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ABSTRACT: This article presents the development of a general Bayes inference model for accelerated life
testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the
specification of strict adherence to a parametric time-transformation function is not required. Rather, prior
information is used to indirectly define a multivariate prior distribution for the scale parameters at the various
stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as
probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing
scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored
sampling strategy for the collection of ALT test data. The inference procedure uses the well-known Markov
Chain Monte Carlo (MCMC) methods to derive posterior approximations. The approach is illustrated with an
example.

1    INTRODUCTION 

In the case of highly reliable items, e.g. Very Large
Scale Integrated (VLSI) electronic devices, computer
equipment, missiles, etc., mean times to failure
(MTTF) exceeding a year is not uncommon. The use
of these items, however, may still require reliability
demonstration or verification testing, especially
when these items are used for military or high risk
public applications. With such MTTF’s, it is often
too time consuming and too costly to test these items
in their use (or nominal) environment, as the length
of time to generate a reasonable number of failures is
often intolerable  If such is the case, it has become a�
standard procedure  (see MIL-STD-781C) to test
these items under more severe environments than
experienced in actual use. Such tests are often
referred to as Accelerated Life Tests (ALT’s). Mann
and Singpurwalla (1983) note that because of
advancement in technology and increased reliability,
ALT’s are performed more frequently than ordinary
life tests. There are two main problems associated
with ALT’s as: (1) optimal design of the ALT, and
(2) statistical inference from ALT failure data. The
focus of this paper is on the statistical inference
problem, i.e. on how to make inference about the

reliability in the use environment by obtaining
information in the accelerated environments.

Typically inference methods have been
developed assuming that: (1) the life time
distribution in a constant stress environment belongs
to a common family of distributions, and (2) the
scale parameter of such a distribution is related to
the stress environment via a parametric function
known as a time transformation function (TTF) (see
for example Mann et al (1974)). In addition, most of
the inference methods are based on the use of
maximum likelihood estimation which may require
large sample sizes for meaningful statistical ALT
inference ( . In thissee for example Nelson (1980))
paper, only the first assump-tion will be adhered to.
Specifically, inference will be developed using the
Weibull failure time model. The inference method is
Bayesian in nature and will rely on the use of
engineering judgment to specify prior distributions
for the Weibull model parameters. While there is a
host of literature in this area, the only Bayesian
inference procedure developed for the Weibull
model that we know of is presented in Mazzuchi et
al (1997) for constant stress ALTs in conjunction
with the parametric TTF. The inference procedure
herein will be developed for a wide range of ALT
scenarios with no TTF assumption.



 In Section 2 the general likelihood model is
developed. In Section 3 the prior distribution for the
shape parameter and scale parameters of the Weibull
failure time model is outlined. The posterior
inference is briefly discussed in Section 4. The
approach is illustrated by an example in Section 5.

2    A GENERAL LIKELIHOOD MODEL

2.1      Motivation

A first step in any statistical inference procedure,
whether classical or Bayesian involves developing
the likelihood. The flexibility of the likelihood
formulation drives the flexibility of the statistical
inference procedure in terms of its applicability to
different  ALT scenarios. In this section, a likelihood
model is developed that allows for a comprehensive
representation of most ALT inference scenarios
currently available to ALT practitioners, specifically,
regular life testing, fixed-stress testing, and
progressive step-stress testing. In addition, the
likelihood model allows for profile step-stress
testing and different ALT patterns for each test item
as illustrated in Figure 1. Having such a flexible
formulation of a likelihood model allows for the
comparison of different ALT designs within a
common modeling framework.  In addition, allowing
for such a flexibility will increase the model’s ability
to represent ALT designs used by testing
practitioners.
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Figure 1. A Separate ALT Design for Each Test Item

2.2    The Failure Rate over the Course of an ALT 

In developing a likelihood model, consider the
following step-stress ALT setup. The ALT will
consist of testing over a predetermined and fixed
maximum number of test environments. An
environment is defined by a combination of stress
levels from the set of stress variables, e.g.
temperature, vibration and voltage. Let �

environments  be defined candidate test� �� � �" O

environments.  Let denote the use environment� �%  

where , ,  The index  will be used to� � �� � �	� 

indicate a particular environment. Suppose that each
of  test items will be subjected to a step-stress�
ALT with possibly a different step pattern per test
item.  The index  will be used to indicate a�
particular test item.  The total length of each ALT
may vary per test item, but each ALT will be
subdivided into  steps.  The index  will be used to �
indicate a particular step-interval within an ALT.
Thus, for each test item ,   steps are defined by� 

� � � � � � ��� � � � �!Ä4 "Ä4 7�"Ä4 7Ä4

where the -th step is defined as and the� �� � � �3�"Ä4 3Ä4

ALT is terminated at time  for test item .  A de-� �7Ä4

sign matrix  specifies the indices of the� � �� 	3Ä4

environments for each test item  in each step .� �
Thus during the -th step, test item  is subjected to� �
environment   where  .  Note that� � � ��� � �+ 3Ä43Ä4

this flexible formulation includes both regular life
testing (  for all ) and fixed-stress ALT� � �3Ä4 �
(  for all  and some particular environment� � � �3Ä4

� � �D , ).�
The approach to deriving the likelihood will be

general and center around  the  failure rate, , in�/���
a constant stress environment . The failure rate for�/

test item over the course of the step-stress ALT,�
denoted by , is different from the failure rates in� ���4

the constant stress environments, as the environ-
ments, and thus the failure behavior, vary over the
course of the ALT stage.  A generic expression will
be derived for the failure rate  of test item � ��� �4

over the course of an ALT stage, conditioned on
knowing the failure rate functions  in the�/���
candidate test environments .� � 
 � ��� ��/

The cumulative failure rate that test item  has�
accumulated up to  in an ALT is given by�3Ä4

� �� � � � ������ ���4 3Ä4 4
!

>� 3Ä4

In a constant stress environment ,  the cumulative�/

failure rate would be given by

� �/ 3Ä4 /
!

>

�� � � ������ ���� 3Ä4

Note that the operating environment in the ALT after
� �3Ä4 + equals . It will be assumed that the change

3þ"Ä4

in environments at  is assumed to be�3Ä4
instantaneous. In addition, we assume that no
additional failures are induced by the instantaneous
change of environments  through a shock effect.�3Ä4



Using the cumulative hazard rate  may���� � �� �4 3Ä4

be expressed using  for some value of .�+3þ"Ä4
��� �

Denoting this value  by , and solving for ,� � �3þ"Ä4 3þ"Ä4

yields

� �3þ"Ä4 4 3Ä4
�"
+  � �� �� ��� � �
3þ"Ä4

The time  may be interpreted as the amount of�3þ"Ä4
time that would have elapsed to accumulate � �� �4 3Ä4

by testing in environment  alone, starting at�+3þ"Ä4

time  (see for example Figure 2)� �
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Figure 2.  Failure Rate Construction Using Instantaneous
Environment Changes  A:  Failure Rate up to ; B: Change� �"Ä4
Failure Rate to  at  such that  � � � �� � � � � � � �� ��2Ä4 "Ä4 # #Ä4 4 #Ä4

Next, the failure rate function over the course of
the ALT stage may be derived as

� ��� � �� ! � " �� �#�4 + 3Ä4 3þ"Ä4� �
3þ"Ä4

for , , where � $ � � � � � ��� �! �3Ä4 3þ"Ä4 3þ"Ä4�
is given by  and  is the initial cumulative� � � �� �4 !Ä4

failure rate of test item  prior to the ALT stage.  In�
case  is a new test item, � �� � � �� � � ��4 !Ä4 4 !Ä4

However, the case where a test item has a history of
operating hours in  known environments may be
easily accommodated The jump in the failure rate at�
time follows as�3Ä4

�� �� � � � �� � ! � �� � �%�4 3Ä4 4 43Ä4
þ �

3Ä4 ,    

where , .� �� � � &� � ��� � �� � � &� � ���
� ' � � ( �
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It may be derived that the jump equals�� �� �4 3Ä4

�

� � � �

� �� � � �)�

� � ! �� ! � " �
4 3Ä4

+ 3þ"Ä4 + 3þ"Ä4 3Ä4 3Ä43þ"Ä4 3

 

for  Figure 3 presents an example� � �� ����  ! ��
of the above construct for a profile ALT sequentially
stepping through the enviroments  and� �� �� ��" $ & %

�# where a Weibull failure time distribution is
assumed for each constant stress. Following the
approach above, the current failure rate of a test item
only depends on the current accumulated cumulative
failure rate and the current stress. It can be shown
that the  failure rate constructionintrinsic time
approach above is equivalent to the assumption of
the Linear Cumulated Damage (LCD) model (see for
example Nelson (1980)).

The assumption that no additional failures are
induced by the instantaneous change of
environments between steps is an assumption which
may be challenged, as an instantaneous change of
environments may induce a shock effect, causing
item failure. The above procedure, however, can be
easily extended to the case of gradual environmental
changes (see for example Van Dorp (1998)).

2.3    The Likelihood Given ALT Test Data

Using the formulation of the failure rate function
over the course of an ALT-stage, the likelihood
given ALT Test data may be derived for both
interval and Type I censored data.

2.3.1    Interval Data  

Suppose failures can only be monitored at the end of
a step interval i.e.  The interval in� " �� �� � � ��3Ä4 3þ"Ã4

which item fails will be denoted by The� * �4
probability of test item  surviving time  given� �3þ"Ä4
that  it has survived up to time  follows as�3Ä4
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Falure Rate Functions B: Failure Rate During a Profile ALT by
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where  is given by . The probability of test�3þ"Ä4 � �
item failing before time  given that it has� �3þ"Ä4
survived up to time  equals�3Ä4
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for  and is defined as 1 for * � " � * � " �4 4

With  and assuming conditional����
independence between the failure times of the test
items conditioned on knowing �� 8 �
� � 8 ��� � � 8 ��( , it follows that the likelihood� �" O

given interval data , equals��� � � �* � ���� * �* " R
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where  is the number of test items in the ALT.�
Though not specifically developed here, the previous
equations may also be adjusted for the case where
items begin the ALT with accumulated damage as in
the case of retesting of items. This is considered in
Van Dorp (1998).

To be able to perform inference with respect to
the failure rates in each environment, it is�/���
convenient to reorder the product in as a����
product over the environment index  instead of over

the step interval index  Given  �� � � ��� �! ��3Ä4
via , such a reordering is possible. To accomplish� �
such a formulation, let



9 �/Ä4  the number of times that test item  visits   �
 environment during an ALT stage,�/
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and 1  where; �
� �� 3 / � 8 �� � ! ; �
� �� 3 / � 8 ��# / " /� �
�3Ä4 " # is given by .  Note that,  ( ) is the� � ; ;
conditional probability of surviving the step (failing
in the step) interval for which test item visits�
environment for the -th time, conditioned on� :/

having survived up to the beginning of that step.
When assuming a common family of life time
distributions within a constant stress environment,
i.e. specifying a functional form for ( ), the� 8
likelihood may be further derived using  - .�� � ��%�
Note, that in principle different failure models for
different enviroments may be specified.

The interval data sampling strategy has the
disadvantage that failure information is lost by only
monitoring at the end of each step interval. In the
type I censored sampling strategy, test items are
continuously monitored over the course of the ALT.

2.3.2     Type I Censored Data

Suppose failures can be monitored continuously over
he course of  an ALT stage.  In that case, the failure
time of test item  is known exactly if the test item, �4

fails in .  It will be assumed that once an item��� � �7Ä4

has failed  it will be removed from testing in the�
same ALT Stage.  Knowing the failure times the, �4
step intervals in which the items failed may be*4
easily derived. Using an analogous approach as in
Section 2.3.1, the likelihood given the data  (�� �, *
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Note that,  is the conditional probability of<"
surviving the step interval for which test item visits�
environment for the -th time conditioned on� :/

having survived up to the beginning of that step. In
addition, note that  is the conditional density at the<#
time of failure in case the test item fails within the
step interval for which test item visits environment�
� :/ for the -th time conditioned on having survived
up to the beginning of that step.

When assuming a common family of life time
distributions within constant environments, i.e.,
specifying a functional form for ( ), the likelihood� 8
may be further derived using  - . Such��0� ����
expressions can for example be derived for the
Weibull life distribution using  .� � �/ /

�"��� � �"

3    PRIOR DISTRIBUTION

Given the ordering of the severity of the testing
environments, it is natural to assume that

� � � � � � � � 7 ����� � � �! " O Oþ" ,

and, defining

� � 
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for some constant , it follows that>

� � � � � � � � � � � � �� �� �Oþ" O " !

The parameter  is chosen to insure numerical>
stability of the results (see Van Dorp and Mazzuchi
(2003)). Rather than defining a prior distribution for
� exhibiting property , one may equivalently����



define a prior for  exhibiting� � �� �� � � �" O
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prior distribution which is mathematically tractable,
is defined over the region specified in and�� ��
imposes no other unnecessary restrictions on the � �/
is the multivariate Ordered Dirichlet distribution�
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Analogous to the above, a beta prior distribution is
specified for the transformed parameter .@ � 
�"

�  �
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The prior distribution of  is assumed independent of@
the prior distribution of .�
 Typically, to define the prior parameters, expert
judgment concerning quantities of interest are
elicited and equated to their theoretical expression
for central tendency such as mean, median, or mode
[see for example Cooke (1991)]. In addition, some
quantification of the quality of the expert judgment
is often given by specifying a variance or a
probability interval for the prior quantity. Solving
these equations generally leads to the desired
parameter estimates. Specific quantities of interest
for the problem at hand are the mission time
reliabilities for each stress environment. An
additional advantage of the Ordered Dirichlet
distribution is that due to its mathematical
properties, the incorporation of expert judgment is
facilitated.  From , for example, the prior��#�
marginal distribution for any  is obtained as a beta�/
distribution given by

�
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where , ) is the well known beta constant. This�� 8 8
distribution can be used to make prior probability
statements concerning mission time reliabilities at
the different stress levels due to the one-to-one
relationships of these quantities to .  Specifically� �/

�A���/� � 	 � +,�B ? � � � 	 � � ��4�/ / /� �| ( ) ,  
>
-

"

where  is the reliability of a test item�A���/� � 	/ �
exposed to environment for a mission time � �/

given � �/
 To obtain the prior parameter values, estimates
of prior mission time reliabilities must be obtained.
The focus is on mission time reliabilities rather than
failure rates, as these may more easily be obtained
through elicitation methods focussing on observable
quantities. Specifically, for a specified mission
length, an estimate of  the mission time reliabilityA/

ø

in environment , a quantile estimate  for the
 A%
P

mission reliability at use stress, and an estimate of
A C%

û mission reliability after  mission time durations
at use stress is required. Given this information, the
following problem is solved numerically to obtain
the prior parameter estimates (see van Dorp (1998)
for details)

DE&3
 � >� ;,E   ( , , ,  )� 	 �  �

 |�� + ,�A ��� $ A 	 � ��%�% %
ø �

 |�� + ,�A �C 8 �� $ A 	 � ��%�% %
û �

 | � + ,�A ��� $ A 	 � � ! *� * � ��5%% %
P �

 |#� + ,�A ��� $ A 	 � ��%��/ /
ø �

  
 � ��� ��� 
 � �

Thus with the exception of the quantile estimate, all
prior reliability estimates are treated as median
values.

4    POSTERIOR APPROXIMATION  

The expression for the likelihood given ALT data
was derived in Section 2 and resulted in expressions
for interval and type I censored data.  Rather than
performing prior-posterior analysis using these
expressions, one may perform prior-posterior
analysis by expressing likelihood in terms of  and � @
instead of  and  using  and using well known� � ����
properties of the Ordered Dirichlet distribution.
 The posterior distribution follows for interval
data and type I censored data by applying Bayes
Theorem to the prior and the appropriate likelihood
expressions.  The derivation of the posterior
distribution of is intractable in most cases. It is
therefore suggested to use the well known Markov
Chain Monte Carlo (MCMC) method approach (see,
e.g., Casella and George (1992)).  Through the
MCMC approach  a sample of the posterior�
distribution can be obtained.  From the sample,
approximations of moments  and an approximation



of the joint posterior distribution may be derived.
The approximations of marginal posterior
distributions  and  using that of the mission� ��4��
time reliability at any stress level may be derived by
the estimation of their quantiles.  These quantiles
may be estimated up to a desired level of accuracy
using order statistics arguments (see, e.g., Mood et al
(1974), pp. 513).

5    EXAMPLE

The following example is designed to show the
flexibility of the Weibull ALT inference model. The
use stress environment will be and different test�#

items will be subjected to different step patterns.
Assume that the following median mission time
reliability estimates are available for a mission time
of  hours.����
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ø ø ø ø
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ø P

# #; ; ; ,G

An approximate solution to the prior parameters
may be solved from the above data (see Van Dorp
(1998)) yielding

> � �5�0 55�  �F � 0#0��)F	
� � �" # $� ������F � ���4  F � ���%)4F 
� � �% & '� ��� ��F � ����)%F � ������F
� � #0��0#� � ��� �4�

In this example, 6 proof-systems are available
for testing. The step data concerning environments
in each step and step interval times are specified for
each testing stage, , by the matrices  and ; � -0 0

below
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In the second testing stage failed items from the first
stage are assumed minimally repaired. Items that
survive the first stage are continued on test in the
second stage. The mission-time of the system was
set to hours. The test results over the ALT are����
summarized in terms of ,  in Table 1. Note that, *0 0

* � )4
0  indicates that the test item has survived the

ALT stage without failure.

Table 1   ALT Test Data in Terms of , .� �, * =0 0 0
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A prior-posterior analysis for both interval data
and type I censored data is presented. The Gibbs
Sampling Method was used to obtain posterior
quantile estimates using test data obtained over 2
ALT stages for: (1) the scale parameters in each
environment, and (2) the common shape parameter.
The length of the Gibbs-Sequence generated was of
length and the Gibbs burn-in\Gibbs lag���� ���
period was set to  MCMC diagnostics for this�%�
problem are discussed in Van Dorp and Mazzuchi
(2003). Results are provided in Table 2.

Table 2 Prior & Posterior Parameter Estimates.�
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 Distributional results may also be obtained. For
example, Figures 4 and 5 covey the prior and
posterior distribution for the shape and use stress
scale parameter for the interval censoring case.
Distributional results for the scale parameter or
mission time reliability (for any specified mission
time) at any stress level may also be generated.  
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Figure 4. Prior & Posterior Scale Parameter for Environment 2
- Interval Data.
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Figure 5.  Prior & Posterior Shape Parameter - Interval Data.

It follows from Figures 4 and 5 that for this
particular example, the greatest shift is observed in
the distribution of the shape parameter rather than
that of the scale parameter.     
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