
The Doubly-Pareto Uniform Distribution
with Applications in Uncertainty Analysis
and Econometrics
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Abstract. In this paper we propose a novel four parameter continuous uni-
variate distribution that can be motivated from at least two approached. The
first one views the distribution as a generalization of the uniform one that
allows for uncertainty specification at the vicinity of its bounds (gradually)
represented via two Pareto tails. The second one is that of an asymmetric
heavy-tailed, peaked distribution with an unbounded domain with the prop-
erty that the location of the mode is not uniquely determined but rather is
described by an uniform range. Properties of the distribution are described
and a maximum likelihood estimation (MLE) procedure for the mode location
and the Pareto tails parameters is presented. The procedure is illustrated by
means of an i.i.d. sample of standardized log-differences of bi-monthly 30-year
US certificate deposit interest rates for the period from 1964-2004. The sam-
ple is constructed utilizing the Auto-Regressive Conditional Heteroscedastic
(ARCH) time series model devised by the Nobel Laureate R.F. Engle (1982).
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1. Introduction

One of the first records that specifically mentions the continuous uniform distribu-
tion seems to be the classical paper by the reverend Thomas Bayes (1763). While
the uniform (rectangular) distributions are one of the corner stones of the method-
ology in mathematical statistics (e.g. integral transformations; Monte Carlo ran-
dom number generation; non-parametric testing procedures), few citations have
appeared in the relevant literature thus far dealing with applications of the uni-
form distribution per se. Hull and Swenson (1966) and more recently Wimmer
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and Witkovsky (2002) applied it to the problem of roundoff errors. Hlawka (1984)
presents a comprehensive theory of the uniform distribution. Possibly the inherent
simplicity of this distribution, which describes the equi-probability of the different
possible values of uncertainty, hindered its direct applicability. To paraphrase A.
Einstein: “The world is simple but not too simple”.

With the proliferation of simulation and uncertainty analysis packages in the
late 20-th century as a standard tool in an engineer’s toolbox, undoubtedly, the
most wide spread (indirect) application of the uniform distribution with support
[0, 1] seems to be to serve as a building block for sampling from continuous dis-
tributions utilizing the inverse cumulative distribution function theorem and a
pseudo random number generator (see any of the widespread modern texts on
simulation, e.g. Kelton et. al. (2002). Banks et al. (2001), Atliok and Melamed
(2001)). Current uncertainty analysis packages like @Risk (by the Palisade Corpo-
ration) and Crystal Ball (by Decision Engineering) utilize this sampling method
to analyze the distribution of an output parameter given a model description and
input parameters with specified uncertainty distributions. The uniform distribu-
tion with arbitrary support [a, b] is also a natural (initial) candidate for input
uncertainty distribution specification, requiring just the assessment of a lower and
upper bounds via an expert judgment (see, e.g., Ellison et al. (2000)).

From a statistical aspect, however, the elicitation of the minimal value â

and the maximal value b̂ of a bounded uncertain phenomenon from a substantive
expert has been a procedure riddled with ambiguities and contradictions (See,e.g.,
Selvidge (1980), Davidson and Cooper (1980), Alpert and Raiffa (1982), Keefer and
Verdini (1993)). The main objection is that the values to be assessed are quite likely
to fall outside the range of the expert’s experience in spite of his/her familiarity
with the activity under consideration. To overcome this possible deficiency, Kotz
and Van Dorp (2004) suggested to specify the pth lower quantile (ap) and the
rth upper quantile (br) of the uniform distribution (0 < p < 1, 0 < r < 1) and
then solving for its lower and upper bounds a and b via the relationships:

a =
rap − pbr

r − p
, b =

(1− p)br − (1− r)ap

(r − p)
. (1.1)

While (1.1) continues to adhere to a bounded support, the Doubly-Pareto Uniform
(DPU) distribution, to be discussed herein, offers an unbounded alternative to
(1.1) by modeling Pareto tails to the left of ap and to the right of br, maintaining
uniformity in between. Figures 1A and 1B in Section 2 display a DPU distribution
with a0.025 = 0 and b0.95 = 1. Another possible direct application of the DPU
distribution for uncertainty analysis arises by observing that its parameters may
be assessed by specifying a range [α, β] for its modal value (rather than requiring
a substantive expert to provide a fixed point estimate that he/she may be less
comfortable with) and a lower quantile ap < α and upper quantile br > β. Figures
1C and 1D display a DPU distribution with α = 0 and β = 1, a0.05 = − 1

4 and
b0.90 = 1 1

4 . A third possible application arises from the reinforced confirmation that
distributions of financial returns are strongly leptokurtic (see, e.g. Levy and Duchin
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(2004), Kotz and van Dorp (2004), McFall Lamm (2003), Popova et al. (2003), Kotz
et al. (2001)). This fact seems to have reinvigorated the search for continuous
distributions of this type (see, e.g., Bardou et al. (2002), Huang and Solomon
(2001), Matacz (2000), Solomon and Levy (2000) and Bouchaud et al. (1998),
amongst others). The famous Swiss-Italian economist and sociologist Vilifredo
Pareto over 100 years ago proposed Pareto distributions

f(x|α, β, n) =
n(β − α)n

(x− α)n+1
,

where x > β > α, n > 0, with an eye towards modeling income distributions
(see, e.g., Kleiber and Kotz (2003) for a recent source). These distributions have
support [0,∞) and exhibit a power-law (or Paretian) behavior in its right tail and
are known to be of the “heavy-tailed” type. The DPU distribution on the other
hand has support [−∞,∞], but due to its left and right Pareto tails is also of a
heavy-tailed (or leptokurtic) kind.

The remainder of this paper is organized as follows: in Section 2 we present
the pdf and cdf of the DPU family of distributions and some of its properties.
Two elicitation procedures for the parameters of a DPU distribution from the
two perspectives above are presented in Section 3. These procedures allow for
estimation of DPU parameters in uncertainty analysis applications by means of
expert judgment in the absence of data. For applications where data is available
we derive a maximum likelihood procedure for estimating DPU parameters in
Section 4. In Section 5 we apply the maximum likelihood (ML) procedure to the
US certificate deposit interest rates data covering 1964-2004.

2. DPU distributions and properties

Let X be a random variable with the pdf

f(x|α, β,m, n) =
mn

m + mn + n
×





(β−α)m

(β−x)m+1 , x < α,
1

β−α , α ≤ x ≤ β
n(β−α)n

(x−α)n+1 , x > β,
, (2.1)

where the parameters α < β, m > 0, n > 0. Note that (2.1) can be rewrit-
ten as f(x|α, β, m, n) =

∑3
i=1 πifXi(x), where fX1(x) = m(β−α)m

(β−x)m+1 , for x < α <

β, fX2(x) = 1
β−α , for α ≤ x ≤ β, fX3(x) = n(β−α)n

(x−α)n+1 , for x > β > α and the
weights πi, i = 1, . . . , 3, are given by




π1 = n
m+mn+n ,

π2 = mn
m+mn+n ,

π3 = m
m+mn+n .

(2.2)

Observe that πi > 0, i = 1, 2, 3, fXi , i = 1, 3 are Pareto distributions and fX2

is a uniform distribution on [α,β]. Hence the pdf f(x|α, β,m, n) follows the con-
struction method of the modified mixture technique applied for example for the
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generalization of the trapezoidal distribution in Kotz and Van Dorp (2004). The
pdf (2.1)will be called the Doubly-Pareto Uniform (DPU) distribution correspond-
ing to its two Pareto tails and the central uniform stage. The parameters m and
n will be referred to as the tail shape parameters of the DPU distribution and the
parameters α and β the mode location (or centrality) parameters.

From (2.1) the cdf follows, using straightforward calculations, to be

F (x|α, β, m, n) =





n
m+mn+n

(
β−α
β−x

)m

, x < α,
mn(x−α)+n(β−α)
(m+mn+n)(β−α) , α ≤ x ≤ β

1− m
m+mn+n

(
β−α
x−α

)n

, x > β.

, (2.3)

Substituting m = n > 0 in (2.1) yields the special case

f(x|α, β, n) =
n

n + 2
×





(β−α)n

(β−x)n+1 , x < α,
1

β−α , α ≤ x ≤ β
(β−α)n

(x−α)n+1 , x > β.

(2.4)

The derivation of the pdf (2.4) was, to the best of our knowledge, first described by
DeGroot (1970) by defining a uniform distribution on [a, b] with a bivariate bilateral
Pareto distribution

g(a, b|α, β, n) =

{
n(n+1)(β−α)n

(b−a)n+2 a < α, b > β

0 elsewhere,

where n > 0 and α < β, describing uncertainty about the bounds [a, b]. Next the
pdf (4) follows from

f(x|α, β, n) =
∫ α

a=−∞

∫ ∞

b=β

g(a, b|α, β, n)
b− a

1[a,b](x)dadb,

where 1[a,b](x) is the indicator function that assumes the value one for x ∈ [a, b] and
zero otherwise. So far we have not been able to derive a similar bivariate bilateral
pareto set-up for the more general pdf (2.1). While the pdf (2.4) is limited to
symmetric pdfs with the symmetry axis (α+β)/2, the pdf (2.1) possesses enhanced
flexibility by allowing for asymmetry through seperate uncertainty specification of
the left and right tails by means of the two parameters m and n.

Figure 1A (Figure 1B) plots an example DPU pdf (2.1) (cdf (2.3)), with
parameters m = 37, n = 18.5, α = 0, β = 1. Note that the central stage in Figure
1A is symmetric around 1

2 and observe a linear behavior in [0, 1] in both Figures 1A
and 1B. The distributions in Figures 1A and 1B are reminiscent of a uniform [0, 1]
distribution with two very short tails describing remaining uncertainty beyond the
bounds 0 and 1. Figure 1C (Figure 1D) plots an example DPU pdf (2.1) (cdf (2.3)),
with parameters m = 4.645, n = 3.203, α = 0, β = 1 exhibiting substantially
longer tails than the distributions in Figures 1A and 1B. The distributions in
Figure 1C and 1D resemble a unimodal assymetric distribution with unbounded
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Figure 1. Examples of DPU distributions with m = 37, n =
18.5, α = 0, β = 1 (A-B) and m = 4.645, n = 3.203, α = 0, β = 1 (C-
D). A-C graph the Probability Density Function (2.1) and B-D graph
the Cumulative Distribution Function (2.3).

support, but with a range [0, 1] specified for its mode. Both distributions in Figure
1 are asymmetric since the left and right tail behaviors are different.

2.1. Inverse Cumulative Distribution Function

From (2.3) we immediately derive the inverse cdf in a closed form given by:

F−1(y|α, β,m, n) =





λ1(β − α) + α, 0 ≤ y < π1,
λ2(β − α) + α, π1 ≤ y ≤ 1− π3

λ3(β − α) + α, 1− π3 ≤ y ≤ 1.

, (2.5)

where the weights λi, i = 1, . . . , 3, are given by




λ1 = 1− m

√
π1
y ≤ 0, 0 ≤ y < π1,

0 ≤ λ2 = 1− y−π1
mπ1

≤ 1, π1 ≤ y ≤ 1− π3,

λ3 = n

√
π3

1−y ≥ 1, 1− π3 ≤ y ≤ 1.

Note that λ2 does depend on n via the definition of π1 in (2.2). In addition, every
quantile of a DPU distribution is written as linear combination of the central stage
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bounds α and β in a form reminiscent of the inverse cdf of uniform distribution with
support [α, β]. Sampling from a DPU distribution is straightforward, utilizing the
inverse cumulative distribution function theorem and a pseudo-uniform random
number generator (see, e.g., Banks et al. (2001)).

2.2. Moments

Setting

Y =
X − α

β − α
(2.6)

one obtains using the pdf (2.1) the “standardized” DPU pdf of the random variable
Y as:

f(y|0, 1, n,m) =
mn

m + mn + n





(1− y)−m−1, y < 0,
1, 0 ≤ y ≤ 1
y−n−1, y > 1.

, (2.7)

Evidently, standardized DPU distributions have a uniform[0, 1] central stage (see
Figure 1). The central moments for X follow immediately from those of Y , utilizing
the relationship

E[(X − E[X])k] = (β − α)kE[(Y − E[Y ])k]. (2.8)

From (2.8) we may conclude that for the DPU distribution the standard statistical
measures of variability and shape such as the coefficient of variation (CV ), skew-
ness (

√
β1) and kurtosis (β2) given by CV = µ2/µ2

1,
√

β1 = sign{µ3}
√

µ2
3/µ3

2, β2 =
µ4/µ2

2, where the central moments µk = E[(Z−E[Z])k], k = 2, 3, 4 are functions of
solely the tail shape parameters m and n and not of the mode location parameters
α and β. (Here Z represents either X or Y ).

To calculate the k-thmoment of Y around zero we shall consider first the last
part of (2.7) and evaluate

∫ ∞

1

yk−n−1dy =
1

n− k
(2.9)

under the condition n > k. For n ≤ k, the integral (2.9) does not exist. For the
second part of (2.7) one obtains:

∫ 1

0

ykdy =
1

k + 1
. (2.10)

Finally, defining

G(k, m + 1) =
∫ 0

−∞

yk

(1− y)m+1
dy (2.11)

and utilizing integration by parts under the condition that m > k results in

G(k,m + 1) = − k

m
G(k − 1,m). (2.12)
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From (2.11) G(0,m + 1) = 1/m and a repeated application of (2.12) yields

G(k,m + 1) = (−1)k
{ k−1∏

j=0

k − j

m− j

} 1
m− k

. (2.13)

With m > k and n > k the k-th moment of the standardized Y ((2.6)) about
zero follows from (2.7), (2.9), (2.10) and (2.13) to be:

µ′k = E[Y k] =
(−1)kn(n− k)(k + 1)! + n(n + 1)

∏k
i=0(m− i)

(k + 1)(n− k)(m + mn + n)
∏k

i=1(m− i)
. (2.14)

Setting k = 1 and k = 2 we obtain

E[Y ] =
−2n(n− 1) + n(n + 1)m(m− 1)
2(n− 1)(m + mn + n)(m− 1)

,

E[Y 2] =
3n(n− 2) + n(n + 1)m(m− 1)(m− 2)
3(n− 2)(m + mn + n)(m− 1)(m− 2)

, (2.15)

respectively. In the special symmetric case with n = m > 0 (see the pdf (4) with
α = 0, β = 1), the mean value E[Y ] reduces to 1

2 (as evident from the symmetry
of Y around 1

2 ) while substituting m = n > 0 in (2.15) yields

E[Y 2] =
3 + n(n− 1)(n + 1)

3(n− 1)(n− 2)(n + 2)
→ 1

3
as m = n →∞.

Hence, the variance V ar[Y ] = E[Y 2]−E2[Y ] → 1
12 as m = n →∞ (in accordance

with the earlier observation that the uniform[0, 1] distribution is the limiting
distribution of the pdf (2.7) as n → ∞,m → ∞ ). Figure 2A (Figure 2B) below
plots the behavior of E[Y ] − 1

2 (of V ar[X] − 1
12 ) as a function of the tail shape

parameters m and n. Note that keeping m fixed (n fixed) and letting the right tail
shape parameter n ↓ 1 (the left tail shape parameter m ↓ 1),we obtain E[Y ] →
∞ (E[Y ] → −∞). The parameters m and n ought to be larger than 1 for the
mean E[Y ] to exist. Similarly, observe from Figure 2B that the variance V ar[Y ] →
∞when either m or n ↓ 2.

From the conditions m > k, n > k for the moments about zero (2.14) it
follows that kurtosis β2 = µ4/µ2

2 for DPU distributions takes a finite value when
the conditions m > 4, n > 4 hold. Moreover, kurtoses for DPU distributions may
take arbritrarily large values for the values of the parameters m or n arbritrarily
close but larger than the value 4 (which explains its leptokurtic behavior). A similar
statement can be made regarding the skewness measure except that here we have
the condition m > 3, n > 3 for the skewness to be finite. When m < n (m > n) the
DPU distribution attains negative (positive) skewness values.

2.3. Limiting Distributions

The mixture probabilities π1, π2, π3 (2.2) are solely functions of the powers m and
n and not functions of the location parameters α and β. Keeping m > 0 fixed and
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Figure 2. E[Y ] − 1
2

(A) and V ar[Y ] − 1
12

(B) of a “standardized”
DPU pdf (2.7) as a function of the tail shape parameters n and m.

letting n →∞, one obtains π1 → 1
1+m , π2 → m

1+m , π3 → 0 and finally

lim
n →∞

n(β − α)n

(x− α)n+1
=

{
→ 0 x > β

→∞ x = β.

Thus in this case, the pdf (2.1) converges to the pdf

f(x|α, β,m) =





1
1+m

m(β−α)m

(β−x)m+1 , x < α,
m

1+m
1

β−α , α ≤ x ≤ β,

0 x > β,

(2.16)

which defines a Left-Pareto Uniform (LPU) distribution. Similarly keeping n > 0
fixed and letting m → ∞, the pdf (2.1) converges to the Right-Pareto Uniform
(RPU) density

f(x|α, β, n) =





0, x < α,
n

1+n
1

β−α , α ≤ x ≤ β,
1

1+n
n(β−α)n

(x−α)n+1 x > β.

(2.17)

Figure 3A (Figure 3B) depicts the limiting LPU distribution (RPU distribution)
of the DPU distribution in Figure 1C with parameters m = 4.645 (n = 3.203), α =
0, β = 1 (the central part is symmetrical around 1

2 ).
Letting m →∞, n →∞, the original pdf (2.1) converges to a uniform distri-

bution on [α, β]. Finally, we have

lim
α ↑ β

(β − α)m

(β − x)m+1
=

{
0 x < α

→∞ x = α

for all m > 0 and

lim
α ↑ β

n(β − α)n

(x− α)n+1
=

{
0 x > α

→∞ x = α
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Figure 3. A : LPU distribution (2.16) with m = 4.645, α = 0, β = 1.
B : RPU distribution (2.17) with n = 3.203, α = 0, β = 1.

for all n > 0. Hence, analogously to the uniform distribution with support [α, β],
the pdf p(x|α, β, m, n) (2.1) converges to a single point mass at α (or β) as α ↑ β.

3. Elicitation of parameters

Let us first consider the scenario that the boundaries of the central stage α and
β are elicited as the p-th and (1 − r)-th percentile. Thus here we view the DPU
distribution as generalization of the uniform distribution allowing for uncertainty
specification beyond its bounds. Denoting a lower quantile ap and an upper quan-
tile br, we set α = ap, β = br and solve for n and m via (2.3) yielding

{
n

n+mn+m = p
m

n+mn+m = 1− r
⇒

{
m = r−p

p

n = r−p
1−r .

(3.1)

Hence, in this case the parameter m (parameter n) is simply the ratio of the
probability mass in the central stage to that in the left tail (right tail). Setting
α = ap = 0, p = 0.025 and β = br = 1, r = 0.95 in (3.1) yields the tail shape
parameters m = 37 and n = 18.5. Figures 1A and 1B plot the DPU pdf and cdf
with these parameters.

In the second scenario we assume that the central stage boundary parameters
α and β have been elicited as a range for the mode, in addition to a lower percentile
ap < α and upper percentile br > β to describe uncertainty in both tails. We obtain
from (2.3) the following set of non-linear equations (the quantile constraints)





n
n+mn+m

(
β−α
β−ap

)m

= p

m
n+mn+m

(
β−α
br−α

)n

= 1− r,
(3.2)
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from which the parameters m and n need to be solved. Rewriting the left hand
side (LHS) of the first equation in (3.2) as

ψ(m|x, n) =
nxm

n + mn + m

where x = (β − α)/(β − ap) ∈ (0, 1), it follows that ψ(m|x, n) → 0 ( ψ(m|x, n) →
1 ) as m →∞ (m ↓ 0), keeping n > 0 fixed. In addition,

∂ψ(m|x, n)
∂m

= {(n + mn + m)ln(x)− (n + 1)} nxm

(n + mn + m)2
< 0.

Hence, the first equation in (3.2) has a unique solution m∗ for every fixed value
of n > 0 and thus it defines an implicit continous function ξ(n) such that the
parameter combination {m∗ = ξ(n), α, β, n} satisfies the first quantile constraint
for all n > 0. The unique solution m∗ may be solved for by employing a stan-
dard root finding algorithm such as, for example, GoalSeek in MicroSoft Excel.
Analagously, the second equation defines an implicit continuous function ζ(m) such
that the parameter combination (m, α, β, n∗ = ζ(m)) satisfies the second quantile
constraint for all m > 0. We propose the following direct algorithm solving (3.2):

Step 1: Set n∗ = 1.
Step 2: Calculate m∗ = ξ(n∗) (satisfying for the first constraint in (3.2)).
Step 3: Calculate n∗ = ζ(m∗) (satisfying for the second constraint in (3.2)).

Step 4: If
∣∣∣ n∗
n∗+m∗n∗+m∗

(
β−α
β−ap

)m∗

− p
∣∣∣ < ε Then Stop Else Goto Step 2.

Setting α = 0, β = 1, ap = − 1
4 , p = 0.05 and br = 1 1

4 , r = 0.90 in (3.2) yields
the tail shape m = 4.645 and n = 3.203. Figures 1C and 1D plot the DPU pdf
and cdf possessing these parameters. (A MicroSoft Excel spreadsheet with an
implementation of the above algorithm is available from the authors upon request.)

4. Maximum Likelihood Estimation

For a random sample X = (X1, . . . , Xs) of size s from the distribution (2.1) the
likelihood function is, by definition,

L(|α, β, m, n) =
{

mn

m + mn + n

}s {
1

β − α

}s

×
{ r1∏

i=1

β − α

β −X(i)

}m+1{ s∏

j=r2+1

β − α

X(j) − α

}n+1

(4.1)

where X(1) < X(2) < . . . < X(s) are the order statistics of X, r1 and r2 are such
that:

X(r1) ≤ α < X(r1+1), X(r2) ≤ β < X(r2+1), 0 ≤ r1 ≤ r2 ≤ s.

By convention
X(0) = −∞, X(s+1) = +∞.



DPU distribution 11

Note that, since α < β and for the case that

r1 = r2 = r. (4.2)

we have the restriction

X(r) ≤ α < β ≤ X(r+1), r = 0, . . . , s.

Scenarios with condition (4.2) corresponds to a set of order statistics such that no
observations have been obtained in the central stage of the DPU distribution. The
following direct algorithm to maximize the likelihood L(X|α, β,m, n) [(4.1)] and
to calculate the ML estimates of the parameters α, β, m, and n is suggested:

The k-th Iteration:
Step 0: Set k = 1, m1 = 1, α1 = X(bs/3c), β1 = X(b2s/3c), n1 = 1.
Step 1: Determine nk+1by maximizing L(X|αk, βk,mk, n) over n.
Step 2: Determine mk+1by maximizing L(X|αk, βk,m, nk+1) over m.
Step 3: Determine αk+1by maximizing L(X|α, βk,mk+1, nk+1) over α.
Step 4: Determine βk+1by maximizing L(X|αk+1, β, mk+1, nk+1) over β.
Step 5: If |L(X|αk, βk, nk,mk)− L(X|αk+1, βk+1,mk+1, nk+1)| < ε STOP

Else k = k + 1 and Goto Step 1.

In Step 0 above we initialize α1 and β1 so that each part of the DPU pdf initially
contains approximately the same number of observations. Figures 4A-D plot an
example of likelihood profiles of (4.1) as a function of m, n, α and β, respectively,
for the illustrative data set of size s = 8 :

X = (0.10, 0.25, 0.30, 0.40, 0.45, 0.60, 0.75, 0.80). (4.3)

Observe that all likelihood profiles in Figure 4 attain a unique maximum. Note
that those profiles of (4.1) as a function of α and β are continuous, but only
piecewise differentiable. Figures 4A-C plot the likelihood profiles for n, m, α for
the first iteration (k = 1, α1 = X(b8/3c) = X(2), β1 = X(b16/3c) = X(5)). Figure
4D shows that the unique maximum of the likelihood profile as function of β
(or α) in the third iteration (k = 3) does not have to be attained at specific
order statistic. For the data set (4.3) after 8 iterations we arrive at α9 = X(2),
β9 = X(8),m9 = 4.773 and n9 → ∞. Hence, the resulting ML fit for the data set
(4.3) coincides with an LPU distribution (see Figure 3A). Below we shall provide
some mathematical details regarding the execution of Step 1-4 of the algorithm
above. (A software program with the ML algorithm above (requiring a set of order
statistics in an ASCII text file as input) is available from the authors upon request.)

STEP 1: We shall consider separately the cases β < X(s) and β = X(s).

Case A: β < X(s); From X(r2) ≤ β < X(r2+1) it follows that r2 ≤ s − 1. Viewing
the likelihood profile of (4.1) as a function of n (see Figure 4A for the data set
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Figure 4. Example Likelihood Profiles of (4.1) for (A) the right tail
shape parameter n,(B) the left tail shape parameter n, (C) the left
mode location parameter α, (D) the right mode location parameter β,
for the illustrative data set (4.3).

(4.3) ) one can write:

L(X|n) ∝
{

mn

m + mn + n

}s { s∏

j=r2+1

β − α

X(j) − α

}n+1

. (4.4)

Maximizing L(X|n) given by (4.4) is equivalent to maximizing its logarithm

Log{L(X|n)} = sLog

{
mn

m + mn + n

}
+ (n + 1)Log

{ s∏

j=r2+1

β − α

X(j) − α

}
+ C

(4.5)
where C is a constant. Setting the partial derivative with respect to n in (4.5) equal
to zero, the following quadratic equation in the parameter n is obtained

(m + 1)n2 + mn + mLog−1

{
s

√√√√
s∏

j=r2+1

β − α

X(j) − α

}
= 0. (4.6)
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Since n > 0, solving (4.6) for n it follows immediately that

nk+1 =− m

2(m + 1)
+

1
2(m + 1)

√√√√√m2 − 4(m + 1)Log−1

{
s

√√√√
s∏

j=r2+1

β − α

X(j) − α

}
.

(4.7)

Case B: β = X(s); Since X(r2) ≤ β < X(r2+1) we have that r2 = s. Considering the
likelihood profile of (4.1) as a function of n we obtain

L(X|n) ∝
{

mn

m + mn + n

}s

. (4.8)

Maximizing the logarithm of the RHS of (4.8) and taking its derivative with respect
to n yields the positive value

1
n

m

m + mn + n
> 0.

Hence, the RHS of (4.8) is a strictly increasing function in n and nk → ∞. Thus
the maximum likelihood estimation of a DPU distribution (2.1), reduces to the
same estimation of a LPU distribution (2.16) (see also Figure 3A), which could
be achieved by setting n to be an arbitrarily fixed large value in the algorithm
presented above.

STEP 2: As above we shall consider separately the cases α > X(1) and α = X(1).

Case A: α > X(1); The likelihood profile of (4.1) with α > X(1) as a function of m
for the data set (4.3) is plotted in Figure 4B. From X(r1) ≤ α < X(r1+1) we have
that r1 ≥ 2. Analogously to Step 1, it follows that

mk+1 =− n

2(n + 1)
+

1
2(n + 1)

√√√√√n2 − 4(n + 1)Log−1

{
s

√√√√
r1∏

i=1

β − α

β −X(i)

}
.

(4.9)

(Compare with (4.7).)

Case B: α = X(1); From X(r1) < α ≤ X(r1+1) we have that r1 = 1. Here
maximum likelihood estimation of a DPU distribution (2.1), reduces to a maxi-
mum likelihood estimation of a RPU distribution (2.17) (see also Figure 3B), which
could be achieved by setting m to be an arbitrarily large value in the algorithm
above.
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STEP 3: Considering the likelihood profile of (4.1) as a function of α (see Figure
4C for the data set (4.3) ) we have

L(X|α) ∝ (β − α)ξ ×
{ s∏

j=r2+1

1
X(j) − α

}n+1

, (4.10)

where
ξ = r1(m + 1) + (s− r2)(n + 1)− s (4.11)

and X(r1) ≤ α < X(r1+1) < β, 0 ≤ r1 < r2, or X(r1) ≤ α < β, 0 ≤ r1 = r2.
Maximizing the logarithm of (4.10) is equivalent to maximizing

ξ

n + 1
Log(β − α)−

s∑

j=r2+1

Log(X(j) − α). (4.12)

Consider the two cases ξ ≤ 0 and ξ > 0.

Case A: ξ ≤ 0; From functions of the form Log(θ − α) being strictly decreasing
functions for α < θ, ξ ≤ 0 and n > 0 it immediately follows noting the restrictions

α < X(j), j = r2 + 1, . . . , s and α < β,

that (4.12) is a strictly increasing function for α ∈ [X(r1),U ], where

U =

{
X(r1+1) r1 ∈ {0, . . . , r2 − 1}
β r1 = r2.

(4.13)

Hence, (4.12) attains is maximum at the upper bound of the range [X(r1),U ].

Case B: ξ > 0;Taking the derivative of (4.12) with respect to α and equating
it to zero yields

s∑

j=r2+1

β − α

X(j) − α
=

ξ

n + 1
. (4.14)

Taking the derivative of the LHS of (4.14) with respect to α we obtain
s∑

j=r2+1

β −X(j)

(X(j) − α)2
.

Hence, from β ≤ X(r2+1), β < X(j), j ∈ {r2 + 1, . . . , s} it follows that LHS of
(4.14) is a strictly decreasing function in α over the range [X(r1),U ], where U is
given in (4.13). We are now able to conclude from (4.14) and the definition of ξ
(4.11), that whenever ξ > 0 and:
1.

∑s
j=r2+1

β−U
X(j)−U > ξ

n+1 ⇒ (4.10) attains it maximum at U .

2.
∑s

j=r2+1

β−X(r1)

X(j)−X(r1)
< ξ

n+1 ⇒(4.10) attains it maximum at X(r1).

3.
∑s

j=r2+1
β−U

X(j)−U < ξ
n+1 <

∑s
j=r2+1

β−X(r1)

X(j)−X(r1)
⇒(4.10) attains it maximum

at a stationary point α∗ ∈ [X(r1), U ].
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STEP 4 - See Figure 4D: Considering the likelihood profile of (4.1) as a function
of β (see Figure 4D for the data set (4.3) ) we have

L(X|β) ∝ (β − α)ξ ×
{ r1∏

i=1

1
β −X(i)

}m+1

(4.15)

where as before ξ is defined by Eq. (4.11) and α < X(r2) < β ≤ X(r2+1), r1 < r2 ≤
s + 1, or α < β ≤ X(r2+1), r1 = r2 ≤ s + 1. Maximizing the logarithm of (4.15) is
equivalent to maximizing

ξ

m + 1
Log(β − α)−

r1∑

i=1

Log(β −X(i)). (4.16)

Consider the two cases ξ ≤ 0 and ξ > 0.

Case A: ξ ≤ 0; From functions of the form Log(β − θ) being strictly increasing
functions for θ < β, ξ ≤ 0 and m > 0 it immediately follows for

X(r2) < β, i = 1, . . . , r1 and α < β,

that (4.16) is a strictly decreasing function for β ∈ [L, X(r2+1)], where

L =

{
X(r2) r2 ∈ {r1 + 1, . . . , s}
α r1 = r2.

(4.17)

Hence, (4.16) attains is maximum at the lower bound of the range [L, X(r2+1)].

Case B: ξ > 0;Taking the derivative of (4.16)with respect to β and equating
it to zero yields

ξ

m + 1
=

r1∑

i=1

β − α

β −X(i)
. (4.18)

Taking the derivative of the RHS of (4.18) with respect to β yields
r1∑

i=1

α−X(i)

(β −X(i))2
.

Hence, from α ≥ X(r1), α > X(i), i ∈ {1, . . . , r1 − 1} it follows that RHS of (4.18)
is a strictly increasing function in β over the range [L, X(r2+1)], where L is given
by (4.17). We are now able to conclude from (4.18) and the definition of ξ (4.11),
that whenever ξ > 0 and:
1. ξ

m+1 <
∑r1

i=1
L−α
L−X(i)

⇒(4.15) attains it maximum at L.

2. ξ
m+1 >

∑r1
i=1

X(r2+1)−α

X(r2+1)−X(i)
⇒(4.15) attains it maximum at X(r2+1).

3.
∑r1

i=1
L−α
L−X(i)

< ξ
m+1 <

∑r1
i=1

X(r2+1)−α

X(r2+1)−X(i)
⇒ (4.15) attains its maximum

at a stationary point α∗ ∈ [L, X(r2+1)].
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5. An Example using Financial Data

We shall illustrate the ML procedure for the DPU distribution utilizing the monthly
US certificate deposit (CD) interest rate data for the period from 1964-2004. Our
aim is to construct a realization of a time series νk, k = 0, 1, 2, . . ., from this data,
where the νk are i.i.d. random variables. This would provide us with an i.i.d. sam-
ple for our ML procedure. To construct such a realization we shall use the (by
now standard) Auto-Regressive Conditional Heteroscedastic (ARCH) time series
model devised by the 2003 Nobel Laureate in Economics R.F. Engle in 1982.

Denoting the interest rate after month k by ik, we shall begin by assuming a
simple financial engineering models for the random behavior of the interest rate,
namely the multiplicative model

ik+l = ik · εk,l ⇔ Ln( εk,l) = Ln(ik+l)− Ln(ik) (5.1)

where k = 1, 2, . . . , the gap l = 1, 2, . . . and and εk,l are mutually independent
random variables (see, e.g., Leunberger (1998)). (Our interest rate i1 is the CD
rate in June of 1964.) Setting the gap to be l = 3 we obtain 162 data points and
the values of the auto-correlation function

ACF (λ, 1) = Corr[Ln(εk+λ,3), Ln(εk,3)]

with lags λ = 1, . . . , 5 provided in Table 1. Table 1 also contains the values of the
Ljung-Box Q statistics [LBQ(λ)] (see Ljung and Box (1978)) and their p-values for
testing the null hypothesis that the auto-correlations for all lags up to the lag λ
equal zero. Tsay (2002) recommends that λ ≈ Ln(162) = 5.08 performs as the best
(in terms of statistical power) value. Note that the p-values associated with the
three step differences Ln(εk,3) indicate that we fail to reject the null hypothesis (i.e.
the auto-correlations for all lags up to lag λ equal zero) for all λ = 1, . . . , 5. Hence,
we are justified to conclude that the time series Ln(εk,3) defined by (5.1) is serially
uncorrelated.

We next standardize the time series Ln(εk,3) utilizing the systematic frame-
work for volatility modeling provided by the same Engle’s (1982) ARCH model.
Specifically, an ARCH(p) model assumes that

ak = σkνk, σ2
k = α0 + α1a

2
k−1 + . . . + αpa

2
k−p (5.2)

where αi , i = 0, . . . , m, are constants, ak are serially uncorrelated and νk is a
sequence of i.i.d. random variables with zero mean and variance of one. For our
data involving Ln(εk,3), we have

Ln(εk,3) =
1

160

160∑

k=1

Ln(εk,3) = −0.0028;

s2 =
1

159

160∑

k=1

(Ln(εk,3)− Ln(εk,3)) = 2.456e− 2.

(5.3)
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Table 1. Auto-Correlation Function, Ljung-Box Q Statistic and p-
values for three step log-differences Ln(εk,3) with Lags 1, . . ., 5. Partial
Auto-Correlation Function of a2

k (cf. (5.4)) with Lags 1,. . ., 5.

Three-Step Log Differences (ak)2

Lag ACF LBQ p-value PACF t-Statistic

1 0.115 2.185 0.1394 0.250 3.176
2 -0.027 2.309 0.3152 0.255 3.250
3 0.158 6.457 0.0914 0.001 0.007
4 0.053 6.927 0.1398 -0.106 -1.353
5 0.062 7.585 0.1806 -0.062 -0.788

(here s2 is the sample variance estimator of Ln(εk,3), k = 1, . . . , 160). Hence the
time series

ak =
Ln(εk,3)

s
(5.4)

may be considered as a realization of (5.2). It would thus follow that using the
estimates (5.3) and rescaling Ln(εk,2) as in (5.4), one achieves the conditions of a
zero mean and variance 1 of νk in (5.2).

From the observation that ak being serially uncorrelated (in view of (5.4) and
the fact that Ln(εk,3) are serially uncorrelated) and the partial auto-correlation
function (PACF) values of a2

k presented in Table 1, it follows that the time series
ak does not exhibit a constant variance (i.e. it is heteroscedastic), but could be
appropriately represented by an ARCH(2) model (see, the second row in Table 1
and Tsay (2002) for a more detailed explanation). We thus obtain the following
equation for σ2

k:

σ2
k = 0.571 + 0.186a2

k−1 + 0.258a2
k−1, (5.5)

where the parameters α = (α0, α1, α2) ≈ (0.571, 0.186, 0.258) are estimated using
the least squares method (see (5.2)). The analysis in Table 2 involving νk = ak/σk

suggests that now the time series νk is serially uncorrelated and homoscedastic.
From (5.4), (5.5) and (5.2) it follows that the time series νk may be interpreted
as that of standardized quarterly log-differences of monthly US CD interest rates
from 1964-2004 (where as mention above i1 is the monthly CD interest rate in
June 1964).

The empirical pdf of the times series νk is depicted in Figure 5 together with
the ML fitted Gaussian pdf (Figure 5A) with parameters µ and σ, asymmetric
Laplace (AL) pdf (Figure 5B), the later given by

f(x|θ, κ, σ) =





√
2

σ
κ

1+κ2 exp

[
−√2 1

σκ (θ − x)
]
, for x < θ

√
2

σ
κ

1+κ2 exp

[
−√2 κ

σ (x− θ)
]
, for x ≥ θ,

(5.6)
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Table 2. Auto-Correlation Function, Ljung-Box Q Statistic and p-values
for three step log-differences Ln(εk,3) with Lags 1,. . ., 5. Partial Auto-

Correlation Function of a2
k (cf. (5.4)) with Lags 1,. . ., 5.

νk (νk)2

Lag ACF LBQ p-value PACF t-Statistic

1 0.196 6.288 0.0122 0.080 1.017
2 0.060 6.883 0.0320 0.003 0.039
3 0.094 8.341 0.0395 0.105 1.328
4 0.073 9.218 0.0559 -0.094 -1.192
5 0.061 9.832 0.0801 -0.064 -0.806

Table 3. Maximum likelihood parameter estimates for the theoretical
distributions depicted in Figure 5.

Gaussian (Fig. 5A) µ̂ = −3.20e− 2 σ̂ = 0.981

AS Laplace (Fig. 5B) θ̂ = 0.113 σ̂ = 1.016 κ̂ = 1.106

TSP (Fig. 5C) â = −7.645 θ̂ = 0.257 b̂ = 5.466 n̂ = 8.118

DPU (Fig. 5D) m̂ = 2.133 α̂ = −0.429 β̂ = 0.788 n̂ = 3.324

where κ, σ > 0, Two-Sided Power (TSP) pdf (Figure 5C) given by

f(x|a, θ, b, n) =





n
(b−a)

(
x−a
θ−a

)n−1

, for a < x ≤ θ

n
(b−a)

(
b−x
b−θ

)n−1

, for θ < x < b,
(5.7)

where a ≤ m ≤ b, n > 0 (see, Kotz and van Dorp (2004)) and DPU pdf (2.1) (Fig-
ure 5D). (For ML estimators of the Gaussian (normal) parameters see a standard
text in statistics, e.g., Mood et al., 1974.) Kotz et. al (2001) and Kotz and van
Dorp (2004) discuss a ML procedure for the asymmetric Laplace and TSP distri-
butions, respectively. Table 3 contains the ML estimates of the parameters of the
pdf’s in Figure 5. From Figure 5 we can observe (by a careful visual comparison)
that the DPU distribution (Figure 5D) provides a “better” fit to the empirical cdf
amongst these competing distributions (at least at the central stage).

A formal fit analysis is conducted in Table 4, where the Chi-square statistic
16∑

i=1

(Oi − Ei)
2

Ei
(5.8)

is calculated utilizing 13 bins (13 ∈ [
√

160, 160/5] as suggested by Banks et al.
2001). The upper boundaries UBi of the bins are selected in the manner that the
expected number of observations Ei, i = 1, . . . , 13, in each Bin i equal 160/13 and
are presented in Table 4. Such a boundary selection procedure follows the “equal
probability method of constructing classess” (see, e.g., Stuart and Ord (1994)),
resulting in different boundaries for each one of the four distributions DPU, TSP,
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Figure 5. Empirical pdf’s of standardized quarterly log-differences of
monthly US CD interest rates from 1964-2004 together with ML fitted
theoretical distributions. Maximum likelihood parameter estimates are
provided in Table 3.

AL and Gaussian (Normal) in Table 4. The values Oi in (5.8) are the actual
number of observations in each Bin i. While all of the four distributions appear to
be appropriate (since we fail to reject the null hypothetis based on the p-values of
the Chi-squared test), the Gaussian distribution evidently produces the worst fit
with a p-value of 39%. The DPU distribution results in the largest p-value (73%)
of the corresponding chi-squared test. In the authors’ opinion the behavior of the
fit analysis as given in Table 4 and Figure 4 justifies the conclusion about the
suitability of the DPU distribution for the data under consideration.
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