULT

 Definition 1 below introduces the quantile constraint concept used in the remainder of

this paper.

H/0383>398" À P/> !  B  "ß !  ;  "Þ; A random variable \A3>2 =?::9<> Ò!ß "Ó

satisfies quantile constraint ÐB ß ;Ñ Í T<Ö\ Ÿ B × œ ;; ; .

As previously stated, the motivation of this paper is derived from the following problem..

T<9,6/7c À W96@/ +8. 09<\ µ F/>+Ð † ß † Ð"  ÑÑ ?8./< >2/ >A9 ;?+8>36/    α " " α " α

-98=><+38>= ÐB ß ; Ñ +8. ÐB ß ; Ñß A2/</ ;  ;; P ; Y P YÞP Y

 Solving problem  involves the use of the incomplete beta function given by  andc Ð"Ñ

therefore has no closed form solution. Also, the quantile constraints in problem  can bec

considered a set of two nonlinear constraints in two unknowns, i.e. , and as such does notα " and 

necessarily have a feasible solution. To construct a numerical procedure with solves problem c
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in a finite number of iterations, it is necessary to prove that problem  has a solution for anyc

combination of the two quantile constraints. This assertion will be proved in Theorem 1 through

limiting arguments.

X2/9</7" À There exist a solution to problem Ð ß Ñα "‡ ‡ cÞ

T<990 À The proof involves four steps. In the first step it will be proved, using the notation in

Ð#Ñ  ÐB ß ;Ñß, that for a given 0 and a quantile constraint  a unique  exist such that" α;
‰

\ µ F/>+Ð † ß †  ÑÑ" "α α‰ ‰(1 satisfies that quantile constraint. In the second step it will be

shown that for  the parameter ( ). In the third step it will be shown that for" αÆ ! Ä "  ;‰

" αÄ ∞ Ä B the parameter . Finally, in the fourth step, the statement of this theorem will be‰
;

utilized.

W>/: " À Let a quantile constraint be specified for Assume that 0 is given andÐB ß ;Ñ \Þ ; "

introduce the function ,  in  and , where0 α " α "Ð Ñ

0 α " α " α "Ð Ñ œ T<Ö\ Ÿ B l ß ×  ;ß !   "  !Þ Ð*Ñ, , ;

From the structure of  it follows that Ð#Ñ 0 α "Ð Ñ,  is a continuous differentiable function for

!    !Þ Ð Ñ α " 0 α " "1, ,  when 0 fixedConsider 0 and . From and  it follows,α Æ Ð%Ñ Ð&Ñ

respectively, that

Ú
ÛÜ

P37
Æ !

P37 Z +<
Æ !

α

α

IÒ\l ß Ó œ !

Ò\l ß Ó œ !
Ð"!Ñ

α "

α "
,

for any fixed Hence 0, the distribution of  converges to a degenerate" α !Þ Æ \when 

distribution with a single point mass at With !Þ !  B  "ß !  ;  " Ð*Ñ;   it thus follows from 

that
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P37 Ð Ñ œ  !ß Ð""Ñ
Æ !α

0 α ",  "  ;

for any fixed Similarly, using and using that the distribution of  converges to a"  !Þ Ð%Ñß Ð&Ñ \

degenerate distribution with a single point mass at 1 when ,α Å "  it follows that

P37 Ð Ñ œ  !ß Ð"#Ñ
α Å "

 ;0 α ",  

for any fixed "  !Þ From and ,  being a continuous function, it follows thatÐ""Ñß Ð"#Ñ Ð Ñ0 α "

b − Ð!ß "Ñ Ð ß Ñ œ ! a  ! Ð"$Ñ : ,  .α 0 α " "‰ ‰

Utilizing expression  it follows that  is a strictly decreasing function in for any fixedÐ)Ñß Ð ß Ñ0 α " α

" " α 0 α " !  Ð ß Ñ œ !. Thus, given fixed 0,  is the unique solution to  and‰

\ ÐB ß ;Ñ  Þµ F/>+Ð † ß †  ÑÑ" "α α "‰ ‰
;(1  satisfies the quantile constraint given fixed 0  Before

we proceed with Step 2, note that the solution  depends on  (cf. )  and  (cf. )α "‰
;B Ð*Ñ Ð"$Ñ

motivating the following notation

α Z "‰
Bœ Ð ß Ð"%Ñ
;

)

where ): , , , such thatZB ;;
Ð † Ð!ß∞Ñ Ä Ð!ß "Ñ !  B  " !  ;  "

0 Z " " "Ð Ð Ñ œ ! a  ! Ð"&ÑB;
), ,  .

From the structure of , and the implicit function theorem  it follows that ) is aÐ#Ñ Ð"&Ñß ß ÐZ "B;

continuous function for  Using the definition of  given by , and  it follows" 0 α " !Þ Ð ß Ñ Ð*Ñ Ð"&Ñ

that

T<Ö\ Ÿ B l Ð ß × œ ;ß a  ! Ð"'Ñ; BZ " " "
;

) .

W>/: # À Consider ), and let \ œ Ð Æ !Þµ F/>+Ð † ß †  ÑÑß" "α α α Z " "‰ ‰ ‰
B(1 where 
;

From

continuity of T<Ö\ Ÿ B l Ð ß × B Ð"'Ñ; B ;Z " " "
;

)  in  for fixed it follows with that

P37 T<Ö\ Ÿ B l Ð ß × œ ;Þ Ð"(Ñ
Æ !"

Z "; B;
)  "

From the structure of it has been shown that when , the distribution of  converges to aÐ#Ñ Æ ! \"
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degenerate distribution of Class 2, indicated in Figure 1. The limiting expectation of  when\

" Æ ! thus follows as the expectation of a Bernoulli random variable and from it follows thatÐ"(Ñ

P37 IÒ \l Ð ß Ó œ "  ; Ð")Ñ
Æ !"

Z " "  )  .B;

However, from  follows thatÐ%Ñ

IÒ\l Ð ß Ó œ Ð ß Ð"*Ñ ) )Z " " Z "B B; ;

for any and it may be concluded with and that"  ! Ð")Ñ Ð"*Ñ

P37 Ð œ "  ;Þ Ð#!Ñ
Æ !"

Z "B;
)

Or in other words, when  the parameter ( )." αÆ !ß Ä "  ;‰

W>/: $ À  Consider ), and let . From\ œ Ð Ä ∞µ F/>+Ð † ß †  ÑÑß" "α α α Z " "‰ ‰ ‰
B(1 where 
;

Ð&Ñ Ä ∞ \follows that when  the distribution of  converges to a degenerate distribution of"

Class 1 in Figure 1 with a single point mass at some B − Ò!ß "ÓÞñ

From continuity of T<Ö\ Ÿ B l Ð ß × B Ð"'Ñ; B ;Z " " "
;

)  in  for fixed it follows from that

B œ B Ð#"Ññ
;

However, this means that,

P37 IÒ \l Ð ß Ó œ B Ð##Ñ
Ä ∞"

Z " "  ) .B; ;

Again from  it thus follows thatÐ%Ñ

P37 Ð œ B Ð#$Ñ
Ä ∞"

Z "B ;;
) .

Or in other words, when , the parameter ." αÄ ∞ Ä B‰
;

W>/: % À  Let and be two quantile\ B ß ; Ñ B ß ; Ñµ F/>+Ð † ß †  ÑÑÞ Ð Ð" α " α(1  Let ; P ; YP Y

constraints specified for , such that  . Consider the associated functions ) and\ ;  ; ÐP Y BZ "
;P

Z "B;Y
Ð Ð*Ñ "&) each defined implicitly by and ( ). Introducing the function

LÐ Ñ œ Ð  Ð ß Ð#%Ñ" Z " Z "B B; ;P Y
) )  
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it follows from thatÐ#!Ñ

P37 LÐ Ñ œ Ð"  ; Ñ  Ð"  ; Ñ œ ;  ;  !Þ Ð#&Ñ
Æ !"

" P Y Y P

Similarly from it follows thatß Ð#$Ñ

P37 LÐ Ñ œ B  B  !Þ Ð#'Ñ
Ä ∞"

" ; ;P Y

From the continuity of  ) and ),  and  it follows thatZ " Z "B B; ;P Y
Ð Ð Ð#&Ñ Ð#'Ñ

b  ! À LÐ Ñ œ !Þ Ð#(Ñ" "‡ ‡

Denoting ) cf. it follows from thatα Z "‡ ‡
Bœ Ð Ð Ð"%ÑÑß Ð#(Ñ
;P

α Z " Z "‡ ‡ ‡
B Bœ Ð œ Ð Þ Ð#)Ñ
; ;P Y

) )

In other words,  satisfies both quantile constraints  and\ ÐB ß ; Ñµ F/>+Ð † ß †  ÑÑ" α " α‡ ‡ ‡ ‡
; P(1
P

ÐB ß ; Ñ Ð Ñ Þ; Y
‡ ‡

Y
 and thus ,  is a solution to problem α " c

 

 Theorem 1 proves the existence of a solution to problem . The uniqueness of thec

solution to  would follow by showing that; (1) ) has  or 1 stationary points forÐ ß Ñα "‡ ‡  c "LÐ !

" " " ! LÐ ; (2) if ) has a stationary point for 0 this stationary point coincides with a global

maximum. It is conjectured that the above assertion holds. Numerical analyses in the examples

below support this conjecture. In case multiple solutions exist to problem , the numericalc

algorithm below is designed so that the selected solution coincides with the solution with the

lowest value for , and thus the highest level of uncertainty. The later solution would be a"‡

preferred solution in case B B; ;P Y
and  are elicited through expert judgment.

4. DESIGN OF A NUMERICAL PROCEDURE

 As problem   cannot be solved in closed form, a numerical procedure that finds ac

solution to problem  with a prescribed level of accuracy in a finite number of iterations, isc

desirable. Below, such a numerical procedure will be described informally  The numericalÞ
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method uses a procedure to solve for the -th quantile of a beta distribution with known;

parameters. Such a procedure is described in the appendix.

 With and follows that  is a  and  is anÐ%Ñ Ð&Ñ α "location parameter uncertainty parameter

given the value of Theseα ", where higher values of  coincide with lower uncertainty levels.

interpretations of the parameters α " and  are used in the design of the numerical procedure to

find a solution to  whichc. Assume for now that an interval  is established containing Ò+ ß , Ó" " "‡

yields a solution of where . Let  be the midpoint of this interval TheÐ ß Ñ ß œ Þα " c α‡ ‡ ‡
"Z "B

‡
;
Ð ) "

5-th iteration of the numerical procedure is described below.

 To solve  satisfying the quantile constraint of  given a value for ,Ð ÐB ß ; Ñα "‰Ñ5 ; YY
c 5

successive shrinking intervals will be calculated containing the solution .  With Ò. ß / Ó Ð Ð#Ñ8 8 5α‰Ñ

follows that .  Hence,  .  Next,  is set to the midpoint of Ð − Ò!ß "Ó Ò. ß / Ó œ Ò!ß "Ó Ò. ß / Óα α‰Ñ5 " " 8 8 8

after which the probability mass  is calculated.  In caseÐ; Ñ œ T<Ö\ Ÿ l ß ×Y 8 ; 8B
Y
α "5

Ð; Ñ Ÿ ; ß Ð%ÑY 8 Y the beta distribution is skewed too much towards 1.  Therefore, with it follows

that the value of the location parameter  is too high.  Hence, the next interval containingα α8 5Ð ‰Ñ

is   Vice versa, in case  the beta distribution is skewed tooÒ. ß / Ó œ Ò. ß ÓÞ Ð; Ñ  ; ß8" 8" 8 8 Y 8 Yα

much towards .  Therefore, with it follows that the value of the location parameter  is too! Ð%Ñ α8

small.  Hence, the next interval which contains can be set toÐ Ò. ß / Ó œ Ò ß / ÓÞα α‰Ñ5 8" 8" 8 8

Finally, the next estimate  is set to be the midpoint of the interval . The aboveα8" 8" 8"Ò. ß / Ó

procedure is repeated until  is close to   with a desired level of accuracy. The quantileÐ; Ñ ;Y 8 Y

constraint of is met once this accuracy has been reached and  is set equal to theÐB ß ; Ñ Ð; Y 5Y
c α‰Ñ

last generated .α8

 After solving for the procedure calculates the -th quantile ( ) ofÐ ß ;α‰Ñ5 P 5B;P

F/>+Ð † Ð ß † Ð"  Ð ÑÑ  F/>+Ð † Ð ß" α " α " α5 5 5 5 5 5 5
‰ ‰ ‰Ñ Ñ Ñ. In case ( ) the uncertainty in B B; ;P P

" α "5 5 5† Ð"  Ð ÑÑ‰Ñ is too high. Therefore, the current estimate of the uncertainty parameter is

too low.  Hence, the next interval which contains can be set to . Vice" "‡ Ò+ ß , Ó œ Ò ß , Ó5" 5" 5 5

versa, if ( ) the uncertainty in is too low Therefore,B B; ;P P5 5 5 5 5 F/>+Ð † Ð ß † Ð"  Ð ÑÑ Þ" α " α‰ ‰Ñ Ñ

the current estimate of the uncertainty parameter is too high.  Hence, the next interval which"5
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contains can be set to  Finally, the next estimate is taken to be the" " "‡ Ò+ ß , Ó œ Ò+ ß ÓÞ5" 5" 5 5 5"

midpoint of the interval . The above procedure is repeated until the current estimateÒ+ ß , Ó5" 5"

( )  is close to  with a desired level of accuracy.  The quantile constraint of  isB B; ;P P5 ; PÐB ß ; Ñ
P

c

met once this accuracy has been reached. The parameters  are set equal to theÐ ß Ñα "‡ ‡ solving c

last generated tuple ÐÐ ß ÑÞα "‰Ñ5 5

 To establish a starting interval  containing  the following steps may be adoptedÒ+ ß , Ó" " "‡

in the procedure.  Set the lower bound  To obtain the upper bound set , where+ œ !Þ , ß œ "" " " 5" ,

5 œ " Ð B, and solve for satisfying  the quantile constraint of problem  as described inα‰Ñ "ß5 ;Y c

the previous paragraph  Next, solve for the -th quantile ( ) ofÞ ; F/>+Ð † ÐP ; " 5 " 5B
P , ," α‰Ñ

"ß5 " 5 "ß5 ; " 5 ; " 5ß † Ð"  Ð ÑÑ  F/>+Ð † Ð" α " α, , ,
‰ ‰Ñ Ñ.  In case ( ) the uncertainty in B B

P P

"ß5 " 5 "ß5 " 5 " 5" " 5
‡ß † Ð"  Ð ÑÑ  œ # †" α " " ", , , ,

‰Ñ  is too high. Therefore, .  In that case, set    and"

repeat the above procedure.  Vice Versa, in case ( ) the uncertainty inB B; " 5 ;P P, 

F/>+Ð † Ð ß † Ð"  Ð ÑÑ  Þ" α " α "" 5 "ß5 " 5 "ß5 " 5
‡

, , ,
‰ ‰Ñ Ñ  is too low. Therefore, In that case, set"

, œ Ò+ ß , Ó" " 5 " "" , and the starting interval  has been established. Note that, in case multiple

solutions exist to problem , the starting interval is chosen such that the selected solution to  byc c

the algorithm coincides with the solution with the lowest value for , and thus the highest level"‡

of uncertainty.

 The numerical procedure described in this section can be summarized by three different

bisection methods See for example Press et al., 1989) and Ð FMWIGX "ß FMWIGX# FMWIGX

$ and are described in the Appendix in Pseudo Pascal.

4. EXAMPLES

 The authors implemented the bisection methods described in the previous section in a

PC-based program BETA-CALCULATOR. The accuracy for  in the bisection methods$

FMWIGX" FMWIGX# "! FMWIGX$and was set to . The accuracy in the bisection method )

was set to . Table I contains solutions to problem   for  different combinations of a lower"! &% c

quantile and upper quantile constraint calculated using BETA-CALCULATOR.  In addition,
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Table I provides the maximum number of iterations in each bisection method to yield the

solutions with the above settings of error tolerances.

 Table I. Some Calculation Examples

; B "

IB+7:6/ " P !Þ!& !Þ & !Þ))' !Þ&%! #$ #& "#
Y !Þ"& !Þ(&

IB+7:6/ # P !Þ'& !Þ'& !Þ'"& $#Þ!!! #) #' "
Y !Þ*& !Þ(&

IB+7:6/ $ P !Þ%* !Þ#& !Þ#'( ""Þ$*!

;
‡ ‡α " #  #  2 #  3

1

(" #% ""
Y !Þ** !Þ'!

IB+7:6/ % P !Þ#& !Þ#& !Þ$$) "%Þ$(& %& #% )
Y !Þ*& !Þ&&

IB+7:6/ & P !Þ!& !Þ%& !Þ'$$ "*Þ&'# %% #& "!
Y !Þ*& !Þ)!

 The figures below have been generated using BETA-CALCULATOR. Figure 2 and

Figure 3 contain examples of the implicit functions and  associated withK Ð Ñ K Ð ÑB B; ;P Y
" "

Example 1 and Example 5, respectively. Finally, Figure 4 contains plots of the function forLÐ Ñ"

the examples in Table I. It may be observed from the examples in Figure 4 that: (a) ) has LÐ !"

or 1 stationary points for and (b) if ) has a stationary point for 0 this point" " " ! LÐ 

coincides with a global maximum. The analysis in Figure 4 supports the conjecture in Section 3,

i.e. that the solution of the parameters of a beta distribution subject to a lower quantile constraint

and upper quantile constraint exists and is unique.
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Figure 2. A plot of and  for Example 1 in Table I.K Ð Ñ K Ð ÑB B; ;P Y
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Figure 3. A plot of and  for Example 5 in Table I.K Ð Ñ K Ð ÑB B; ;P Y
" "
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Example
1

Example
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4
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Figure 4. Plot of the function  for the Examples in Table I.LÐ Ñ"
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APPENDIX

Let . numerical algorithm\ µ F/>+Ð † ß † Ð"  ÑÑ" α " α The bisection methods below use a 

given in Press et al. (1989) to evaluate the incomplete beta function ) given by .FÐ † l +ß , Ð"Ñ

FMWIGX" ß ;Ñ B \ FMWIGX# B ß ß ;Ñ( ,  solves for the q-th quantile of . (  solves for theα " "  ; ;

parameter  satisfying the quantile constraint .  solve for aα‰ ÐB ß ;Ñ FMWIGX$Ð ß Ñ; B B ß ; ß ;; ; P YP Y
 

solution ,  solving A method to determine a starting interval containing  isÐ Ñ T Þ Ò+ ß , Óα " "‡ ‡ ‡
" "

given in  ,  , and of WXIT " WXIT # WXIT $ FMWIGX $Þ

FMWIGX" ß ;Ñ À( ,α "

WXIT " 7 À œ "à W/> Ò. ß / Ó œ Ò!ß "Ó à  1 1

WXIT # B À œ à ; À œ FÐB l † ß † Ð"  ÑÑà   ;ß7 7 ;ß7
. /

#
7 7 " α " α

WXIT $ M0 ; Ÿ ; >2/8 . À œ B à / À œ / à   7 7" ;ß7 7" 7

   I6=/ / À œ B à . À œ . à7" ;ß7 7" 7

WXIT % M0 l ;  ;l  >2/8W>9:à  7 $

   I6=/ 7 À œ 7 "àK9>9 WXIT #à

FMWIGX# B ß ß ;Ñ À( ; "

WXIT " 8 À œ "à W/> Ò. ß / Ó œ Ò!ß "Ó à  1 1
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WXIT # À œ à ; À œ FÐB l † ß † Ð"  ÑÑà    α " α " α8" 8 ; 8" 8"
. /

#
8 8

WXIT $ M0 ; Ÿ ; >2/8 / À œ à . À œ . à  8 8" 8" 8" 8α

   I6=/ . œ à / À œ / à8" 8" 8" 8α

WXIT % M0 l ;  ;l  >2/8 W>9:à    8 $

   I6=/ 8 À œ 8  "à K9>9 WXIT #à

FMWIGX$Ð ß ÑB B ß ; ß ;; ; P YP Y
:

WXIT " 5 À œ "à À œ "à ""ß5

WXIT # Ð À œ FMWIGX# B ß ß ; Ñà  (α‰Ñ "ß5 ; "ß5 YY
"

 ( ) (B; " 5 "ß5 "ß5 PP , À œ FMWIGX" Ð ß ß ; Ñàα‰Ñ "

WXIT $ M0  B >2/8 À œ # † à K9>9 WXIT #à ( )   B; " 5 ; "ß5" "ß5P P, " "

  I6=/ Ò+ ß , Ó À œ Ò !ß Óà" " "ß5"

WXIT % 5 À œ "à À œ à ""
+ ,

#
" "

WXIT & Ð À œ FMWIGX# B ß ß ; Ñà ÐB Ñ À œ FMWIGX" Ð ß ß ; Ñà ( (α α‰ ‰Ñ Ñ5 ; 5 Y ; 5 5 5 PY P
" "

WXIT ' M0 ÐB Ñ  B >2/8 + À œ à , À œ , à  ; 5 ; 5" 5 5" 5P P
"

  I6=/ + À œ + à , À œ à5" 5 5" 5"

WXIT ( M0 l ÐB Ñ  B l  >2/8 W>9:  ; 5 ;P P
$

  I6=/ 5 À œ 5  "à K9>9 WXIT &à


