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Abstract

This article presents the development of a general Bayes inference model for accelerated life testing. The

failure times at a constant stress level are assumed to belong to a Weibull distribution, but the

specification of strict adherence to a parametric time-transformation function is not required. Rather,

prior information is used to indirectly define a multivariate prior distribution for the scale parameters at

the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as

well as probability statements for use-stress (and accelerated) life parameters may be inferred from a

host of testing scenarios. The inference procedure accommodates both the interval data sampling

strategy and type I censored sampling strategy for the collection of ALT test data. The inference

procedure uses the well-known Markov Chain Monte Carlo (MCMC) methods to derive posterior

approximations. The approach is illustrated with an example.
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1    Introduction

   In the case of highly reliable items, e.g. Very Large Scale Integrated (VLSI) electronic devices,

computer equipment, missiles, etc., mean times to failure (MTTF) exceeding a year is not uncommon.

The use of these items, however, may still require reliability demonstration or verification testing,
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especially when these items are used for military or high risk public applications. With such MTTF’s, it

is often too time consuming and too costly to test these items in their use (or nominal) environment, as

the length of time to generate a reasonable number of failures is often intolerable  If such is the case, it�

has become a standard procedure  [1] to test these items under more severe environments than

experienced in actual use. Such tests are often referred to as Accelerated Life Tests (ALT’s). It is noted,

[2], that because of advancement in technology and increased reliability, ALT’s are performed more

frequently than ordinary life tests. There are two main problems associated with ALT’s as: (1) optimal

design of the ALT, and (2) statistical inference from ALT failure data.

 The focus of this paper is on the statistical inference problem, i.e. on how to make inference about

the reliability in the use environment by obtaining information in the accelerated environments.

Typically inference methods have been developed assuming that: (1) the life time distribution in a

constant stress environment belongs to a common family of distributions, and (2) the scale parameter of

such a distribution is related to the stress environment via a parametric function known as a time

transformation function (TTF) [3]. In addition, most of the inference methods are based on the use of

maximum likelihood estimation which may require large sample sizes for meaningful statistical ALT

inference.

 In this paper, only the first assumption will be adhered to. Specifically, inference will be developed

using the Weibull failure time model. The inference method is Bayesian in nature and will rely on the

use of engineering judgment to specify prior distributions for the Weibull model parameters. While there

is a host of literature in this area, for example [4-7], the only Bayesian inference procedure developed for

the Weibull model that we know of is presented in Mazzuchi et al [8] for constant stress ALTs in

conjunction with the parametric TTF. The inference procedure herein will be developed for a wide range

of ALT scenarios with no TTF assumption. There has been a continued interest on the topic of

comparison of ALT designs [9-13]. It is hoped that this unified framework can be used to provide further

insight.
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 In Section 2, the general likelihood model is developed. In Section 3 the prior distribution for the

shape parameter and scale parameters of the Weibull failure time model is outlined. The posterior

inference is briefly discussed in Section 4. The approach is illustrated by an example in Section 5.

2    A General Likelihood Model

2.1      Motivation

    A first step in any statistical inference procedure, whether classical or Bayesian, involves developing

the likelihood. The flexibility of the likelihood formulation drives the flexibility of the statistical

inference procedure in terms of its applicability to different  ALT scenarios. In this section, a likelihood

model is developed that allows for a comprehensive representation of most ALT inference scenarios

currently available to ALT practitioners, specifically, regular life testing, fixed-stress testing, and

progressive step-stress testing. In addition, the likelihood model allows for profile step-stress testing.

The likelihood is developed with greatest degree of flexibility, allowing for different patterns for each

test item as illustrated in Fig. 1.
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Fig. 1. A separate ALT design for each test item.

Having such a flexible formulation of a likelihood model allows for the comparison of different ALT

designs within a common modeling framework.  In addition, allowing for such a flexibility will increase

the model’s ability to represent ALT designs used by testing practitioners.  
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2.2    The Failure Rate ver the Course of an ALT �

     In developing a likelihood model, consider the following step-stress ALT setup. The ALT will consist

of testing over a predetermined and fixed maximum number of test environments. An environment is

defined by a combination of stress levels from the set of stress variables, e.g. temperature, vibration and

voltage. Let  environments  be defined candidate test environments.  Let denote the � � �� � � �� � �  use

environment where , ,  The index  will be used to indicate a particular environment.� � �	 � �
� ��

Suppose that each of  test items will be subjected to a step-stress ALT with possibly a different step�

pattern per test item.  The index  will be used to indicate a particular test item.  The total length of each


ALT may vary per test item, but each ALT will be subdivided into  steps.  The index  will be used to� �

indicate a particular step-interval within an ALT.  Thus, for each test item ,   steps are defined by
 �

� � � � � � ��� � � � ���� ��� ����� ���

where the -th step is defined as and the ALT is terminated at time  for test item .  A� �� � � � � 
����� ��� ���

design matrix  specifies the indices of the environments for each test item  in each step .� � �� 
 
 ����

Thus during the -th step, test item  is subjected to environment   where  .  Note that� 
 � � � 	�� � �	 ������

this flexible formulation includes both regular life testing (  for all ) and fixed-stress ALT� � ���� �

(  for all  and some particular environment ).� � � � ���� 


The approach to deriving the likelihood will be general and center around  the  failure rate, , in�����

a constant stress environment . The failure rate for test item over the course of the step-stress ALT,� 
�

denoted by , is different from the failure rates in the constant stress environments, as the� ����

environments, and thus the failure behavior, vary over the course of the ALT stage.  A generic

expression will be derived for the failure rate  of test item  over the course of an ALT stage,� ��� 
�

conditioned on knowing the failure rate functions  in the candidate test environments�� ���� � �

� � 	�� �� .

The cumulative failure rate that test item  has accumulated up to  in an ALT is given by
 ����

� �� � � � ������� ��� �
�

�� ���

(1)
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In a constant stress environment ,  the cumulative failure rate would be given by��

� �� ��� �
�

�

�� � � ������� ���

(2)

Note that the operating environment in the ALT after  equals . It will be assumed that the� ���� 	�����

change in environments at  is instantaneous. In addition, it will be assumed that no additional failures����

are induced by the instantaneous change of environments  through a shock effect.����

Using 2 the cumulative hazard rate  may be expressed using  for some value of .� �� � �� � ��� �� ��� 	� �����

Denoting this value  by , and solving for , yields� � ��
��� �
���

� ��
��� � ���
��
	  3� �� �� ��� � �
�����

The time  may be interpreted as the amount of time that would have elapsed to accumulate ��
��� � ���� �� �

by testing in environment  alone, starting at time  (see for example Fig. 2)� � �	�����
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Fig. 2.  Failure rate construction using instantaneous environment changes. 

Next, the failure rate function over the course of the ALT stage may be derived as

� ��� � �� � �  �� � �� 	 ��� �
���� �
�����

4
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for , , where  is given by 3  and  is the initial cumulative� ! � � � � � ��� ��� 	 � � � �� ���� �
��� �
��� � ����

failure rate of test item  prior to the ALT stage.  In case  is a new test item, 
 � �� � � �� � � ��� ��� � ���

However, the case where a test item has a history of operating hours in  known environments may be

easily accommodated The jump in the failure rate at time follows as� ����

�� �� � � � �� � � � �� � �� ��� � ����

 �

��� ,    5)

where , .  It may be derived that the jump equals� �� � � "�� � ��� � �� � � "�� � ��� � �� �
� # � � $ �

� � � � � ������
�

��� ���
���

 �

    (6) � � � � �� �� � � � � � �� � �  �� ��� 	 �
��� 	 �
��� ��� �������� �

for  Figure 3 presents an example of the above results for a profile step stress where a� � 	� ���� � � 	�

Weibull failure time distribution is assumed for each constant stress.
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Fig. 3. Failure rate during a profile ALT with Weibull failure rate functions.

Following the approach above, the current failure rate of a test item only depends on the current

accumulated cumulative failure rate and the current stress. It can be shown that the intrinsic time failure

rate construction approach above is equivalent to the assumption of the Cumulated Exposure Model  [3].

The assumption that no additional failures are induced by the instantaneous change of environments

between steps is an assumption which may be challenged, as an instantaneous change of environments

may induce a shock effect, causing item failure. The above procedure, however, can be easily extended

to the case of gradual environmental changes [14].



7

2.3    The Likelihood Given ALT Test Data

    Using the formulation of the failure rate function over the course of an ALT-stage, the likelihood

given ALT Test data may be derived for both interval and Type I censored data.

2.3.1    Interval Data  

    Suppose failures can only be monitored at the end of a step interval i.e.  The�  	� �� � � ����� �
���

interval in which item fails will be denoted by The probability of test item  surviving time 
 % � 
 �� �
���

given that  it has survived up to time  follows as����

&'�( ) � * ( ) � 
 � �+, � � ������ �
��� � ��� ��

�� ��
���

�����

         , (7)� �+, � �- � �-� ��
�

�

�����

����� � �����

�����

� �� 

	

,j �

where  is given by 3 . The probability of test item failing before time  given that it has��
��� �
���� � 
 �

survived up to time  equals����

&'�( � � * ( ) � 
 � 	 � �+, � �- � �- � �� �
��� � ��� 	
� �� 
 8� ��
�

�

�����

����� � �����

�����

,j �

The probability of test item failing in interval equals
 %�

� � �
���

� ��

� ��� � ����� � � �� � � ����

�

� �
&'�( ) � * ( ) � 
 . &'�( � � * ( ) � 
 � � �9

with the convention that  if the test item is censored at and Substituting 7% � � 	 � � � /� � �� ��� �
���

and (8  in 9 yields� � �

� � ��
���

� ��
� �� 


	 �

�

�����

����� � �����

�����
�+, � �- � �- . ,�% ��

�

�,j � (10) 

where

,�% � � 	 � �+, � �-� �-� 	
� �� 
� ��
�

�

� ���

� � � ���� � ��� � �

� ���

, � (11)

for  and is defined as 1 for % � � 	 % � � 	� �

With 10  and assuming conditional independence between the failure times of the test items� �

conditioned on knowing  ( , it follows that the likelihood given interval data�� 0 � � � 0 ��� � � 0 ��� �� �

��� � � �% � ���� % �% � � , equals
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� �� 0 ��� �
 � �+, � �- ��- . ,�% ��( ) ;   (12) % � � � ��
��� ���

� � ��
� �� 


	 �

�

�����

����� � �����

������

�,j

where  is the number of test items in the ALT. Though not specifically developed here, the previous�

equations may also be adjusted for the case where items begin the ALT with accumulated damage as in

the case of retesting of items [14].

To be able to perform inference with respect to the failure rates in each environment, it is�����

convenient to reorder the product in 12 as a product over the environment index  instead of over the� � �

step interval index  Given  via 3 , such a reordering is possible. To accomplish�� � � 	�� ��� 	 � �����

such a formulation, let

1 � 
 ���� � the number of times that test item  visits environment during an ALT stage,

- � 
 � 2���
�

� interval index for which item visits for the -th time.

With the above notation 12 , may be rewritten as� �

�� 0 ��� �
 � 3��� 
� 2 * 0 � �� � �� �( ) ;  ( ) 13% %� � �
��� ���

� �

���

����

where

3��� 
� 2* 0 � � �
3 ��� 
� - * 0 � - � %

3 ��� 
� - * 0 � - � %
�

�

�
( ) , (14)

( )

( )
% � � ���� ���

� �

� ���� ���
� �

and

3 ��� 
� - * 0 � � �+, � �-� �- �� � �
� �� 


�( ) (15)� ��
�

�

	 ���

	 �� 	 ���� 	 ��� � � �

and ( ) 1 ( )  where  is given by 3 .  Note that,  ( ) is the3 ��� 
� - * 0 � � � 3 ��� 
� - * 0 � � � 3 3� � � � ��� � �� � �

conditional probability of surviving the step (failing in the step) interval for which test item visits


environment for the -th time, conditioned on having survived up to the beginning of that step. When� 2�

assuming a common family of life time distributions within a constant stress environment, i.e. specifying

a functional form for ( ), the likelihood may be further derived using 13  - 15 .� 0 � � � �

The interval data sampling strategy has the disadvantage that failure information is lost by only

monitoring at the end of each step interval. In the type I censored sampling strategy, test items are

continuously monitored over the course of the ALT.
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2.3.2      Type I Censored Data

Suppose failures can be monitored continuously over the course of  an ALT stage.  In that case, the

failure time of test item  is known exactly if the test item fails in .  It will be assumed that' 
 ��� � �� ���

once an item has failed  it will be removed from testing in the same ALT Stage.  Knowing the failure�

times the step intervals in which the items failed may be easily derived.' � %� �

Using an analogous approach as in Section 2.3.1, the likelihood given the data  ( where �� � ��' % '

� �' � � � ' � � � �% � ���� % �� � � � �� � � � and follows as specified in the expressions 17 - 20 ,%

�� 0 ��� �
 � 4��� 
� 2 * 0 � � �� � �� �( ); ,   ( ) 17' % ' %� � �
��� ���

� �

���

����

4��� 
� 2 * 0 � � � � �
4 ��� 
� - * 0 � � - � %

4 ��� 
� - * 0 � � - � % �
�

�

�
( ) (18)

( )

( )
' 5 %

'

'� � ���� ���
� �

��� ���
� �

�2

4 ��� 
� - * 0 � � � �+, � �-� �- � � �� � �

� �� 


�( ) 19' � ��
�

�

	 ���

	 �� 	 ���� 	 ��� � �

�

4 ��� 
� - * 0 � � � �+, � �-� �- � �' �2 � � � �
� �� 


�( ) . (20)' � ��
�

�

	��

� 	 ���� 	 ��� � �

Note that,  is the conditional probability of surviving the step interval for which test item visits4 
�

environment for the -th time conditioned on having survived up to the beginning of that step. In� 2�

addition, note that  is the conditional density at the time of failure in case the test item fails within the4�

step interval for which test item visits environment for the -th time conditioned on having survived
 � 2�

up to the beginning of that step.

When assuming a common family of life time distributions within constant environments, i.e.,

specifying a functional form for ( ), the likelihood may be further derived using 17  - 20 . Such� 0 � � � �

expressions can be derived for the Weibull life distribution using  .� � �� �
����� � ��

3    Prior Distribution

    Given the ordering of the severity of the testing environments, it is natural to assume that

� � � � � � � � / � �� � � �� � � �
� , 21
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and, defining

                (22)� � ��
����

for some constant c, it follows that

� � � � � � � � � � � � 	��
� � � � (23)

The parameter  is chosen to insure numerical stability of the results [15]. Rather than defining a prior6

distribution for  exhibiting property 21 , one may equivalently define a prior for � � � � �� �� � � �� � �

exhibiting property 23  Concentrating on a prior distribution which is� �� � �� �� � � ��� � �

mathematically tractable, is defined over the region specified in 23 and imposes no other unnecessary� ��

restrictions on the  is the multivariate Ordered Dirichlet distribution� � ��

� 	

 	

� * � 
 � � � �

�� � � �

� � �
� �

�
  24

�
���

�
�

��� �
� ��� ��

where,  and	 �7 �� 7 �� � � 	�� ��  	��


 	 �

� 	 �

� 	
� � � � � � 	� � �

� 0 �

� 0 �
�

� 	���

�
�

�

���

�
�

� 25

 Analogous to the above a beta prior distribution is specified for the transformed parameter .8 � ���

� 
 �
� � 
 � 


�8 * 
 � �
�8 � �	 � 8 �

� 0 � 0 �	 � ��
 , (26)

  � � � �� �� �� � ���1

The prior distribution of  is assumed independent of the prior distribution of .8 �

 Typically, to define the prior parameters, expert judgment concerning quantities of interest are

elicited and equated to their theoretical expression for central tendency such as mean, median, or mode

[16]. In addition, some quantification of the quality of the expert judgment is often given by specifying a

variance or a probability interval for the prior quantity. Solving these equations generally leads to the

desired parameter estimates. Specific quantities of interest for the problem at hand are the mission time

reliabilities for each stress environment.
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 An additional advantage of the Ordered Dirichlet distribution is that due to its mathematical

properties, the incorporation of expert judgment is facilitated.  From 24 , for example, the prior� �

marginal distribution for any  is obtained as a beta distribution given by��

�
� 	 � 	 �

�� 
 � � �
�� � �	 � � �

� 0 �	 � �� 0 ��

� �
� �

���� ��� � ��

� �

� � � �• •

• •
, 27

where , ) is the well known beta constant. This distribution can be used to make prior probability�� 0 0

statements concerning mission time reliabilities at the different stress levels due to the one-to-one

relationships of these quantities to .  Specifically� ��

     | ( ) , 28�9���*� � 
 � &'�: 7 � � � 
 � � � �� � �� �


�

�

where  is the reliability of a test item exposed to environment for a mission time  given�9���*� � 
 � �� ��

� ��

 To obtain the prior parameter values, estimates of prior mission time reliabilities must be obtained.

The focus is on mission time reliabilities rather than failure rates, as these may more easily be obtained

through elicitation methods focussing on observable quantities. Specifically, for a specified mission

length, an estimate of  the mission time reliability in environment , a quantile estimate  for the9 � 9�
� �

�

mission reliability at use stress, and an estimate of  mission reliability after G mission time durations9�
�

at use stress is required. Given this information, the following problem is solved numerically to obtain

the prior parameter estimates [14]:

;<"-� � 6� 3'<�   ( , , ,  )� 	 � 
 �

 |	� & '�9 ��� ! 9 
 � ��=�� �
� �

 |>� & '�9 �? 0 �� ! 9 
 � ��=�� �
� �

 |  @� & '�9 ��� ! 9 
 � 	 � %� % � ��A=� �
� �

 |B� & '�9 ��� ! 9 
 � ��=�� � � 	�� ��� � C� �
� � �

Thus with the exception of the quantile estimate, all prior reliability estimates are treated as median

values.
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4    Posterior Approximation   

 The expression for the likelihood given ALT data  was derived in Section 2 and resulted in

expressions for interval and expressions for type I censored data.  Rather than performing prior-

posterior analysis using these expressions, one may perform prior-posterior analysis by expressing

likelihood in terms of  and instead of  and  using (22) and using well known properties of the� 8 � �

Ordered Dirichlet distribution.

 The posterior distribution follows for interval data and type I censored data by applying Bayes

Theorem to the prior and the appropriate likelihood expressions.  The derivation of the posterior

distribution is intractable in most cases. It is therefore suggested to use the well known Markov Chain

Monte Carlo (MCMC) method approach [17].  Through the MCMC approach  a sample of the posterior�

distribution can be obtained.  From the sample, approximations of moments  and an approximation of

the joint posterior distribution may be derived.  The approximations of marginal posterior distributions

and  using 28 that of the mission time reliability at any stress level may be derived by the estimation� � ��

of their quantiles.  These quantiles may be estimated up to a desired level of accuracy using order

statistics arguments [18].

5    Example  

 The following example is designed to show the flexibility of the Weibull ALT inference model. The

use stress environment will be and different test items will be subjected to different step patterns.��

Assume that the following median mission time reliability estimates are available for a mission time of

	��� hours.

9 � ��AD 9 � ��ED 9 � ��FD 9 � ��GD 9 � ��= 9 � ��B 9 � �� � >� � � � � �
� � � � � � �

�; ; 2; G ,

An approximate solution to the prior parameters  may be solved from the above data and follow as

6 � >A	F@AA�@@>D � FBF��GD	

� � �� � �� ��>		�D � ��	E@@D � ��	=GED 

� � � � 
� �  � ��	@	>D � ��	�G=D � ��>		�D � BF>�FB� � ��	@�E�
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In this example, 6 proof-systems are available for testing. The step data concerning environments in

each step and step interval times are specified for each testing stage, , by the matrices  and  below3 � (! !

� � � ( �� �

� � � �
� � � �� � � �� � � �� � � �� � � �� � � �
� � � �
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In the second testing stage, failed items from the first stage are assumed minimally repaired. Items that

survive the first stage are continued on test in the second stage.

The mission-time of the system was set to hours. The test results over the ALT are  summarized	���

in terms of ,  in Table 1. Note that  indicates that the test item has survived the ALT stage' %! !
�
!% � G

without failure.

Table 1
ALT test data in terms of , ' % 5! ! !�

( �5� H��� 	 > @ B = G

' BA= =�� >A= =�� @A= =��

�I( ;��4� 	 % = G @ G B G

' >A= A= =�� 	A= =�� >A=

�I( ;��4� > % @ 	 G > G @

�
�

�
�

�
�

�
�

 A prior-posterior analysis for both interval data and type I censored data is presented. The Gibbs

Sampling Method was used to obtain posterior quantile estimates using test data obtained over 2 ALT

stages for: (1) the scale parameters in each environment, and (2) the common shape parameter. The

length of the Gibbs-Sequence generated was of length and the Gibbs burn-in\Gibbs lag period	��� ���

was set to  MCMC diagnostics for this problem are discussed in van Dorp et al [19]. Results are>=�

provided in Table 2.
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Table 2
Prior and  posterior parameter estimates

� &'�<' &<5��'�<' &<5��'�<'

H1��'-�"J��� (K,� H L�15<'�� J���

	 E�		 0 	� E�>> 0 	� E�	E 0 	�

> 	�F> 0 	� 	�F@ 0 	� 	�F@ 0 	�

@ >�F= 0 	�

� �� �
� �

�� �� ��

�� �� ��

�

� � �

.
� �� ��

�� �� ��

�� �� ��

�

>�FF 0 	� >�FG 0 	�

B @�A@ 0 	� @�A= 0 	� @�A= 0 	�

= =�@B 0 	� =�@G 0 	� =�@G 0 	�

>��@ >�@@ >�@>�

 Distributional result may also be obtained. For example, Figes. 4 and 5 coveys the prior and posterior

distribution for the shape and use stress scale parameter for the interval censoring case. Distributional

results for the scale parameter or mission time reliability (for any specified mission time) at any stress

level may also be produced. It follows from Figs. 4 and 5 that for this particular example, the greatest

shift is observed in the distribution of the shape parameter rather than that of the scale parameter.    

Prior & Posterior Use Stress
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Fig. 4. Prior and  posterior scale parameter for environment 2 - interval data.
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Prior & Posterior Use Stress
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Fig. 5.  Prior and posterior shape parameter - interval data.
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