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ABSTRACT: T he cumulative distribution function (cdf) of a finite mixture of independent uniform random
variables will be derived. The distribution is useful for uncertainty analyses in application domains such as,
e.g., project risk analysis, decision analysis, finance, accident probability analysis and actuarial analysis,
particularly when dependence between uncertain elements is present due to common risk factors. Use of the
distribution reduces the number of dependence parameters that need to be assessed to specify dependence
when compared to a correlation matrix approach. An example discussing the effect of dependence in the
project risk analysis domain utilizing the mixture distribution is presented.

1 INTRODUCTION

The motivation for the construction of the cumula-
tive distribution function (cdf) of a finite mixture of
uniform random variables arose in the development
of a risk analysis approach for project networks (see,
Van Dorp & Duffey (1999)). The duration of the
activities in such a network may be modeled as
random variables. With the project network struc-
ture and an assumption of independence between
these random variables the completion time of the
project can be readily obtained using a combination
of the Critical Path Method (see, e.g. Winston
(1993)) and Monte Carlo methods (see, e.g. Vose
(1996)). However, the independence assumption
between these random variables may be specious
(e.g. Duffey & Van Dorp (1998)) and one may resort
to modeling statistical dependence between the
random variables utilizing  e.g. a correlation matrix
approach via multivariate normal distributions. The
long-standing issue of dependence between random
variables has  recently been discussed in application
areas such as project risk analysis (see, e.g. Duffey
and Van Dorp (1998)), accident probability analysis
(see, e.g., Yi and Bier (1998)), finance (see, e.g.,
Härdle et al. (2002)), decision analysis (see, e.g.,
Clemen and Reilly (1999)) and actuarial modeling
(see, e.g., Frees and Valdez (1998)).

With  pre-specified marginal distributions a�
correlation matrix approach generally requires the
specification of  correlations. In project risk� �8

#

analysis project sizes of  activities are not���
uncommon and specification of � �"!!

# � ����

correlations becomes a formidable task. When using
engineering judgment to specify such a correlation
matrix, inconsistencies occur as the correlation
matrix needs to be positive definite, and often modi-
fications to the engineering judgment are needed
(e.g. Iman & Conover (1982)). Instead, one may
develop an approach to model statistical dependence
between these activity durations using common risk
factors. The idea of or common risk factors common
causes is not new and has already found wide
appreciation in fault tree analysis for chemical and
nuclear power plants (see, e.g., Haasl et al. (1981) or
Zhang (1989)). Examples  of possible common risk
factors in a project risk analysis context are; weather,
engineering change orders, productivity of work-
force etc.

The dependence model in Van Dorp & Duffey
(1999) uses common risk factors for modeling de-
pendence, but is restricted to 1 common risk factor
per disjoint subsets of activities. This, however,
implies that only 1 risk factor influences the
uncertainty in an activity duration which  may be too
restrictive for practical purposes. The cdf to be
derived in this paper allows multiple common risk
factors to influence the uncertainty in an activity
duration and is thus more flexible than the
dependence model in Van Dorp & Duffey (1999).



Figure 1 displays the influence diagram representing
the relaxed dependence model.
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Figure 1. A Model for Statistical Dependence between
Activity Durations due to Common Risk Factors

The authors Frees and Valdez (1998), Duffey
and Van Dorp (1998), Yi and Bier (1998), Clemen
and Reilly (1999) and Härdle et al. (2002))
unanimously suggested the copula approach (see,
e.g. Sklar (1959), Genest and McKay (1986) and
Nelsen (1999)) for dependence modeling. An  
advantage of the copula approach is that it utilizes
the decomposition principle by separately describing
the uncertainty aspect via the marginal distributions
and dependence features between components via
copula's. A one parameter copula is used to model
the dependence between an activity duration and its
associated aggregate risk factor indicated in Figure
1. The correlation between the uniform marginals of
the copula is the rank correlation between the
aggregate risk factor and its activity duration. The
rank correlation has been proposed as an appropriate
measure of positive statistical dependence (see, e.g.
Joag-Dev (1984)).

An aggregate risk factor in Figure 1 is a
combined measure of risk for a particular activity
duration arising from the common risk factors
between activities. A common risk factor may not
have a natural attribute scale and different common
risk factors are generally measured on different
scales. Therefore, for convenience, each common
risk factor  is modeled as a uniform�	 � � �	 
 	 �
latent random variable , where the lowest risk�3

level for such a risk factor is transformed to 0 and
the highest risk is transformed to 1. Latent random

variable models have found wide application in the
behavioral sciences (see, e.g. Bartholomew (1987)).
Transforming the different risk factors to the same
scale allows engineers to tradeoff risk factors using a
tradeoff elicitation approach like e.g. swing weights
as described in Clemen (1995). Using such an
elicitation approach, relative contributions of3

each risk factor pertaining to a particular activity
may be obtained.  The proposed aggregate risk factor
�  for an activity is then calculated as
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Note that  is a mixture of uniform random�
variables  with mixture weights , �  � � �	 
 	 ��3 3

To be able to use the copula approach to model sta-
tistical dependence between an activities aggregated
risk and the activity duration as in Figure 1, the
random variable needs to be transformed into a�
uniform random variable. It is well known that the
required transformation is where  is the cdf� �� �	 �
of the mixture of uniform random variables given
by . The cdf of  will by  derived in the next��� �
section.

Note that for each activity relative contribu-�
tions of individual risk factors need to be specified
to aggregate risk, in addition to a rank correlation
between an activity's aggregate risk factor and the
activity duration. Hence, the total number of
parameters that needs to be specified, equals
� � � � � � ���. With common risk factors and  acti-
vities in a project network this amounts to ���
parameters as opposed to the  correlations in a����
correlation matrix approach to build dependence be-
tween pre-specified marginal distributions. Also, no
modifications to the dependence parameters are
needed due to inconsistencies when engineering
judgment is used to specify these parameters. The
dependence model in Figure 1 has been successfully
tested in Greenberg (1998). Multiple elicitation
sessions with Naval Architects were used in
Greenberg (1998) to specify; (1) the parameters for
the uncertainty distribution of  activity durations���
in a project network and (2) the parameters for a
dependence model as in Figure 1 with  common�
risk factors.

2 A MIXTURE OF UNIFORM VARIABLES

To use the copula approach to model bivariate
dependence between a random variable  and its�
aggregated risk , both  and  need to be� � �
transformed to the uniform marginals and  of� �



the copula. The required (integral) transformations
of and  are and where the� � � ��� ��� �	
functions  and are the cdf’s of and ,� � � � �� � � � �
respectively. For a known marginal distribution for
random variable ,  is readily obtained either� � � � �
in closed form (e.g. in the case of a triangular
distribution) or through numerical routines (e.g. for a
beta distribution). The cdf of the linear combination
� ���� (cf. is given by
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(see, Mitra (1971) or Barrow & Smith (1979)). Un-
fortunately, their proofs  geared towards mathema-�
tically oriented readers  are very concise and some-�
what difficult to follow. The proof discussed in the
next section which seems to be new, is geometric in
nature and is based on the time honored inclusion-
exclusion principle
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for arbritrary events  (not necessarily dis-! 	 
 	 !" 8

joint). The geometric nature of the proof allows for
an efficient algorithm to evaluate  and needed for���
the application of in Monte Carlo based uncer-���
tainty analyses.  The Appendix describes the algor-
ithm in Psuedo Pascal .

2.1 Theoretical Result

Let be the unit hyper cube in) � %7 * + � � * � �'3

�7. Let   be a vertex of� � �� 	 
 	 � �	 � , %�	 �'" 7 3

the unit hyper cube )7 and define the simplex
- ���@ at the vertex � as
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the simplex  cf. Figure 2B displays- �� � � �����µ!Ä!Ä!¶ "

) - �� �	 - �� �	 - �� �	$
µ!Ä!Ä!¶ # # # and µ"Ä!Ä!¶ µ!Ä"Ä!¶

- �� �	 - �� � 	 - �� � - �� �µ"Ä!Ä!¶ µ"Ä"Ä!¶ µ"Ä!Ä"¶ µ!Ä"Ä ¶# # # #  and .1

Our proof of  utilizes the following lemma.���
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Figure 2. A: Evaluating for  ; B: Evaluating ��� � � � " ��� �" #
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Changing the variables of integration to 0 �3

 * 1� � � �	 
 	 �	 ���3 3 , the integral in becomes
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The integral in is the hyper-volume of the unit�2�
simplex
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Realizing that the Dirichlet distribution (see, e.g.,
Kotz et al. (2000)) with density function
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The lemma now follows from and ���� ����� �

���	���� � The cdf of the weighted linear com-
bination  given by , where are independent� ��� �3

7�	 �8 ���uniform random variables is given by .

��		
 � The support of  follows from as� ���
7�	 �8. Let 0  be the origin vertex of the� � ��	 
 	 �
unit hyper cube and l) � �9 	 
 	 9 �	7 3

" 7et 9
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 	 �	 )be the unit vertices of  (See,7

Figure 2), i.e. 9 � �	 9 � �	 $ � �	 
 	 �	 $ : ��3 4

For illustration we shall consider the case and� � "
evaluating for the value of indicated� ��� � � � �" "

by Figure 2A and that of for the value� ��� � � �#
of  depicted in Figure 2B. Figure A displays � � )#

$
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the independence of   it follows that� 	 � � �	 
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in Figure 2A { In Figure� ��� � � � � � -" !�� �'�"

2B the calculation of is somewhat more� ��� � � �#
complicated. Figure 2B shows that
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The proof of the theorem follows from Lemma 1� �

From the proof it follows that an efficient method to
evaluate the distribution in  for a particular value���
of  and a given set of weights is� � � 	 
 	  � " 7

to develop a  recursive algorithm enumerating all
vertices of the hypercube and evaluate the� )7

hypervolume of the simplex at each vertex   given�
by when a vertex is visited by the procedure. ��� An
example discussing the effect of dependence in the



Project Risk Analysis domain utilizing the cdf given
by  is presented in the next section.���

3 EXAMPLE - A CONTROVERSY IN PERT

Johnson (1997) proposed the triangular distribution
to be used as an alternative to the beta distribution.
Its parameters have a one-to-one correspondence to
an optimistic estimate , a most likely estimate = �
and a pessimistic estimate  of an activity duration > ?
in a PERT network. Much earlier, Malcolm et al.
(1959) fitted a four-parameter beta distribution by
estimating ,  and  and used the method of= � >
moments to overcome difficulties involved with
interpreting the beta parameters by setting
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Solving for the beta parameters using has been��2�
controversial (see e.g. Clark (1962), Grubbs (1962))
and its use is still subject to a discussion (see e.g.	
Kamburowski (1997)). Van Dorp & Kotz (2002)
suggested the use of a Two-Sided Power (TSP)
distribution, an extension of the triangular distri-
bution, defined by the density
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as a proxy to the beta, specifically in problems of
assessment of risk and uncertainty (such as in
PERT). For  in  the TSP density coincides� � � ��3�
with the density of a triangular distribution. The
expressions for the mean and the variance for ��3�
result in

@7�8 � ����
= � �� � ��� � >
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For a TSP distribution with , the mean values� � �
@7? 8 ��2� @7�8 ���� in  and in  coincide.

In the example to be discussed below, the effect
of an assumption of independence between activity
durations on the minimal completion time of a

PERT network combined using the above setup (i.e.
selecting either a beta, triangular or TSP distribution
while utilizing the estimates  and )  will be=	 � >
compared to one associated with an assumption of
dependence combined with triangular distributions.

3.1 Description

Figure 3 shows an 18-activity project network in the
ship building domain from Taggart (1980). The
uncertainty in each activity duration could be elicited
through expert judgment via a lower bound , most=
like estimate  and upper bound  as described in� >
Table 1. Modern-day ship production is a manu-
facturing domain in which innovative design and
build strategies require special attention to risk
factors that may impact cost and delivery time.  Two
major risk areas are the impact of Engineering
Change Orders and crane unavailability.
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Figure 3. Project Network  for Production Process.�

Engineering changes may come from a variety of
sources  such as owner-requested changes,�
inadequate design specifications, interface problems
for vendor-furnished equipment, etc.  Cranes are
used to lift large prefabricated units and their
unavailability due to outages may result in
substantial project delays. The relative contributions
of ECO and crane unavailability to aggregate risk
and the rank correlation between the activities and
its associated aggregated risk are specified in Table
2. Note that due to similarity in exposure to ECO’s
and usage of the crane these parameters may not
need to vary by activity, thereby further reducing the
assessment of dependence parameters by pre-
grouping similar activities in terms of reliance on
common risk factors.

3.2 Project Completion Time Distribution Analysis

To show the effect of mild dependence between the



activity durations on the minimal completion time
distribution of the project in Figure 3, the
information in Tables 1 and 2 and the dependence
model described above have been used. A rank
correlation of  is assumed across the board and���
may be viewed as a mild form of dependence.

Table 1. Parameters for modeling the uncertainty in activity
durations for the project network in Figure 3.

ID Activity Name a m b

1 Shell: Loft 22 25 30
2 Shell: Assemble 35 37 43
3 I.B.Piping: Layout 19 22 29
4 I.B.Piping: Fab. 4 5 10
5 I.B.Structure: Layout 23 26 31
6 I.B.Structure: Fab. 16 18 24
7 I.B.Structure: Assemb. 11 14 20
8 I.B.Structure: Install 6 7 12
9 Mach Fdn. Loft 25 28 33
10 Mach Fdn. Fabricate 33 35 40
11 Erect I.B. 27 30 37
12 Erect Foundation 6 7 11
13 Complete #rd DK 4 5 9
14 Boiler:Install 6 7 10
15 Boiler:Test 9 10 15
16 Engine: Install 6 7 12
17 Engine: Finish 17 20 26
18 FINAL Test 13 15 20

Amongst the TSP and beta distribution, the
triangular distribution is the only distribution that is
completely specified by  and  without=	 � >
additional assumptions. Hence, the  minimal com-
pletion time distribution involving triangular distri-
butions and an assumption of mild dependence is
compared with the project completion time distri-
bution assuming independence between the activity
durations with a triangular form cf.  with� ��3�
� � � ��2�), a beta form (via  and employing the
method of moments) and finally a TSP form (cf.
��3� � � � with ). The Monte Carlo analysis results
utilizing 10,000 CPM calculations per case are
displayed in Figure 4. For robustness purposes of the
dependence model herein, Figure  also contains the�
minimal completion time distribution of the project
utilizing triangular distributions for activitaty dura-
tions involving complete dependence (the strong
dependence case in Figure 4). Complete dependence
can be specified using the dependence model above
by assigning rank correlations of  for all activities�
and mixture weights such that  and  � �  � �	3 4 34ø

� : � 	 � � �	 
 	 �	 $ � �	 
 	 � � ,ø ø for some 
%�	 
 	 �'� Finally, the minimal completion time of
126 days (CPM-Best Case), 144 days (CPM-Case)
and 196 days (CPM-Worst Case) of a standard CPM
analysis utilizing only the lower bounds, most likely

estimates and upper bounds in Table 1, respectively,
in are depicted by vertical lines.

Table 2. Parameters for modeling the dependence between
activity durations for the project network in Figure 3.

ID Activity Name wECO wCRANE ρ
1 Shell: Loft 1.0 0.0 0.5
2 Shell: Assemble 1.0 0.0 0.5
3 I.B.Piping: Layout 0.5 0.5 0.5
4 I.B.Piping: Fab. 1.0 0.0 0.5
5 I.B.Structure: Layout 1.0 0.0 0.5
6 I.B.Structure: Fab. 1.0 0.0 0.5
7 I.B.Structure: Assemb. 0.5 0.5 0.5
8 I.B.Structure: Install 0.5 0.5 0.5
9 Mach Fdn. Loft 0.5 0.5 0.5
10 Mach Fdn. Fabricate 0.5 0.5 0.5
11 Erect I.B. 0.2 0.8 0.5
12 Erect Foundation 0.2 0.8 0.5
13 Complete #rd DK 0.2 0.8 0.5
14 Boiler:Install 0.0 1.0 0.5
15 Boiler:Test 1.0 0.0 0.5
16 Engine: Install 0.0 1.0 0.5
17 Engine: Finish 1.0 0.0 0.5
18 FINAL Test 1.0 0.0 0.5
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Figure 4. Comparison of Distributions of Minimal
Completion Time  for the project in Figure 3.

The minimum, mean, maximum, the standard
deviation and range of the project completion
distribution for the five combinations are provided in
Table 3. Comparing the first and fourth row in Table
3 it follows that with the independence assumption
between beta activity durations, the use of ��2�
results in a significant reduction in the mean of the
project completion time and a substantial reduction
in its standard deviation when compared to utilizing
trian-gular distributions whose parameters are
directly specified by the three estimates  and =	 � >
(See Table 1). Hence, the adoption of  may not��2�
be consistent with a conservative approach towards
estimating project completion time and its uncer-



tainty. Note that from the fifth row in Table 3
follows that when utilizing TSP distributions (��3�
with ), a similar mean shift occurs in the� � �
project completion time and even a larger shift in the
standard deviation, providing an even more opti-
mistic scenario.

Table 3. Minimum, Mean, Maximum,  Standard Deviation and
Range of the Project Completion Time Distribution using
Triangular Beta and TSP  Distributions under an	 �� � ��
Independence assumption and Triangular distributions under a
Mild and Strong dependence assumption. Results were
generated utilizing Monte Carlo Analysis involving 10,000
CPM calculations per case.

Min Mean Max. St. Dev. Range

138.11 155.15 172.49 5.04 34.38

135.56 155.10 176.93 8.90 41.37

126.29 154.94 192.29 14.64 66.00

136.27 150.01 164.14 4.06 27.87

140.63 149.85 160.78 2.96 20.15

TRIANG -  Strong 
Dependence

TSP (n=5) - 
Independence

TRIANG - Mild 
Dependence

TRIANG - 
Independence

BETA - 
Independence

The most notable results in Figure  and Table ,� "
however, follow from comparing the completion
time distribution under an assumption of mild
dependence and strong dependence (rank corre-
lations equal to 1) with the distributions assuming
independence. Although no mean shift occurs when
comparing the first, second and third rows in Table
3, the standard deviation of the completion time of
the project almost  ( ) when comparingdoubles triples
the second (third) row to the first one. The same
observation follows from Figure 4 where the
distributions under the dependence assumptions
posses much smaller slopes and appear to have a
support that overlaps all of its counterparts. The
latter observation is substantiated by comparing the
minimum and maximum observed values for the
minimal project completion time in the second and
third row to those in the first, fourth and fifth row of
Table 3. In addition, observe from Table 3 that the
support of the distribution in the strong dependence
case (third row) covers % of the possible range�����
of 126 days (CPM - Best Case) to 196 days (CPM -
Worst Case), whereas the accompanying indepen-
dence case (first row) covers only %. The latter�����
observation demonstrates the flexibility of the
dependence model described in this paper, but also

emphasizes the need for accurate assessment of the
dependence parameter within the model.

Evidently, if the use of 17  and its resulting� �
underestimation of project completion time and
uncertainty were a reason for a long standing
controversy (see e.g. Clark (1962), Grubbs (1962)
and  Kamburowski (1997)), the common assumption
of independence between marginal distribution of
activity durations should be subjected to the same
level of scrutiny. Perhaps, such a level of scrutiny
could lead to development of dependence models
similar to the one described herein and the develop-
ment of formal methods for assessing dependence
parameters utilizing expert judgment elicitation.

Note also that it follows from Figure 4 that the
probability of completing the project by days���
calculated using the standard CPM method is less
than % regardless of an assumption of mild��
dependence or independence. This result is due to
the fact that the ingredient distributions of the
activity durations are positively skewed. Positively
skewed distributions were prevalent in the expert
judgment used in Greenberg (1998). Such a
prevalence may be explained by the existence of a
motivational bias amongst experts resulting in
optimism regarding the most likely value of activity
completion. This fact, coupled with an independence
assumption, could serve as an explanation for a low
incidence of project success (on-time) when utilizing
standard CPM analysis as a yard stick.
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6 APPENDIX

The procedure ) below)=BC)D� � 	 �	 �	 
evaluates the c.d.f. of  given by . The algorithm� ���
uses functions
� �E/F 9�GHIJ� 	 ��

to calculate � �  	�
3æ"

7

3

-*�@B9�9�IJ� 	 ���

to calculate  and� � ��
3æ"

7

3
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to calculate .� �  ��
3æ"

7

3 3

� �J�I� 9�I�C9J 	 �	 �	 	 �	 	 �K( �  �
-I9L � M �A � # � IH9� � M � �K3

��J�I� 9�I�C9J 	 �	 �	 	 J*�	 �	 	 �K( �  �
� M � �K3
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-I9L� M
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