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Abstract

There is a host of literature focusing on modeling product reliability during the development
phase under the title reliability growth modeling. However, these models are seldom used to
address the issue of when to terminate the development process. This is important to decision
makers as it is directly related to budgeting for the development process, program monitoring,
and predicting when the product will be ready for field use. Herein, we address these issues by
developing a Bayesian decision theoretic framework for analyzing the problem of when to
terminate testing for ‘single shot’ or ‘single mission’ systems and derive an optimal stopping
rule. We illustrate the approach with an example. © 1997 Elsevier Science B.V.
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Keywords: Sequential Bayesian inference; Reliability growth; Dirichlet distribution; Optimal
stopping; Dynamic programming

1. Introduction

During its development phase, a product will experience a series of Test, Analyze
and Fix (TAAF) stages in which the product is tested and subsequently modified when
unsatisfactory performance is observed. It is expected that, due to the modifications,
the reliability of the product will increase (or at least not deteriorate) over these stages
and thus this process is usually referred to as reliability growth. The reliability growth
process has been studied by a host of authors considering the cases of attribute (pass
or fail) and variable (failure time) test data. Herein, we focus on the attribute testing
scenario as it applies to single shot or single mission systems. This has been considered
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in the literature from both the sampling theoretic (Lloyd and Lipow, 1962; Barlow
and Scheuer, 1966; Finkelstein, 1983) and Bayesian (Smith, 1977; Pollock, 1968:;
Mazzuchi and Soyer, 1992; Mazzuchi and Soyer, 1993) perspectives.

To date, the literature on reliability growth, with the exception of Kenett and
Pollak (1986), has focused on modeling the growth process for making inference on
product reliability for each TAAF stage and has neglected an equally important issue
of determining when to terminate the development process and release the system for
field use. The latter issue is important to practitioners whose tasks include budgeting
for the development process, program monitoring, and deciding when the product is
ready for field use (see, for example, Meth, 1992). In addressing these issues, we
formulate the problem of optimal stopping in single mission system development as
a sequential decision problem, taking into account the costs and benefits associated
with additional testing. Often, sequential decision problems of this type can become
too difficult to analyze due to the reliance on preposterior analysis. Berger and Sung
(1993), for example, have discussed this type of problem in the context of sequential
reliability demonstration tests. Herein, using the reliability growth model of Mazzuchi
and Soyer (1992) we are able to obtain tractable expressions for the random quantities
of interest and determine a simple stopping rule under a reasonable class of loss
functions.

In Section 2 we describe the reliability growth process and formulate the stopping
problem in a sequential decision framework and develop an optimal stopping rule for
a class of loss functions. In Section 3, we present an overview of the Mazzuchi-Soyer
model and discuss sequential Bayes inference. In Section 4, we motivate specific forms
for loss function relevant to the reliability growth process and demonstrate the applica-
bility of the stopping rule. In Section 5, we illustrate our approach with an example.

2. An overview of the reliability growth process

Assume that the development phase consists of at most m TAAF stages in which
identical copies of the product are tested one-at-a-time and the test may result in
a failure or a successful completion. The testing in each TAAF stage continues until
a failure occurs and, upon the discovery of a failure, the failure cause is analyzed and
the product is subsequently modified to remedy the cause of failure.

Given the above testing scenario, the sampling model (or likelihood) for the number
of items, N, tested during TAAF stage i follows a geometric distribution of the form

PI‘{Nl-=ni|Ri}=(1—R,-)Rf"_l, n,-=1,2,..., (21)

where R;,i=1, ... ,m + 1, denotes the product reliability, after TAAF stage i — 1.
Since it is expected that reliability does not deteriorate due to the modifications, it is
reasonable to assume that
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At the end of each TAAF stage, a decision must be made whether to terminate the
development program. Thus, after the completion of i TAAF stages, the decision of
whether or not to stop testing will be based on 29 = {2 n,, ... ,n;}, where
n;,j =1, ... i represents the realization of the random quantity N; and 2'? repres-
ents available information prior to testing.

2.1. A decision theoretic setup for the optimal stopping problem

Any reasonable stopping rule must be based on maximization (minimization) of
expected utility (loss). Intuitively, an appropriate loss function for the decision of when
to terminate the development program and release the product must be a function of
the number of items tested in each stage N = (N, ... ,N,,) and the stage reliabilities
R = (R4, ...,R,+1) Such a function should reflect the tradeoff between the loss
associated with extensive testing versus the loss associated with releasing a product
with low reliability. In view of this tradeof!, let the loss associated with stopping and
releasing the product after the ith TAAF stage is given by

LN, Riy 1) = z ZLr(Nj)+ Zs(Rivy), i=0,..,m, (2.3)
j=1
where IV, = (N4, ... ,N;), &1(") denotes the cost due to testing for one stage, and
Z4(-)denotes the loss associated with stopping and releasing the product for field use.
Note that with the convention that Zj.:i +11} =0, & (the loss associated releasing
the product before any testing) is a function of R, alone.

Conceptually, the problem can be presented as a decision tree (as in Fig. 1) which
represents the sequence of events during the development process. Using conventional
representation (Lindley, 1985), random events in the process are denoted by circles
(random nodes) and decisions by squares (decision nodes). The optimal decision path
can be obtained using dynamic programming which entails taking expectation
at random nodes and minimizing the expected loss at the decision nodes. At
decision node i, the additional expected loss associated with the STOP and the
TEST decisions are given by E[#s(R;+1)|2"] and E[#1(N;+1)|2%Y] + L%,

R,
Lo(Ry)
L1(X Ry)

STOP R,

STOP, p Lo i Np_1Ry)

STOP
N, N, N Ry
| o - AmE——o0 F—o0—— Ln(NnRp 4 1)
TEST TEST TEST STOP

Fig. 1. Decision tree for reliability growth process.
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respectively, where
L} = MIN{E[Zs(R;+ )| 291, E[£+(Ni+ )| 2P] + L¥, (2.4

for i=0,...,m and L}, = oo at the terminal node. The optimal decision at
decision node i then is the one associated with L¥. Eq. (2.4) is the well-known dynamic
programming recursion relation.

Note that while (2.4) represents a finite set of relationships, the calculation of L¥ is
non-trivial as it involves a combination of expectations and minimizations. In deter-
mining an optimal stopping rule, it is convenient to rewrite (2.4) as

=0, ...,m—i
where
s
LO® = Z E[gT(NHj)I@(i)] + E[#s(Ri1 511929 2.6)
j=1

is the additional expected loss associated with testing for 6 more stages after TAAF
stage i.
Given the above setup, the following optimal stopping rule can be developed.

Theorem 1. Let E[%+(N;)|2P] be increasing in j for j=i+1,...,m and
E[Zs(R))| 2P] be discrete convex injforj =i+ 1, ... ,m + 1; then after the comple-
tion of i TAAF stages, the following stopping rule is optimal with respect to L{®:

i {L§” — L{® < 0= continue testing, @7

LY — L® > 0= stop testing and release.

Proof. If L") — L{” < 0, then testing at least one more stage will yield improvement,
80 continue testing is the optimal decision.
If LY — L > 0 then

E[Z+(Ni+1)|29] 2 E[Zs(Ri+1)| 29] — E[Zs(R;i+2)| 2], (2.8)

Under the assumption that E[#1(N;)| 2] is increasing in jforj =i+ 1, ... ,m
and E[Zs(R;)|2P] is discrete convex in j, ie. that the first-order differences
E[Zs(R;+1)129] — E[Zs(R))| 2] are increasing for j=i+1,...,m, (28)
guarantees that

E[£1(Ni+5+ 1)1 291 2 E[Ls(Ris5+1)| 291 ~ E[Zs(Rirs42) | 27] 2.9

for all § > 0. Eq. (2.9) implies that L") — L > 0, for 6 > 0 and thus from (2.5),
L¥ = L{? and stop testing and release is the optimal decision. [J
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If after TAAF stage i, the optimal decision is to continue testing, then it may be
important to estimate the expected time and cost necessary to complete the program.
The additional expected loss associated with testing for 4 more stages, is a discrete
function over a finite number of integer values (6 = 1, ... ,m — i) and thus a global
minimum can be determined. Once the value 6* which minimizes this expression is
determined, the expected number of additional items tested is determined as

i+o*
Y E[N«29]. (2.10)
k=it+1

This can be used to estimate both the expected time and testing budget until
completion since both are functions of testing effort. Note that when i =0, (2.10)
provides an estimate for the entire program length and budget. The term ‘estimate’ has
been used because even though after TAAF stage i it appears that testing for 6* more
stages is optimal, this is only based on 2. Additional testing information at
subsequent stage(s) will yield a revision of this estimate or may even result in
a stopping decision before stage i + 6*.

Note that the above theorem implies that it is optimal to stop testing when the
expected increase in loss due to testing an additional stage is greater than the expected
decrease in loss due to the improvement in reliability resulting from testing an
additional stage. In examining the assumptions of the theorem, it seems reasonable
that the expected loss due to testing, E[%+(N;)| 2], is increasing in j due to (2.2)
and the sampling model (2.1); however, the reasonableness of the discrete convexity
assumption for the loss due to release, [ Zs(R;)| 2], is not so obvious. In the sequel,
the reasonableness of this assumption will be conveyed via application of the above
decision theoretic framework with the Bayesian attribute reliability growth model of
Mazzuchi and Soyer (1992).

3. A Bayesian reliability growth model
3.1. The prior distribution

To model the reliability growth process, Mazzuchi and Soyer (1992) use the ordered
Dirichlet distribution as the prior joint distribution for R = (R,, ... ,R,+4). This
distribution is defined over (2.2) and given by
757 (R — Ry yfu!

D(B,a) ’

where Ro =0, Rpso =1, B0, >0, Y1 2 a; = 1, and

R|2®) = (3.1)

m+2

D(f,w) = U I'(Boy)/T(B) (3.2)
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is the Dirichlet constant. The term 2 represents the prior information captured by
the parameters 8, o;, i =1, ... ,m + 2.

An advantage of using the ordered Dirichlet, is that, a priori, all relevant quantities
of interest have closed-form distributions, for example,

[R;| 2] ~ Beta(Baf,B(l —a})), i=1,..,m+1 (3.3)
and
[R; — Ri| 2] ~ Beta(B (¢} — af), B(1 — a} + af)), fori<}, (3.4)

where af =Y._, %. The above distributions provide meaningful interpreta-
tions for the parameters «; and of in terms of the reliability growth scenario.
Specifically, using the well-known expression for the mean of a beta random vari-
able, the parameters o; and of can be interpreted as the expected one-step
improvement in reliability from stage i — 1 to i, and expected reliability at stage i,
respectively. This allows for different methods of elicitation and feedback for incor-
porating expert judgements into the prior (see, for example, Mazzuchi and Soyer,
1993),

3.2. Posterior inference and reliability growth monitoring

An additional feature of (3.1) is that all of the distributional forms are preserved as
mixtures a posteriori. It can be shown that the posterior joint distribution of
R, =(R;, ... ,R,,+), is a mixture of ordered Dirichlet distributions as

> 1 l - . -
OR|2V) =} - Y W ORI, a" (1)), (3.5)
=0

11=0 I

where I' = (I, ... . L),

(— {n I(S,() + paf) } {r(s.»(r') + ﬂai*)}
=L, + et )] LTS + B)

Wul):zl 21 (_1)1,’{1—11—1 F(Sl(ll)+ﬁa1*) }{F(S,(I’)+ﬂa,*)}’
=0 =0 LRSI + et ) L TS:AY + B)
(3.6)
pu(tyari)—1) pym+2 _R. w(rbyay (1t~ 1
1R, ot = R Pl (R, — Ry )P0 (37)

DB (), «*()) ’
and the updated parameters *(I°) and a*(I*) = (x¥(I'), ... , %+ (1)) are given as

B’y = B + S:(I) (3.8)
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and
() +Bo)
N G
(1) = i (3.9)
J forj=i+1,...,m+2
B0 !
with

J i 0
StY=Y +m—1), I¥=Y hand [[{-} =1
k=1 k=1 i=1

The progress of reliability growth can be assessed by comparing prior and posterior
estimates of the growth curve during the development program. The growth curve
estimate after the ith TAAF stage is obtained as the plot of E[R,| 2] versus k for
k=1, ...,m+ 1. Thus, after TAAF stage i, a comparison can be made of the most
recent growth curve estimate, E[R,| 2], with that of some earlier stage r <i,
E[R,12™]. Of particular interest are r = 0 (prior estimates) and r = i — 1 (estimates
just prior to the ith testing stage).

Note that expressions E[ R, | 27] where k > i are forecasts for future stage reliabil-
ities and can be obtained directly from (3.5), whereas for k < i these are the smoothed
estimates of past stage reliabilities and must be obtained from the full posterior of R;.
These expressions can be obtained as

i 21: W(li){iﬁ SiF) + paf }Si(liHﬂ“’* for k < i,

o =0 =0 =i SilY) + Pafi ) Sl + B
EIRAZOT =4, St + pa
; i A .
(I : for k 2.
112=‘0 12‘0 ( ){ S+ B }

(3.10)

4. The optimal stopping rule with specific loss functions
As it is reasonable to assume that &1 is an increasing function of N;, a candidate for
this loss function is
gT(Ni)= CiN;, (4-1)

where Cr is some positive constant which may be interpreted as the testing cost per
item. As per the requirement of Theorem 1, E[%1(N;)|2®] is increasing in
j=i+1,...,mwhen ¥y is defined by (4.1). This can be seen since, from (2.1),

ELZ1(N;)| 2] = CTE[1 —— w] 42

and the fact that both prior and posterior are defined over (2.2).
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In determining s, it is expected that an unreliable product will yield a higher loss,
and thus #; should be a decreasing function of the reliability at the time of release.
Two specific forms of #s are worth noting,

gS(RH-l):K(l '_Ri+1) (4-3)
and
ZS(R,-H):K(I —Ri+1)23 (44)

where K > 0 is some positive constant. Note that in (4.3), 1 — R;,; denotes the
probability of field failure of the product if the product is released after i TAAF stages.
For example, if the goal of the development program is to produce a batch of
B products, then the number of field failures is a binomial random variable and (4.3)
represents the expected cost due to field failures with K = Cg B for Cg, the per unit
failure cost. As for (4.4), consider a quadratic loss function for penalizing reliability
values which deviate from the most desirable value of 1. The scaling constant K, then
can be thought of a per unit loss for deviating reliabilities from 1.

It can be shown that both (4.3) and (4.4) satisfy the assumptions of Theorem 1
provided that E[R;.+,|2Y] — E[R;|2”] = a;4, is a decreasing sequence in ;j for
j=1,...,m+ 2. When using the Bayesian reliability growth model of Section 3, this
is the same as requiring that E[R;|2®] = af is discrete concave in j. Such an
assumption implies that the reliability improvement diminishes over the development
program. This is due, in part, to the fact that the more major product flaws will be
discovered (and subsequently fixed via modification) during the earlier stages. Con-
sider the following theorem.

Theorem 2. W hen the prior distribution of R is given by (3.1) with E[R;|2©] = o}
discrete concave in j, then the expected loss functions are discrete convex in j when loss is
given by (4.3) or (4.4)

Proof of (4.3). Asin Theorem 1, forj = i, we may write the first difference of expected
loss, E[#s(R))| 2P] — E[¥s(R;+1)|2Y] using (4.3) as

E[Zs(R)|29] — E[Zs(R;+1)| 2] = K{E[R;+,1]129] — E[R;|2"]}.
Because E[R;| 2] is increasing in j (as both prior and posterior are defined over

(2.2)), and K is a positive constant, the above difference is positive for all j > i. Using
(3.10) the above may be expressed as

1 1 ﬂ
. ©7 . B — . W‘ll _r L
E[Zs(R)| 2] —E[Ls(Rj+1)| 2] = aj44 {K hgo 2 ( )[3 +S,~(I')}
4.5)
Since «;.; is positive, it follows from the above that the term in the brackets in
(4.5) must be positive. Furthermore, since «; is a decreasing sequence in j and the
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term inside the brackets is a positive constant in j, it follows that
E[Zs(Rj)| 2] — E[%s(Rj+1)1 2] is decreasing in j and E[Zs(R;)|2?] is dis-
crete convex in j.

Proof of (4.4). For j = i, we may write the first difference of expected loss using
(4.4) as

E[Zs(R)|29] — E[Z5(R;j+1)|27]
= K{E[(1 —R)’|1291 - E[(1 — R;+1)*| 2“1} (4.6)

Due to (2.2), the term E[(1 — R;)*| 2%] is decreasing in j and thus the first differences
in expected loss given by (4.6) is positive for all j. Calculating the expectations in (4.6)
using (3.5), yields

E[Zs(R)})| 2] — E[Zs(R;+1)| 2]

_KY Y o J UYL — o)) (B AN — o)) + 1)
s ZW){ B+ D)

=0
B — o B g )F) + 1)}
(B + DB -

where o4(1')* = ¥ _, ok(1). Using (3.8) and (3.9), it may be shown that

S;(") + Pa
SIHY+ 8’

and the expression for E[Zs(R;)|27] — E[Zs(R;41)| 2] reduces to

af(Iy* =

E[Z5(R)|29] — E[Zs(R;+1)|29]

= {Boy+1 (B —of) + (1 —afsy) +1)}

1 1 W'(lt)
{K,Eo RN TSI +s,-(z“))}' *.7

Given the restrictions on the parameters (f > 0, «; > 0, 0 < af < 1) specified in
Section 3.1, the term in the first bracket of (4.7) is positive. Given that this first term is
positive and (4.6) is positive, it follows that the term inside the second bracket of (4.7)
must be positive. Then since «; is decreasing in j, the term in the first brackets of (4.7) is
decreasing in j. Since the term in the second brackets of (4.7) is a positive constant in j,
the first difference E[Zs(R;)| 2?] — E[#s(R;+1)|2"] is decreasing in j and thus
E[Zs(R;)|2™] is discrete convex inj. [

Using the posterior results of Section 3, the additional expected loss associated with
testing for  more stages after TAAF stage i, L{”’(R), can be determined. For ¥ and
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the linear form of Zg, given by (4.3), L (R) is given by

1 1 i+4 wrty
lgo.. Z"/V(li){CT y pre) -1 +K(1—1E‘+a+1(1i)*)}

= W B — o () — 1

vy sy e SBESE) -1 U —ats)
=2 z,;o"”/(’){“k:%lﬁ(l—a:)—l+K B S0 } 48

For % and the quadratic form of Z, given by (4.4), L® (R) is given by

. ; ‘o By — 1
OW(’ ) {Cz BN (1 — ap (%) — 1

+ Kﬂ"(li)(l — oot U)*) (B )1 — o5y (F)%) + 1)}
B (B ) + 1) ’

1
Z .
=0

L=

which reduces to

1 1 . i+é ﬁ + S,(l') _ 1
W (I1N{ C L =7 -
zlgo ligo ( ){ Tk=zi:+1 Bl —aoF) —1

Bl — a5y N(BU — aff541) + 1)}
(B+SUNB+ S+ 1) '

Note that the resulting expectations are finite when f(1 —oaf)>1 for all
k=i+1,..,i+ 6 Wheni=O0 (prior to any testing), (4.8) and (4.9) reduce to

+ K

(4.9)

N B —afy)
CTk;Iﬁ(l—otik)—1+K ; 4.10)
and
I Bl —at, )(BQ —afer) + 1)
Cr K , 411
ZEi—a=1" BB+ @)
respectively.

If after TAAF stage i, the optimal decision is to continue testing, then it may be
important to estimate the expected time and cost necessary to complete the program.
The additional expected loss associated with testing for & more stages, (specified
by (4.8) or (4.9)) is a discrete function over a finite number of integer values
(=1, ...,m—i)and thus a global minimum can be determined. Once the value 6*
which minimizes this expression is determined, the expected number of additional
items tested is given by

if* E[Nk|@(i)] — ig‘ ﬁ + Si(li) -1

— (4.12
k=i+1 k=i+1 Bl —of) —1 )
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5. Example

Assume that, a priori, the uncertainty for a product’s reliability growth over 10
TAAF stages (m = 10) is expressed via (3.1) with the following parameters: § = 50 and

a = (0.36, 0.34, 0.102, 0.0985, 0.0128, 0.0127, 0.0126, 0.0125, 0.0124, 0.0123,
0.0122, 0.0120).

Note that the «;’s form a decreasing sequence in j. Suppose that we use the linear form
of &£, given by (4.3). Assuming that the goal of the development testing program is to
deliver a batch size of 20 products (B = 20) for field use and cost of a field failure is
given as Cy = $50000/item, then using (4.3), K = CgB = $1000000. The testing cost
in (4.1) is assumed to be given as Cy = $1000/item.

Based on prior information alone, the LE can be obtained using (4.10). These are
presented in the first row of Table 1 for d = 0,1, ... , 10. Using the stopping rule given
by (2.7), L&Y (R) — LY (R) < 0 and thus it is determined a priori to initiate testing.
Furthermore, using (2.5), L¥ = L§Y (denoted by the asterisk) which implies that
testing is expected to terminate after 4 TAAF stages. From the prior information the
expected number of items to be tested in 4 stages is given by (4.12) as 22.91 ~ 23.

Suppose that the actual number of copies tested in the first TAAF stage equals 1,
that is, the first item tested, failed. After the completion of the first TAAF stage and
revision of the reliability estimates using the development in Section 3.2, the expected
additional loss is calculated using (4.8) and given in the second row of Table 1. Again
as L{P(R) — L (R) < 0, and the optimal decision is to continue testing. The testing
program is still expected to terminate after the fourth TAAF stage.

We assume that the number of items tested in the subsequent TAAF stages are
given in Table 2 and the respective expected additional cost, LY~ ?(R), are given in
Table 1. Note from Table 1, that the optimal decision after TAAF stages 2-7 is to
continue testing. It is not until the 8th TAAF stage that L{'(R) — L (R) >0

Table 1
Expected additional cost estimates (in $1000) after each TAAF stage

Loss TAAF stage (j)
0 1 2 3 4 5 6 7 8 9 10

L (R) 640.0 3016 2031 1101 109.6* 1116 1172 1283 1498 1969 418.1
L{Y-1(R) — 3033 2036 1095 108.7* 1104 1156 1264 1474 1937 4120
LY~ 2(R) — — 2092 1103 1084* 1088 1126 1217 1405 1835 3904
LY~3(R) — — — 1130 1092 107.5* 109.0 1153 1307 1682 3569
LY~ *(R) — — — - 1146 1084 104.8* 1052 1132 1395 2908
LY~5)(R) — — — — — 109.2 101.8  98.0* 1007 1194 2458
LY~%(R) — — — — — — 99.8 922  903* 1022 2076
LY~ T(R) — — — — — — — 843  79.1* 863 1767

LY~8(R) _ _ - — —_ — — — 654* 682 1439
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Table 2
Actual number of product copies tested in
each TAAF stage j

TAAF 1 2 3 4 5 6 7 8
Stage j
n; 1 1 1 1 3 4 7 10

Table 3
Prior and posterior growth curve estimates
Reliability TAAF Stage (j)
1 2 3 4 5 6 7 8 9 10 11

E[R;|2'] 0360 0700 0.802 0901 0913 0926 0939 0951 0964 0976 0.988
E[R;|2"Y] 0333 0657 0760 0868 0885 0902 0919 0935 0952 0968 00984
E[R;12®] 0324 0638 0737 0840 0.856 0.873 0.892 0912 0935 0957 0.978

implying that the optimal decision is to terminate the testing program. Further note
that, as discussed in Section 2, the expected completion time has shifted based on new
information obtained from testing.

In addition to the above information, Table 3 gives the reliability estimates after each
TAAF stage as obtained using (3.10) and the estimated growth curve can be plotted.
Note that the growth curve estimates, E[R;|2?], j=1, ..., 11, are decreasingly
ordered in i, implying that the specified prior reliability growth was overly optimistic.
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