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Abstract 

Several major risk studies have been performed in recent years in the maritime 

transportation domain. These studies have had significant impact on management 

practices in the industry. The first, the Prince William Sound Risk Assessment, was 

reviewed by the National Research Council and found to be promising but incomplete, as 

the uncertainty in its results was not assessed. The difficulty in assessing this uncertainty 

is the different techniques that need to be used to model risk in this dynamic and data-

scarce application area. In previous articles, we have developed the two pieces of 

methodology necessary to assess uncertainty in maritime risk assessment, a Bayesian 

simulation of the occurrence of situations with accident potential and a Bayesian 

multivariate regression analysis of the relationship between factors describing these 

situations and expert judgments of accident risk. In this paper, we combine the methods 

to perform a full-scale assessment of risk and uncertainty for two case studies. The first is 

an assessment of the effects of proposed ferry service expansions in San Francisco Bay. 

The second is an assessment of risk for the Washington State Ferries, the largest ferry 

system in the United States.  
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1. Introduction 

Maritime transportation is a critical part of the US economy; excluding Mexico and 

Canada, 95 percent of foreign trade and 25 percent of domestic trade depends on 

maritime transportation, cargo worth a total of $1.0 trillion of per year (National 

Research Council 2000, page 53). However, examples of accidents are easy to recollect; 

the grounding of the Exxon Valdez, the capsize of the Herald of Free Enterprise and the 

Estonia passenger ferries are some of the most widely publicized accidents in maritime 

transportation. The consequences of these accidents ranged from severe environmental 

damage to large-scale loss of life, but also severe economic problems for the companies 

involved. The Exxon Valdez disaster cost Exxon $2.2 billion in clean up costs alone. This 

leads to the immediate questions of how to prevent such accidents in the future and how 

to mitigate their consequences if they should occur.  

Risk management has become a major part of operating decisions for companies 

in the maritime transportation sector and thus an important research domain (National 

Research Council, 2000). Early work concentrated on assessing the safety of individual 

vessels or marine structures, such as nuclear powered vessels (Pravda & Lightner, 1966), 

vessels transporting liquefied natural gas (Stiehl, 1977) and offshore oil and gas 

platforms (Paté-Cornell, 1990). More recently, Probabilistic Risk Assessment (Bedford 

and Cooke, 2002) has been introduced in the assessment of risk in the maritime domain 

(Roeleven et al., 1995; Kite-Powell, 1996; Slob, 1998; Fowler and Sorgard, 2000; 

Trbojevic and Carr, 2000; Wang, 2000; Guedes Soares and Teixeira, 2001).  

The Prince William Sound (PWS) Risk Assessment (Merrick et al., 2000, 2002), 

Washington State Ferries (WSF) Risk Assessment (van Dorp et al. 2001) and an exposure 
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assessment for ferries in San Francisco Bay (Merrick et al., 2003) are three examples of 

successful risk studies in this domain. Their results have been used in major investment 

decisions and have played a significant role in the management of maritime 

transportation in the US.    

 In a maritime port system, traffic patterns change over time in a complex manner. 

The dynamic nature of these traffic patterns and, indeed, other situational variables, such 

as wind, visibility, and ice condition, mean that risk levels change over time. This 

requires the use of simulation to accurately model the impact of changes that affect the 

traffic patterns, such as introducing new traffic rules and increases or decreases in the 

volume of traffic in a given port. Furthermore, accident data that is relevant to a given 

port is often scarce, necessitating the use of expert judgment to estimate accident 

probabilities.  

Figure 1 shows the results from an analysis of proposed ferry service expansions 

in San Francisco Bay.  
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Figure 1. An assessment of alternative expansion scenarios for ferries in San 

Francisco Bay. 
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The estimates show the frequency of situations that could lead to a collision between 

ferries and other vessels for the current ferry system (Base Case) and three alternative 

expansion scenarios which increase the total number of ferry transits per year. As another 

example, Figure 2 shows the risk intervention effectiveness estimates from the WSF Risk 

Assessment (van Dorp et al., 2001). The figure shows the total percentage reduction in 

collision probability for the WSF system for various risk management alternatives. 
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Figure 2. An assessment of risk intervention effectiveness for proposed safety 

improvements for the Washington State Ferries. 

One problem with the representations in Figure 1 and Figure 2 is the apparent 

finality of the results. The decision-maker is led to believe that the results are definitive 

and are in no way uncertain. In fact, the National Research Council performed a peer 

review of the PWS Risk Assessment and concluded that the underlying methodology 

shows “promise” to serve as a systematic approach for making risk management 

decisions for marine systems (National Research Council 1998). However, to speak the 

truth in maritime risk assessments, the degree of uncertainty needed to be communicated 

(Kaplan 1997). “Risk management … should answer whether evidence is sufficient to 
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prove specific risks and benefits” (A. Elmer, President, SeaRiver Maritime, Inc. in 

National Research Council, 2000). 

The two pieces of methodology necessary to perform an uncertainty analysis for 

our maritime risk approach were developed in Merrick et al. (2005a) and Merrick et al. 

(2005b). In this article, we provide an overall framework for this combination. We use 

this framework to examine the uncertainty for two of our previous risk studies. We 

perform a complete uncertainty analysis of each result from the San Francisco Bay study 

(Figure 1) to demonstrate the complete approach and then examine the uncertainty in the 

assessment of risk intervention effectiveness for the WSF Risk Assessment (Figure 2) to 

show the use of this approach in the decision making process. While the framework is 

generic enough to be applied to other maritime risk work, and even other forms of 

transportation, some parts of the model are necessarily dependent on the availability of 

data in each study.  

A summary of the article is as follows. Section 2 discusses uncertainty and how it 

is best represented in risk analysis. The framework for a full uncertainty analysis of the 

results of the maritime probabilistic risk assessment models is summarized in Section 3. 

The results of an uncertainty case study are offered in Section 4, where the robustness of 

conclusions drawn in a study of ferry expansions in San Francisco Bay and the WSF Risk 

Assessment are assessed. Conclusions are drawn in Section 5. 

2. Uncertainty Analysis 

The presence of uncertainty in analyzing risk is well recognized and discussed in the 

literature. However, these uncertainties are often ignored or under-reported in studies of 

controversial or politically sensitive issues (Pate-Cornell, 1996). Two types of uncertainty 
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are discussed in the literature, aleatory uncertainty (the randomness of the system itself) 

and epistemic uncertainty (the lack of knowledge about the system). In a modeling sense, 

aleatory uncertainty is represented by probability models that give probabilistic risk 

analysis its name, while epistemic uncertainty is represented by lack of knowledge 

concerning the parameters of the model (Parry, 1996).  In the same manner that 

addressing aleatory uncertainty is critical through probabilistic risk analysis, addressing 

epistemic uncertainty is critical to allow meaningful decision-making. Cooke (1997) 

offers several examples of the conclusions of an analysis changing when uncertainty is 

correctly modeled. Another form of uncertainty concerning the model itself is discussed 

in the literature, the uncertainty regarding which of a list of alternative models most 

closely represents the real system (Nilsen and Aven, 2003). However, in this article we 

take the first step, adding consideration of epistemic uncertainty. The computational 

complexity of the analysis limited our scope at this point in time. 

While epistemic uncertainty can be addressed through frequentist statistical 

techniques such as bootstrap or likelihood based methods (Frey and Burmaster, 1999), 

the Bayesian paradigm is widely accepted as a method for dealing with both types of 

uncertainty (Apostolakis, 1978; Mosleh et al., 1988; Hora, 1996; Hofer, 1996; Cooke, 

1991). However, as pointed out by Winkler (1996), there is no foundational Bayesian 

argument for the separation of these types of uncertainty. Ferson and Ginzburg (1996) 

use the terminology variability for aleatory uncertainty and ignorance for epistemic. 

Winkler’s argument essentially says that variability is purely ignorance of which event 

will occur. 
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The distinction of types of uncertainty, however, does have certain uses in the risk 

assessment process (Anderson et al., 1999). Specifically, the distinction is useful when 

explaining model results to decision-makers and the public and when expending 

resources for data collection. In the communication case, the distinction must be drawn 

between the statements “we don’t know if the event will occur” and “we don’t know the 

probability that the event will occur.” In the data collection case, epistemic uncertainty 

can be reduced by further study and data collection, whereas aleatory uncertainty is 

irreducible, as it is a property of the system itself (Hora, 1996). Bayesian modeling can 

allow for the distinction and handle the underlying differences inherently. Monte Carlo 

simulation (Vose, 2003) can be used to propagate uncertainty through a model (requiring 

significant computer power), while Bayesian analytical techniques can be used for 

analyzing data and expert judgments (Cooke, 1991).  

3. Modeling Uncertainty in Maritime Risk Assessment 

We will use the example of a ferry system to demonstrate the application of uncertainty 

analysis for a maritime risk assessment (van Dorp et al. 2001; Merrick et al. 2003). We 

consider one type of accident, collisions between a ferry and another vessel. Collisions 

are caused by a triggering incident, specifically propulsion failure, steering failure, 

navigational aid failure, human error or error by a nearby vessel (which we do not 

disaggregate). While multiple errors and/or failures could be involved in the collision, the 

triggering incident is the error or failure that directly causes the collision itself if 

corrective actions do not succeed. Triggering incidents and collisions occur within a 

situation defined by factors that affect their probability of occurrence. Table 1 shows the 

factors that were used to describe the situations in the WSF Risk Assessment.  
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3.1 A Probabilistic Risk Framework 

The accident probability model is based on the notion of conditional probability, 

conditioning on the factors that determine the level of accident potential in a situation. To 

estimate the probability of a collision in a given time period, we sum over the possible 

situations giving 

1 1

( ) ( | , ) ( | ) (
k l

i j i j
j i

P Collision P Collision Incident Situation P Incident Situation P Situation
= =

= ∑∑ )j

(1)

where  denotes the possible combinations of values of the factors for jSituation

1,...,j k=  and k is the total number of possible combinations, and iIncident  denotes the 

-th of  possible triggering incidents (5 in our example here). The expected yearly 

frequency of collisions can then be calculated by multiplying the probability in (1) by the 

number of time periods in a year.  

i l

The accident probability model consists of three parts: 

• ( )jP Situation : the probability that particular combination of values of the factors 

occurs in the system; 

• ( |i )jP Incident Situation : the probability that a particular triggering incident 

occurs in the given situation; and 

• ( | ,i )jP Collision Incident Situation : the probability that an accident occurs in the 

defined situation once the triggering incident has occurred. 

To perform an assessment of the risk of an accident using this model, each term in the 

probability model needs to be estimated.  
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Table 1. The risk factors included in the expert judgment questionnaires. 

Variable Description  Notation Values 

1X  Ferry route and class FR_FC 26 

2X  Type of 1st interacting vessel TT_1 13 

3X  Scenario of 1st interacting vessel TS_1 4 

4X  Proximity of 1st interacting vessel TP_1 Binary 

5X  Type of 2nd interacting vessel TT_2 5 

6X  Scenario of 2nd interacting vessel TS_2 4 

7X  Proximity of 2nd interacting vessel TP_2 Binary 

8X  Visibility VIS Binary 

9X  Wind direction WD Binary 

10X  Wind speed WS Continuous 

The system simulation is used to count the occurrence of situations with different 

values of the defining factors. A simulation of the maritime transportation system is 

created incorporating vessel movements and environmental conditions. A situation is 

counted in each simulated time period where there is the potential that a ferry could be 

involved in an accident, in the case of collisions this occurs when a vessel is considered 

to be interacting with a ferry (see van Dorp et al. (2001) for a definition of situations with 

collision potential). A multi-year simulation is run and for each time period in the 

simulation the situations that occur are counted. So the probability of situations with 

particular values of the factors in a given time period, denoted ( )jP Situation , could be 

estimated using the simulation. The use of a system simulation also allows for the system 

8 



wide evaluation of risk reduction and risk migration effects potentially associated with 

the implementation of particular risk intervention measures (see, e.g., Merrick et al., 

2000, Merrick et al., 2002). Classical simulation techniques were used in the PWS, WSF 

and SF Bay  studies meaning that only point estimates of ( )jP Situation  were obtained. 

The preferred method for estimating ( | ,i )jP Collision Incident Situation  is through 

the statistical analysis of accident data. However, expert judgment elicitation is often 

crucial in performing risk analyses (Cooke, 1991). In both the PWS and WSF Risk 

Assessments less than three relevant accidents had been recorded. Thus the analysis had 

to rely, at least in part, on expert judgment. The aim of the expert elicitation method, as 

applied to maritime risk, is to estimate the effect of multiple factors on the probability of 

a collision, denoted ( | ,i )jP Collision Incident Situation . An example of the form of the 

questions drawn from the WSF risk assessment project is shown in Figure 3.  

Situation 1 Attribute Situation 2 

Issaquah Ferry Class - 

SEA-BRE(A) Ferry Route - 

Navy 1st Interacting Vessel Product Tanker 

Crossing Traffic Scenario 1st Vessel - 

< 1 mile Traffic Proximity 1st Vessel - 

No Vessel 2nd Interacting Vessel - 

No Vessel Traffic Scenario 2nd Vessel - 

No Vessel Traffic Proximity 2nd Vessel - 

> 0.5 Miles Visibility - 

Along Ferry Wind Direction - 

0 Wind Speed - 

 Likelihood of Collision   

 9   8   7   6   5   4   3   2   1   2   3   4   5   6   7   8   9  

Figure 3.  An example of the question format 

9 



Note that in each comparison, the situation is completely described in terms of the factors 

and only one factor is changed between the two situations the expert is asked to compare. 

The responses to the questions are in terms of relative probabilities of the event in the two 

situations. If the expert circles a “1”, this means they believe that the two probabilities 

would be equal, or if the expert circles a “9” on the right (left) then they believe the ratio 

of the probabilities is 9 (1/9) (Saaty, 1977). 

The form of the underlying probability model is assumed to be  

{ }0( | , ) exp T
i j jP Collision Incident Situation p Situation β= ,   (2)

 

where  is a baseline probability of a collision and 0p β  is a vector of factor effect 

parameters. Due to this choice of form, the ratio of probabilities will be equal to 

( )( )exp T
L RSituation Situation β− , where  and  are the vectors of 

factors for the situations on the left and right sides of the question respectively. If we 

equate the natural logarithm of the experts’ responses and the corresponding model 

terms, the analysis can be performed using linear regression techniques. Thus again, only 

point estimates were obtained. One should also note that it is possible to calculate 

probabilities above one using this method (but not below zero), requiring truncation. 

However, while the form of the model would allow incoherent values, they are extremely 

unlikely as we are dealing with low probability events in this context. 

LSituation RSituation

The determination of ( |i )jP Incident Situation  depends on the availability of data. 

While mechanical failure data is readily available, the availability of human error data is 

variable from port to port, meaning that there is no standard approach thus far for 
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estimating ( |i )jP Incident Situation  in our studies.  We will discuss this further in Section 

3.4. 

Figure 4 shows a simple influence diagram of the probability model in (1) along 

with the data used in estimating each conditional probability below each node. To address 

the uncertainties in the PWS/WSF Risk Assessment approach in a comprehensive and 

coherent manner we need to separately address uncertainty in the simulation estimates of 

( )jP Situation , uncertainties in the experts’ assessments of the conditional probabilities 

 and uncertainties in the estimation of mechanical 

failure and human error rates from available data and expert judgments to obtain 

.  We must then propagate these uncertainties though the 

framework expressed by (1).  

( | ,iP Collision Incident Situation )j

)j( |iP Incident Situation

Incidenti CollisionSituationj

Traffic
Data

Expert Judgments
For Human Errors

Mechanical
Failure Data

Historical Accident 
Classifications

Expert Judgments
For Collisions

 

Figure 4. A simplified influence diagram of the accident probability model along 

with the data used in estimation. 

3.2 Modeling Uncertainty in the Simulation 

Bayesian simulation differs from classical simulation analysis in that probability 

distributions are used to represent the uncertainty about model parameters rather than 
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point estimates and confidence intervals. Such treatment is applied to both random inputs 

to the model and the outputs from the model. In the language of uncertainty, classical 

simulation models only aleatory uncertainty, while Bayesian simulation models both the 

aleatory and epistemic uncertainty. We should note, however, that our use of the term 

Bayesian simulation is akin to Chick (1997), rather than that used in Bier and Andradottir 

(2000) where the output data is used to update the decision maker’s beliefs about both the 

input and output distributions simultaneously. Our approach follows Chick in updating 

the input distributions based on traffic data, passing the inputs through the simulation and 

learning about the outputs alone from the output data.  

In Bayesian simulation, input uncertainty should be incorporated in the analysis to 

reflect the limited data available to populate the parameters of the arrival processes in a 

simulation model (Chick 2001). Hence Bayesian renewal process models of traffic 

arrivals were created in Merrick et al. (2005a) for all vessel arrivals processes in the San 

Francisco Bay simulation. The prior distributions on the parameters for these renewal 

processes were updated with available traffic data from a Coast Guard Vessel Traffic 

Center. This input uncertainty is then propagated through the multiplication replications 

of the simulation using the following algorithm (Chick 1997, 2001): 

For r =1, …, n replications: 

1. Sample values from the posterior distributions for the renewal process parameters to be used 

in the r-th replication,. 

2. For the r-th replication: 

a. Sample random variates for the inter-arrival times given the parameter values drawn 

for each renewal process in Step 1; 

b. Generate the simulation output that is determined by these random variates. 

End loop 
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So aleatory uncertainty is represented within each replication, while epistemic 

uncertainty is represented across multiple replications. 

The presence of input uncertainty means that there will be uncertainty in the 

outputs as well. This will include both the aleatory and epistemic uncertainty from the 

input uncertainty propagated through the simulation. In our risk assessment methodology, 

the data obtained from the simulation in each replication will be the number of vessel 

interactions occurring in each replication of the simulation, denoted , for the ,r jN r -th 

replication (  for 1,...,r = s s  replications) and the j -th combination of values of the 

factors ( 1,...,j k= ). Following the Bayesian approach, we hypothesize a probability 

model for the random output data and specify our prior beliefs about the parameters of 

this output model. Chick (1997) notes that this can be thought of as a Bayesian version of 

meta-modeling (Law and Kelton 2001).  

As our output data is in the form of a count, Merrick et al. (2005a) model the 

number of situations  for the j -th combination of values of the factors as a Poisson 

distribution with rate jμ , with a conjugate gamma distributed prior on jμ  with shape jα  

and scale jγ .  Here jα  can be considered the total number of such situations observed by 

the decision maker in the real system and jγ  the number of periods the length of a 

replication for which the decision maker observed the system. The posterior distribution 

of the expected frequency of situations for the j -th combination of values of the factors 

is given by  

( ) ⎟
⎠

⎞
⎜
⎝

⎛
++∑

=

s

i
jjijjsjj sngammann

1
,,,1 ,~,,| γαμ …    (3) 
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The predictive distribution of  ( )jP Situation  is then a Poisson-gamma distribution in the 

sense of Bernado and Smith (2000). Note that the aleatory uncertainty here can be 

reduced by running longer simulations, the epistemic uncertainty cannot; this would 

require additional traffic data. For additional details of this analysis we refer the reader to 

Merrick et al. (2005a) 

3.3 Modeling Uncertainty in the Collision Probabilities 

Szwed et al. (2004) develop a conjugate Bayesian analysis for the questions depicted in 

Figure 3 and the model form shown in (2) assuming that the experts’ responses are not 

based on overlapping information (Clemen, 1987). Merrick et al. (2005b) extend this 

Bayesian analysis to account for the correlations between the responses of the experts by 

assuming a multivariate normal distribution on the experts’ judgment errors in the 

manner of Winkler (1981). Suppose we ask p  experts to respond to  such questions 

about  factors. We use the notation 

N

q ( ),1 ,,...,j j jSituation x x= q  to denote the differences 

between the  factors for the q j -th question and ,j ey  for the response to the j -th 

question by expert . The multivariate regression model used can be written as e

 1Tβ= +Y X U , (4) 

where  is a (  matrix of differences between the  covariates for  questions, 

 is a  vector of residual errors, 

X )

)

N q× q N

U (N p× ( )1,...,
T

qβ β β=  is the vector of regression 

parameters from (3) and ( 11 1 ,...,1
T

q= )  is a vector of p  1’s. The multivariate regression 

model is completed by assuming that the rows of U  are distributed according to a 

multivariate normal with a zero mean vector and covariance matrix . Merrick et al. Σ
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(2005b) show that the likelihood for this model can be written as a vector normal 

distribution with mean vector and covariance matrix given by  

1

* 1

ˆ 1
1 1T

βμ
−

−
=

BΣ
Σ

      (5) 

and 

( ) 1

* 11 1

T

T

X Xβ

−

−
=Σ

Σ
.       (6) 

 A natural conjugate analysis is made possible by the following distributional 

assumptions, 

( ) ( )mWishartInv ,~ G−Σ ,    (7) 

which defines an inverse Wishart distribution of dimension p  with parameter matrix G 

and m degrees of freedom, and 

( ) 1| ~ ,
1 1TMVNormalβ φ

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

AΣ
Σ

.      (8) 

φ , ,  and  are prior hyperparameters determined by the decision maker. A G m φ  

represents the decision maker’s prior mean estimate of β , while the matrix  defines 

the prior covariance between the elements of 

A

β . The matrix G  represents the decision 

maker’s prior estimate of the covariance between the experts and m  represents the 

degree of certainty in this estimate, with higher values representing more certainty.  

Given the experts’ responses to the questionnaires, the posterior distributions are 

( ) ( )| , ~ ,Inv Wishart m N− +Σ Y X G V +             (9) 

and 
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( ) ( ) ( ) 11111 1
1 1

ˆ 1| , , ~ ,
1 1 1 1

T
T T

T TMVNormalβ φ
−−−−− −

− −

⎛ ⎞+⎛ ⎞⎜ ⎟+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A X XBΣY X Σ A X X X X A
Σ Σ

. (10) 

The natural logarithm of the ratio to be predicted for two scenarios with difference vector 

*x  conditioned on  will be a multivariate normal distribution defined by  Σ

( ) ( ) ( ) 1111* * 1 1 *
1 1

ˆ 1| , , ~ ,
1 1 1 1

T
T T T T T

T T
*x MVNormal x x xβ φ

−−−−− −
− −

⎛ ⎞+⎛ ⎞⎜ ⎟+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A X XBΣY X Σ A X X X X A
Σ Σ

  (11) 

We may then integrate out  using (9) to obtain a student-t distribution. For additional 

details of this analysis, we refer the reader to Merrick et al. (2005b). 

Σ

3.4 Modeling Uncertainty in the Triggering Incident Probabilities 

There are three pieces necessary to model  for the different types 

of triggering incidents. The WSF made failure data available for propulsion failures, 

steering failures and navigational aid failures. The times between mechanical failures 

were modeled as exponential distributions with a different parameter 

( |iP Incident Situation )j

fλ  for each type of 

ferry ( ). For the exponential distribution with rate parameter 1,...10f = fλ , the gamma 

distribution is a natural conjugate prior for fλ . That is, if fλ  is assumed a priori to be 

drawn from a gamma distribution with shape parameter fa  and scale parameter fb , then 

after updating with the time between failure data (denoted 1 , , k
f f

m
t t… ), fλ  will be a 

gamma distribution with shape parameter 
1

fm
f f

ia + t∑  and scale parameter f fb m+ . 

Hence a simple exponential-gamma model could be used to determine a posterior 

predictive distribution for the required probabilities given the failure data. 
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 Modeling human error was more difficult due to the lack of human error data 

(Harrald et al. 1998; Grabowski et al. 2000). The human error rates were differentiated 

across the various routes and types of ferries. Ferry captains were asked to make pairwise 

comparisons of the various combinations of routes and types of ferries. These expert 

judgments were then analyzed using the method discussed in Section 3.3. However, this 

analysis did not allow estimation the overall number of human errors. In the PWS Risk 

Assessment, the frequency of human errors was estimated by taking the frequency of 

mechanical failures and multiplying by four, the commonly assumed 80-20 rule (Harrald 

et al. 1998). In the WSF Risk Assessment, an analysis of historical ferry accidents 

revealed that of the 51 triggering incidents leading to accidents in the preceding ten years, 

35 were human errors and 16 were mechanical failures. Consequently there were  

times as many triggering incidents that were human errors as opposed to mechanical 

failures, if we require just a point estimate.  

2.19

To model the uncertainty in this estimate, we assumed that the triggering 

incidents were independent with a fixed probability p  of being a human error instead of 

a mechanical failure. This implies that the likelihood for the number of human errors out 

of a fixed number of triggering incidents is a binomial distribution. We assumed a beta 

prior distribution on p  with parameters  and . Given the number of triggering 

incidents, denoted n , and the number of them that were human errors, denoted , the 

posterior distribution of 

a b

m

p  is also a beta distribution with parameters  and 

.  and b  were assumed to be 0.00001 to give a high variance prior, implying 

that the posterior beta distribution on 

a m+

b n m+ − a

p  had parameters 35.  and 16. , with 

mean . This corresponds to a mean ratio of human errors to mechanical failures as 

00001 00001

0.686
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before, namely 2. , but includes the remaining epistemic uncertainty about this 

estimate. 
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3.5 Propagating Uncertainty through the Risk Framework 

To perform a full uncertainty analysis of such a maritime risk model, we had to obtain 

Bayesian predictive distributions for each term in the model, ( )jP Situation , 

 and , and then propagate the 

uncertainty expressed in these distributions through the calculations in (1). Given the 

development in Sections 3.2, 3.3 and 3.4, the predictive distribution of  in 

(1) cannot be obtained in closed form as the multiplication of the various distributions 

does not result in a known distribution. As noted by Winkler (1996) analytical solutions 

should be used if at all possible. In most cases though, closed form solutions are not 

possible and the brute force simulation method must be used (Pate-Cornell 1996). Monte 

Carlo simulation is the most commonly used tool for propagating uncertainty through a 

risk analysis model (Vose 2003). To perform Monte Carlo analysis for our model, values 

for all the parameters of the model are sampled at the beginning of each calculation of 

(1). These values are then used in the calculation and the value of  recorded. 

In this manner, samples of the posterior distribution of   are obtained and 

descriptive statistics of the distribution can be estimated. The exact algorithm can be 

written as follows: 

( |i jP Incident Situation ) )j

)

)

( | ,iP Collision Incident Situation

( )P Collision

(P Collision

(P Collision

 

 

 

 

18 



For r =1, …, n replications: 

1. Sample from the posterior distributions of the parameters used in calculating 

( | )i jP Incident Situation  for each type of incident 

a. For each type of mechanical failure, sample from fλ , the rate of each mechanical failure 

for each type of ferry ( 1,...10f = ). 

b. For each type of ferry and route, sample from the posterior distribution of the parameters 

for the relative probability of human errors discussed in Section 3.4.  

c. Sample from the probability p  of an incident being a human error instead of a 

mechanical failure discussed in Section 3.4. 

2. Sample from the posterior distribution of the parameters used in calculating 

 for each type of incident. For i( | ,iP Collision Incident Situation )j l1,...,= , sample from 

the posterior distribution of iβ  from equation (10) where the responses are drawn from the 

questionnaire for incident type .  i

3. Calculate the overall ( )P Collision  for each potential situation. 

For 1,...,j k= : 

a. Sample from the posterior distribution of jμ  in (3). 

b. Sample from |j jN μ , a Poisson distribution.  

c. Use the samples from Steps 1.b and 1.c to calculate the probability of human errors for 

the ferry class and route in situation j . 

d. Use the samples from Step 2 to calculate  for each 

incident  in situation 

( | ,iP Collision Incident Situation )j

i j  using equation (2). 

e. Use the samples from Steps 3.a to 3.d and 1.a to calculate ( )P Collision  using equation 

(1). 

Loop 

End loop 
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Such calculations do require significant computational effort. For the simulation 

of the current SF Bay ferry system, the calculation time for a sample of 1000 values takes 

approximately 16,000 seconds or about 4½ hours. To spread the workload, parallel 

simulations were implemented on a 10 processor system, decreasing the actual run time 

by almost a factor of 10. 

4. Case Study 1: Expanding San Francisco Bay’s Ferry Service  

In an effort to relieve congestion on freeways, the state of California is proposing to 

expand ferry operations on San Francisco (SF) Bay by phasing in up to 100 ferries in 

addition to the 14 currently operating, extending the hours of operation of the ferries, 

increasing the number of crossings, and employing some high-speed vessels. The state of 

California has directed the San Francisco Bay Area Water Transit Authority to determine 

whether the “safe” operation of ferries in San Francisco Bay can continue with the new 

pressures of aggressive service expansion. The three proposed expansion scenarios are: 

(1) Alternative 3: Enhanced Existing System; (2) Alternative 2: Robust Water Transit 

System and (3) Alternative 1: Aggressive Water Transit System. Of these alternatives, 

Alternative 3 is the least aggressive expansion scenario and Alternative 1 is the most 

aggressive one. The WTA asked the authors to investigate the impact of ferry service 

expansion on maritime traffic congestion in the SF Bay area by developing a maritime 

simulation model of the SF Bay.  

A classical simulation was developed by the authors for the original study 

(Merrick et al. 2003). As part of our uncertainty modeling, Merrick et al. (2005a) 

extended the SF Bay simulation model using Bayesian input and output modeling 

techniques discussed in Section 3.2.  The ferry transits were based on fixed schedules for 
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the current ferry system and for each of the alternative expansion plans. Visibility and 

wind conditions were incorporated by tracing large databases of environmental data 

obtained from National Oceanographic and Atmospheric Administration (NOAA) 

observation stations in the study area. Non-ferry traffic was modeled using the Bayesian 

methodology in Section 3.2 using historical traffic data. 

We start by examining the number of situations that could occur under each 

alternative, a result from Merrick et al. (2005a). Figure 5A shows an aggregate 

comparison of the alternatives by the total expected yearly number of situations, in this 

case when a ferry is close enough to other vessels that the situation could lead to a 

collision.  
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Figure 5. Expected Yearly Situations Comparison. 
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The lines in Figure 5A are actually box plots of showing the predictive distribution with 

the interquartile range as the box and the 5th and 95th percentiles of the distribution as the 

whiskers. However, as the remaining uncertainty in these estimates is low, they do not 

show up on this comparison scale and are repeated Figures 5B through 5E. It is evident 

from Figure 5 that there is an increase in the number of situations across the alternatives 

and that the amount of uncertainty is small relative to the size of the differences between 

the alternatives. 

However, the results of Merrick et al. (2005a) count each such situation equally. 

Merrick et al. (2005b) analyzed the expert judgments from the WSF Risk Assessment 

considering both dependencies between the experts’ responses and the remaining 

uncertainty in the estimates. Figure 6 shows the marginal posterior distributions of the β  

parameters for the factors listed in Table 1 and six interaction terms. The prior 

distributions used in Merrick et al. (2005b) were vague. For the model form in (2), a 

value of zero for these parameters implies that the corresponding factor does not affect 

the collision probability. A positive (negative) value indicates that an increase in the 

factor would increase (decrease) the collision probability.  
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Figure 6. The marginal posterior distribution of the factor effect parameters. 
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 As the factors describing the situations effect the probability of a collision given 

that a situation occurs, ,  the analysis from Merrick et al. (2005a) 

is useful, but not definitive. Instead we must examine the collision probability itself, 

. As no expert judgments were elicited specifically for the SF Bay study due 

to a limited scope, we apply the probability assessments in Figure 6 from the WSF Risk 

Assessment. This part of the analysis should be considered illustrative, not definitive.  

)|( jSituationCollisionP

(P Collision)

Figure 7A shows a similar pattern of increase for the expected yearly number of 

collisions as seen for the expected yearly situations. However, with the introduction of 

estimated collision probabilities based on expert judgments, there is significantly more 

uncertainty evident in these results and this uncertainty cannot be removed by simply 

running more simulations. 

0

10

20

30

40

50

60

70

80

Base Case Alternative 3 Alternative 2 Alternative 1

# 
Y

ea
rly

 A
cc

id
en

ts

A

0

1

2

3

4

5

Base Case

# 
Y

ea
rly

 A
cc

id
en

ts

B

0

1

2

3

4

5

Alternative 3

# 
Ye

ar
ly

 A
cc

id
en

ts

C

 

Figure 7. Expected Yearly Collisions Comparison. 
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The largest uncertainty remains about Alternatives 2 and 1. However, there are almost 

certainly a higher expected number of collisions in Alternative 1 than Alternative 2. 

There is not such certainty when comparing the Base Case to Alternative 3. 

 Whereas there was an almost certain ranking in terms of the expected yearly 

number of situations, this is not true for the expected yearly number of collisions. As the 

comparison is not clear on a scale that includes Alternatives 2 and 1, Figures 7B and 7C 

show the box plots for the Base Case and Alternative 3 respectively; the 90% credibility 

intervals for the two alternatives are (0.45,3.44) for the Base Case and (0.54,3.99) for 

Alternative 3. These distributions do indeed overlap and the best we can say is that 

Alternative 3 stochastically dominates the Base Case in the sense that their cumulative 

distribution functions do not cross. This result seems questionable given the results in 

Figure 5 and to explain why this occurs we must consider the collision probabilities 

calculated for the occurring situations. 

It is evident from Table 1 that there will be many possible situations that can be 

counted in the simulation and from Figure 6 that these situations can have significantly 

different collision probabilities when they occur. To compare the collision probabilities in 

the situations occurring in the different alternatives, we take the average collision 

probability across all situations that occurred in the simulation of each alternative. For 

each alternative, this involves taking the number of times that a given situation defined 

by the factors in Table 1 occurs and multiplying by the collision probability given that the 

situation occurs. We then add these results up for all possible situations and divide by the 

total number of situations that occurred.  
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Figure 8 shows the results of these calculations and the remaining uncertainty 

about the results for each alternative. Note that the result in Figure 7 can now be 

explained. Whereas the expected yearly number of situations increases from the Base 

Case to Alternative 3, the average probability of a collision actually decreases, causing 

the distributions of the multiple of these two quantities, the expected yearly number of 

collisions, to overlap. The average collision probabilities for Alternatives 2 and 1 are 

about the same as the Base Case. 
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Figure 8. Average Probability of an Accident across Occurring Situations. 

Further analysis showed that the reduction in collision probability in Figure 8 is due to 

the timing of the ferry schedules for Alternative 3. These schedules reduced the 

proportion of the time that there were two vessels in close proximity to a ferry, creating a 

less complex and therefore less risky situation.  

What do the results in Figure 7 mean in terms of the decision to build out the San 

Francisco Bay ferries? While we should be careful in overstating these conclusions as the 

accident probabilities were based on data and expert judgment drawn from the WSF Risk 

Assessment, the implications are, however, interesting. Firstly, while Alternative 3 does 
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significantly increase the number of ferries, and consequently the expected yearly number 

of situations from the Base Case, there is a decrease in the risk of the situations that occur 

and the comparison in terms of expected yearly collisions is not conclusive. However, as 

this result appears to be caused by the nature of the schedule tested, the actual schedule to 

be implemented should be tested in this manner before any decisive conclusions could be 

reached. We note that such caution would not be engendered by an analysis without 

uncertainty as the point estimates would have implied a definitive ranking and led to the 

conclusions that Alternative 3 was less safe. Alternatives 2 and 1 do almost certainly 

increase the expected yearly number of collisions as ferries are added to the schedule. 

Merrick et al. (2003) concludes that with such a result, measures to reduce accident 

probability and control the occurrence of situations should be considered before 

implementing such a major build out of the San Francisco Bay ferry system.  

5. Case Study 2: The WSF Risk Assessment 

The Washington State Ferries is the largest ferry system in the United States, operating 

27 vessels at the time of the WSF Risk Assessment, including 4 passenger only ferries, to 

twenty terminals on ten routes.  In 1998, total ridership for the ferries serving the central 

Puget Sound region was approximately 26.2 million persons, more passengers than 

Amtrak handles in a year. In 1998, the Washington State Transportation Commission, at 

the request of the State Legislature, established an independent Blue Ribbon Panel to 

assess the adequacy of provisions for passenger and crew safety aboard the Washington 

State Ferries, following a series of articles in the local newspapers about the adequacy of 

lifeboats aboard the ferries engendered by the release of the movie Titanic. As a result, 

the Blue Ribbon Panel engaged a consultant team including the authors to develop 
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recommendations for prioritized risk reduction measures which, once implemented, can 

improve the level of safety in the Washington State Ferry system. Figure 2 shows a 

summary of the results from the WSF Risk Assessment. Additional discussion is given in 

van Dorp et al. (2001) and Grabowski et al. (2000). 

 To assess the uncertainty in the risk reduction estimates given in Figure 2, we 

overlaid the simulation output meta-model discussed in Section 3.2 on a simulation of the 

WSF system. The predictive distributions obtained for ( )jP Situation  were then 

combined with the estimates of  obtained in Section 

3.3 and  obtained in Section 3.4, both using data and expert 

judgments from the WSF Risk Assessment. Hence all data used came from the WSF Risk 

Assessment. 

( | ,iP Collision Incident Situation )j

)j( |iP Incident Situation

 The proposed risk reductions were taken from the WSF Risk Assessment and 

were not modified for our analysis here. The cases modeled were 

1. Base Case: representing ferry operations during the base case year for the risk 

assessment, namely 1998. 

2. ISM Case: representing implementation of the International Safety Management 

(ISM) code throughout the WSF fleet. Specifically human errors were reduced 

30% (estimated effect, see van Dorp et al. 2001) and mechanical failures were 

reduced 3.7% (estimated effect, see van Dorp et al. 2001). 

3. High-Speed ISM Case: representing implementation of the International Safety 

Management (ISM) code on high-speed ferries only. Human errors and 

mechanical failure reductions from the ISM Case applied only to high-speed 

ferries. 

27 



4. Vessel Reliability Failure (VRF) Reduction Case: representing improved 

maintenance practices and system redundancy. Specifically mechanical failures 

were reduced 50%. 

5. Traffic Separation Case: increase required route separations for high-speed 

ferries to decrease interactions within one mile by 50%. 

 To accurately represent the uncertainty in the percentage risk reduction from the 

Base Case to each proposed risk reduction case, we must be careful in our Monte Carlo 

propagation of the various sources of uncertainty from Section 3.5. To estimate the 

uncertainty in the percentage risk reduction, we must perform Steps 1 and 2 of our 

propagation algorithm in Section 3.5, then perform Step 3 to estimate  for 

each case using the same sampled values of the parameters of the model, and then 

calculate the percentage risk reduction from the base case to each proposed risk reduction 

case for this Monte Carlo iteration. This calculation is akin to common random numbers 

(Law and Kelton 2001) and means that the percentage risk reductions calculated will only 

be affected by the relevant uncertainty.  

( )P Collision

The right of Figure 9 shows the posterior distributions of the percentage risk 

reductions obtained for each proposed risk reduction case using this method; the left of 

Figure 9 shows equivalent results without uncertainty repeated from Figure 2, but in the 

same format for comparison. Figure 9 shows a low uncertainty about the two ISM cases 

and the VRF Reduction case. These results are only affected by the uncertainty in the 

proportion of triggering incidents that are human errors versus mechanical failures. The 

uncertainty about the reduction from the Traffic Separation case is larger as it includes 

uncertainty from the simulation output as well as uncertainty from the expert judgments 
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about the relative likelihood of collisions when the traffic separation is more or less than 

one mile. Overall, however, the case is still clear for ISM across the whole fleet, instead 

of just the high speed ferries, and the efficacy of both VRF reduction and traffic 

separation are demonstrated; the conclusions drawn in the original study are confirmed. 
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Figure 9. Percentage Risk Reductions from Proposed Interventions in the WSF 

Ferries with and without uncertainty. 

6. Conclusions 

We have developed an overarching Bayesian framework for addressing uncertainty when 

simulation of situations that have accident potential is combined with expert judgment to 

assess risk and uncertainty in a dynamic system, applying this framework to maritime 

transportation. In the case study, the results in Merrick et al. (2003) and van Dorp et al. 

(2001) were shown to be robust to the aleatory and epistemic uncertainty inherent in 

assessing risk in such a dynamic and data-scarce system, though surprising results did 

occur. 
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The broader impact of this work is primarily drawn from its applicability to areas 

other than maritime accident risk. Port security risk (intentional as opposed to accidental 

events) has now been recognized as an integral part of homeland security. Subsequent 

uncertainty assessment of security risk and propagation in security intervention 

effectiveness needs to be accounted for, since lack of data will be of even greater concern 

than for accident risk. Furthermore, despite our focus on maritime risk, the framework 

and methodologies developed will be applicable to other transportation modes as well, 

such as aviation safety including the ever-increasing problem of runway incursions at 

our national airports (FAA 2003).  
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