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Abstract 
When challenged with understanding complex, 
technological systems, managers often use analysis to 
characterize risk. Managers use this information to 
design projects, develop policy, and allocate resources 
in order to mitigate system risk. This paper presents a 
Bayesian risk analysis methodology for combining 
expert judgment with the manager’s prior system 
knowledge to allow identification of risk mitigation 
opportunities. The model is demonstrated through a 
study of the nation’s largest passenger ferry system and 
the results compare favorably with previous classical 
analyses. Hence, this methodology might be useful to 
engineering managers for rare event risk analysis in 
other applications and other disciplines as well. 
 
1. Introduction 
Risk analysis, also known as risk assessment, is widely 
recognized as a systematic, science-based process for 
quantitatively (or qualitatively) describing risk. Risk is 
commonly described as a combination of the likelihood 
of an undesirable event (accident) occurring and its 
consequences. Alternatively, in the context of this 
paper, it can be expressed as a mathematical 
combination of an accident’s event probability of 
occurrence and the consequence of that event should it 
occur  (for a detailed discussion of the definition of 
risk, see Kaplan (1997)). Regardless of exactly how 
these concepts are defined, however, information about 
risk is critically important to the decision making 
process. Engineering managers use the information 
gained from risk analysis to design projects, develop 
policy, and allocate resources in their efforts to 
mitigate system risk.  
 Often, engineering managers are interested in 
gaining information about rare events, such as 
catastrophic accidents or system failures. However, 
rare event risk information inherently suffers from data 
scarcity. While the consequences of rare events 
scenarios may be assessed using engineering based 
scenario analyses, their frequency data are usually 
unavailable. In such a case, engineering managers may 
turn to expert judgment to develop frequency data for 
these low frequency, high consequence events. 
 Expert judgment is an informed assessment or 
estimate (based on the expert’s training and 
experience) about an uncertain quantity or quality of 
interest. An expert is a person who is recognized (by 

peers, decision makers, or others) for their skills, 
knowledge, and expertise in a particular domain of 
interest. When treated properly, expert judgment is an 
important source of information, particularly for risk 
analysis (See, for example Cooke, 1991). 
 This paper presents a methodology for engineering 
managers to incorporate expert judgment as a means of 
obtaining accident probabilities. Managers can use this 
risk analysis information for identifying opportunities 
to mitigate system risk. 
 
2. Mathematical Model 
In order to make use of the expert judgment elicited 
from several experts, a mathematical inference model 
for aggregation and combination becomes necessary. 
Such a mathematical model is formulated in this paper 
and will provide a means for combining the decision 
maker’s prior knowledge with the expert judgment 
about paired scenario comparisons. 
 
2.1. Accident probability model. When developing 
probabilities to perform a risk analysis, it is generally 
desirable to link causal factors to the accident 
probability. Such models are often referred to as causal 
models, or accident probability models. 
 A causal model allows for the estimation of annual 
accident probability under a specific situation, or 
scenario. Knowing the probability of an accident per 
year in a specific scenario and predicting ahead the 
occurrence of such a scenario helps identify which 
precautionary measures to consider for accident 
prevention. For example, if it is known that the 
probability of an accident is unacceptably high for the 
scenario when three laden tows (each with twelve 
barges) meet in close proximity (within a half-mile of 
each other) during a high river stage on the Mississippi 
River at Algiers Point in New Orleans, then regulating 
to prevent such a scenario is warranted. The authorities 
may require vessel masters to provide one-hour 
advance notice for passage through that point so that 
traffic advisors can alert them of this potential scenario 
and they can slow down to avoid traffic that allows 
such a scenario to happen. Thus, the advantage of a 
causal accident probability model is that it allows 
decisions to be made on which measures to take for 
ensuring the biggest effect on reducing the probability 
of an accident. 
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 One word of caution, however, is perhaps 
appropriate. Consider the probability of an accident 
during aircraft landing in low visibility at Tucson 
Airport in Arizona. Without a doubt, the most 
dangerous situation for landing air traffic is during low 
visibility. However, if such bad visibility situations 
hardly ever occurs in Tucson that airport will not get 
much safer by developing advanced guiding equipment 
for low visibility situations. Hence, both the accident 
probability of a particular system state and its rate of 
incidence are necessary to make decisions on what 
precautionary measures to implement. 
 The following accident probability model is  
postulated: 
 

 ( ) ( )XPXAccident Tβexp|Pr 0=  (1) 

 
where XT=(X1,…,Xv) is a vector of v situational (causal) 
variables describing a scenario, βT=(β1,…,βv) is a 
parameter vector, and P0 is a base rate probability. The 
model in Equation (1) has been proposed in several 
maritime risk assessments (see Roeleven et al. 1995, 
Merrick et al. 2000, van Dorp et al. 2001) and assumes 
that accident probability increases (or decreases) 
exponentially with a situational variable Xi (rather than 
linearly).  Each situational variable Xi is assumed to be 
a bounded variable that may be discrete or continuous 
in nature. Without loss of generality, it is assumed that 
each situational variable Xi is normalized on a scale of 
[0, 1]. This normalization allows for comparison of the 
effects between different situational variables on the 
accident probability via a comparison of the elements 
of βT.  Positive values of βi indicate that the accident 
probability increases exponentially with Xi and vice 
versa. Given the model formulation in Equation (1), it 
follows that P0 may be interpreted as the inherent 
accident probability with each situational variable Xi 
set to zero. 
 For the purposes of parameter assessment using 
this expert judgment elicitation, continuous variables 
will need to discretized in a finite number of steps. 
Letting si denote the discretization depth of situational 
variable Xi. The number of different scenarios that can 
be described by XT is given by the product of the 
discretization depths. Clearly, the number of different 
scenarios explodes when the number of situational 
variables, v, increases as well as when the 
discretization depth of each situational variable, si, 
increases.  Since expert judgment will primarily be 
used to estimate the distribution of βT, an application of 
Equation (1) would have to be parsimonious both in 
terms of the number of situational variables, v, and 
discretization depths per situational variable, si.  
 

2.2. Likelihood function. Suppose an expert is asked 
to compare the accident probability in scenario 
XT=(X1,…,Xv) compared to scenario YT=(Y1,…,Yv) from 
the question, “How much more likely is it to obtain an 
accident in scenario XT compared to scenario YT?” and 
suppose the expert responds with the number y~ . From 
Equation (1), it may be concluded that: 
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Taking natural logarithms of both sides of Equation (2) 
yields: 
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Note that the base rate P0 cancels in Equation (2). 
Hence, only relative probabilities can be derived using 
this method of paired comparison. In cases where 
annualized statistics of accident rates are available the 
base rate P0 can be determined and relative 
probabilities can be converted to absolute probabilities 
(see Merrick et al. 2000, van Dorp et al. 2001). 
 
Further, since human are not perfect assessors; such 
imperfection can be modeled by the assumption that 
the expert judgment is uncertain following a particular 
distribution. For convenience and the purposes of our 
model, it will be assumed that: 
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where µ(β)=βTZ, Z=(X-Y), and σ=CE. The parameter 
CE will be referred to as the calibration coefficient and 
represents a measure of the expert’s calibration. For 
example, CE is small when an expert is well calibrated 
and large when the expert is not. The difference vector 
Z summarizes the paired comparison of scenario XT 
and scenario YT. A series of n difference vectors 
comprises a questionnaire of n paired comparisons that 
can be assembled in a matrix Z = ( Z1,…, Zn ). The 
expert responses, Ln( y~ ) about these n paired scenario 
comparisons can be summarized in a vector of 
judgments, D = (y1,…,yv), where yj =Ln( y~ j). The 



 3

likelihood of an expert responding D may be derived 
using Equation (4) as follows: 
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Gathering terms in Equation (5) yields: 
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Hence, 
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where: 
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Note that in Equation (8), AT=A, hence the matrix A is 
symmetric. Furthermore, for x≠0 it follows that: 
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Hence, with Range(Z1,…,Zn)=Rv it follows that the 
matrix A is a positive definite symmetric matrix and 
therefore invertible. 
 

2.3. Prior distribution. Following the Bayesian 
paradigm for the parameters, βT,  a prior distribution 
needs to be specified. To allow for a conjugate analysis 
it will be assumed that  βT follows a multivariate 
normal distribution with a mean value vector 
mT=(m1,…,mv) and (co)variance matrix, Σ . 
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Specification of the initial values for mT and Σ  will be 
discussed in more detail in the section on elicitation 
methodology. Typically, however, a manager or 
decision maker may have a notion of the relative 
contribution of the situational variables (causal factors) 
to accident probability described in Equation (1) which 
can be incorporated as prior information. As a staring 
point, a diagonal matrix may be specified for Σ  (that is, 
assuming prior independence between the prior 
marginal distributions). 
 
The prior mean values of mT and the prior (co)variance 
matrix Σ  will be updated using the n paired scenario 
comparisons in the questionnaire and the structure of 
the likelihood function given in Equations (7) through 
(10) following a Bayesian analysis. The resulting 
posterior distribution of βT will be derived next. 
 
2.4. Posterior distribution. Utilizing Bayes theorem it 
follows from Equations (7) through (10) and (12) that 
the posterior distribution, Π(β|D, CE, Z) is proportional 
to: 
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Realizing that, 
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and writing, 
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It follows that the posterior distribution, Π(β|D, CE, Z), 
is proportional to exp(-g(β)) where: 
 



 4

( )







 ΣΣΣ

+





=

mm

bbAg

TTT

TTT

1-1-1-

2
1

2
1

-
2
1

2
1

-
2
1

-
2
1

ββββ

βββββ
  (16) 

 
Let the updated (co)variance matrix, Σu, be defined 
such that: 
 

( ) 11 −−
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Note that A is symmetric and Σ -1 is symmetric. Thus, it 
follows that (Σu)-1 is symmetric. Introducing mu 
implicitly as follows  
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for arbritrary β, it follows that: 
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Using Equation (17) and (19) it follows that Equation 
(12) may be rewritten as: 
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Using the fact that (Σu)-1 is symmetric, it follows that 
the posterior distribution, Π(β|D), is proportional to: 
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where the updated or posterior mean is: 
 

( ) ( ) bIAmIAm u 11 +++= -- ΣΣ   (22) 

 
and the updated or posterior (co)variance matrix is: 
 

( ) 11 −−Σ+=Σ Au   (23) 
 

Thus, the posterior distribution, Π(β|D), can be 
recognized as multivariate normal. Since Π(β) and  
Π(β|D) belong to the same family of distributions, it 
follows that the above analysis is conjugate. Note that 
the posterior uncertainty, Σu, is a function of the prior 
uncertainty, Σ -1, the calibration coefficient, CE , and the 
particular questions to which the expert responded, Z. 
Note also that Π(β) can be updated even when an 
expert does not compare a full set of situational 
vectors. 
 
This mathematical model formulation will provide the 
foundation for updating the decision maker’s prior 
distribution with the expert judgments. Combination 
using multiple experts follows immediately from the 
single expert case above using sequential Bayesian 
updating. 
 
3. Elicitation Methodology 
Expert judgment is an important source of data for risk 
analysis. And like any source of data, expert judgment 
must be carefully and purposefully treated in order to 
yield meaningful information. For without proper 
treatment, all sorts of unnecessary and unwanted 
randomness and bias may be introduced and, as a 
result, the integrity of the data may become tainted. 
Therefore, the treatment of expert judgment must be 
methodical, not unlike the handling of observed or 
measured data during experimentation. 
 The general process for gathering, and ultimately, 
combining the expert data with the prior knowledge of 
the decision maker can be broken down into seven 
basic steps: 

1. Pre-elicitation preparation 
2. Elicitation of expert judgment (including 

calibration) 
3. Extraction of decision maker prior distribution 
4. Computation of expert posterior distribution 
5. Diagnosis of expert judgment 
6. Selection of experts 
7. Combination of expert judgment 

 
Exhibit 1 provides an overview of the approach. There 
are two overarching phases to the model presented – 
the elicitation phase and the combination phase. 
Generally speaking, these phases proceed from left to 
right and the processes, or steps, proceed top-down. 
Note that the first two steps (elicitation and pre-
elicitation preparation) are part of the elicitation phase 
on the left and the combination phase, on the right, is 
made up of the remaining five steps (extraction of 
decision maker prior, computation of expert posterior, 
diagnosis of expert judgment, selection of experts, and 
combination of expert judgment). 
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Exhibit 1. Overview of modeling approach including seven steps for handling expert judgment 

 This exhibit is intended to giver the reader an 
understanding of how all steps in this methodology fit 
together. The circles represent inputs to the model, the 
squares outputs, and the diamond the iterative 
combination process. The arrows indicate relationships 
or flows of data between the different steps. For 
example, as described earlier, the likelihood function is 
derived from the scenarios, Z, the judgments, D, and 
the resulting calibration coefficient, CE. 
 

Step 1: Pre-elicitation preparation. This step 
involves identifying the appropriate situational 
variables for modeling the system and preparing a 
survey instrument, or questionnaire, for eliciting the 
expert judgment about those variables. 
 Together, the engineering manager, who possesses 
general system knowledge, and the analyst, who has 
knowledge about processes for handling expert data, 
determine how many, v, and which situational variables 
to consider in order to learn about the system. This 
information may be drawn directly from the manager’s 
substantive knowledge, obtained by polling a group of 
internal experts, or by some other means. In this case, 
the manager is seeking the probability of a certain 
system failure mode occurring and this will inevitably 
dictate some variables to consider. Examples of 
situational variables may include natural properties 
such as temperature or pressure, system settings, or 
states within the system. 

 Once the situational variables have been identified, 
the manager and the analyst work together to determine 
how to define each of them. Usually, situational 
variables are defined by their states, and the number of 
states indicates the degree of discretization. The desire 
for increased discretization will result in increased 
model complexity and this tradeoff should be carefully 
considered. 
 As a general rule of thumb, each elicitation session 
should last no longer than one hour (see, Cooke 

(1991)). This will allow experts the opportunity to 
answer about 50 – 60 questions in a single session. Any 
more than this may lead to expert fatigue which can 
manifest itself in inaccuracy or indifference. 
 Most systems being studied through expert 
judgment are non-trivial and therefore judgments about 
all possible combinations cannot realistically be 
elicited. So, a representative, but non-exhaustive 
sampling of the set of all possible scenario pairs must 
be made. Referring back to Exhibit 1, the number of 
situational variables, v, and the contact time available 
with the experts (t in total), will dictate the number of 
questions, n. Distributing the number of questions, n, 
evenly across all variables, v, is one way to develop an 
effective, balanced questionnaire. 
 Each question will consist of a pair of scenarios  
that differ in only one dimension (i.e. only one 
situational variable will change states). Using a 9-point 
Likert scale, experts can judge which scenario will 
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have a greater effect on system performance. These 
scenario pairs are compressed into a single difference 
vector, Z, by subtracting the first scenario vector from 
the second (Z will contain zeros across all situational 
variables except the one differing between the two 
scenarios).  All difference vectors will be assembled 
into a matrix, Z, that forms the basis of the 
questionnaire. 
 
Step 2: Expert elicitation (including calibration). 
The elicitation step itself is fairly straightforward. 
Experts compare pairs of scenarios (defined by their 
difference vectors, Z) and judge the relative likelihood 
for a specific accident in a particular failure mode. For 
example, an expert may judge that the first scenario is 
twice as likely as the second scenario. This response 
will be recorded as a “-2.” The sign represents which 
scenario is more likely to result in an accident. A 
response of “1” will indicate indifference between the 
two scenarios. 
 Whenever expert judgment is relied upon for 
decision-making, the reliability of those experts is 
immediately called into question. In order for the 
decision to be sound, the expert judgment upon which 
it is made must not only be sound, it must elicited and 
combined in a coherent and defensible process. This 
can be accomplished in many ways. One way is to 
examine the calibration and entropy of the experts 
(Cooke 1991). 
 In this methodology, a calibration coefficient will 
be used to indicate whether the sense of the expert’s 
response is correct. So for each expert and each 
question, the sign of the non-zero element of the 
difference vector, Z, and the sign of the expert’s 
corresponding (transformed) judgment from the D 
matrix will be compared and an indicator will be 
assigned as follows: 
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To get a measure of overall expert calibration, the 
indicators are summed across all questions to develop 
the expert’s calibration coefficient: 
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The calibration coefficient, CE, ranges from [0, 2]. A 
well-calibrated expert will have a low value of CE and 
the calibration coefficient of an uncalibrated expert 
will be greater than “1”.  

 
Step 3: Extraction of decision maker prior 
distribution.  Before any combination can begin, the 
manager, or decision maker, must provide some notion 
about the situational variables as well as uncertainty 
about those judgments. Otherwise, the expert 
judgments can be combined in classical fashion (see 
von Dorp et al. 2001) without using prior decision 
maker knowledge. However, in cases where there is 
prior knowledge, this information should be used in the 
model so that all sources of information are exploited. 
The decision maker’s prior distribution will take the 
form of a mean value vector, m, and a (co)variance 
matrix, Σ . The decision maker’s knowledge can be 
extracted using many different methods. Information 
can be taken from previous historical studies of the 
system under examination, a compilation of findings 
on the individual situational variables of interest, 
global statistics translated for the application, or in rare 
cases through eliciting the expert judgment of the 
decision maker. 
 
Step 4: Computation of the expert posterior 
distribution. Applying the mathematical model 
presented earlier provides the expert’s posterior 
distribution. Each expert’s posterior distribution is 
computed using the Bayesian paradigm.  The posterior 
mean value extimates, mu, and (co)variance matrix, Σu, 
are determined using Equations (22) and (23) 
respectively. It is helpful to develop a spreadsheet or 
employ some form of software coding to manage the 
considerable matrix manipulations involved. 
 
Step 5: Diagnosis of expert judgment. As discussed 
previously, not all experts provide information that is 
equally useful. Some experts may have hidden or even 
overt bias, some may have misunderstood the 
instruction of the elicitation process or context of the 
accident being evaluated, and there’s always the 
possibility that those selected as experts posses no 
particular expertise of relevance. Tversky and 
Kahneman (1977) provide excellent examples of expert 
bias and how to treat them. Regardless of why the 
expert may not perform as desired (i.e. provide 
sufficient information about the system), some form of 
diagnostic is necessary to gauge their performance. 
This section provides three forms of diagnostics. 
 The calibration coefficient in Equation (25) can be 
used to coarsely diagnose the calibration of the expert. 
 Relative entropy can be developed using 
information theoretic approaches (see Kullback 1959 
or Soofi and Retzer 2002). Cross-entropy between two 
distributions can be used to understand the goodness of 
fit, or measure of closeness, between a model 
distribution and a reference distribution (ideally the 
true distribution). In this case, the ideal distribution is 
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what is sought and therefore unknown. Cross-entropy 
can be derived from the discrimination information 
function (Kullback and Liebler 1951): 
 

 ( ) ( )
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where f(y)=dF(y) is a probability density (mass) 
function fY(y), absolutely continuous with respect to the 
reference distribution, g(y). Cross-entropy is widely 
used in part due to its intuitive appeal and analytical 
tractability. K(f:g)≥0 is a measure of discrepancy 
between the two distributions. The equality holds if and 
only if f(y)=g(y) everywhere. 
 Since the Bayesian event model is normal in form 
and the analysis is conjugate, both f(y) and g(y)  are 
normal in form. The resulting cross-entropy will be: 
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such that it will be a function of all statistics for both 
the reference distribution, g(y), and the comparison 
distribution, f(y). Now, in terms of the Bayesian event 
model, comparing the posterior distribution of an 
individual expert to that of the aggregated consensus 
(i.e. the combination of all-expert posterior 
distributions) as the reference distribution yields the 
following results: 
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where Πu

i is the posterior distribution for expert i and 
the reference distribution, Πu is the combined 
distribution for all experts, or the aggregated 
consensus. Even though the reference distribution 
contains the compared distribution, it is important for it 
to remain that way because we would like a standard 
reference distribution when comparing experts using 
our inter-expert diagnostic. 
 Similarly, another diagnostic can be developed by 
comparing the posterior distribution of an individual 
expert, Πu

i, to the prior distribution, Π. The cross-
entropy term in that case follows as: 
 

 

( )
( )













 −
+−+














=ΠΠ

2

2

2

2

2

2

1
2
1

log
2
1

,

σ
µµ

σ

σ

σ

σ u
i

u
i

u
i

u
iK

 (29) 

 

Each expert’s cross-entropy terms and calibration 
coefficient will be examined in the next step. 
 
Step 6: Selection of experts.  Using the notion of 
calibration and entropy as a form of scoring rule the 
experts may be selected. However, because the cali-
bration coefficient measures only sense and not 
magnitude and, therefore, is not highly precise, the 
disqualification of an expert should not be considered 
without examining the other diagnostics. The other 
diagnostics (specifically the cross-entropy measures) 
will provide a measure of an expert’s judgment in 
relation to either an aggregated consensus (i.e. the 
combination of all experts) or to that of the decision 
maker. There too, caution should be exercised so that 
experts with different perspectives are not disqualified 
merely on the basis of this differing perspective, 
particularly when that expert is well calibrated. 
 In summary, decision makers may choose to forgo 
selecting an expert, but only if that expert is poorly 
calibrated and exhibits high entropy. If the decision 
maker does not have sufficient rationale for 
disqualifying an expert, all experts should be included 
in the combination.  
 
Step 7: Combination of expert judgment. The 
combination step is merely a compilation of other steps 
used throughout the process. The combination step 
iteratively operationalizes the mathematical model 
presented earlier. 
 This expert judgment combination step again 
involves the sequential combination of the selected 
expert posterior distributions with the decision maker’s 
prior distribution through the likelihood function using 
Bayes theorem. The posterior of the first expert based 
on the decision maker’s prior serves as the prior of the 
second expert and this is repeated until all selected 
expert’s likelihood functions have been used in the 
updating process. The order of experts does not matter.  
 The final result will be a combined posterior 
distribution for each situational variable represented by 
the statistics, mu* and Σu*. These values will be used 
with the accident probability model to better 
understand the system and apply mitigation measures 
in reducing the relevant risks. 
 
4. Application Example 
Whenever a model is presented, a relevant application 
example often helps illustrate function and utility. 
Additionally, a properly selected application example 
often provides unique insights not otherwise 
obtainable. In this study, an example was selected from 
the maritime domain where accidents are relatively rare 
events and historical data are sparse. The risk analysis 
of the Washington state ferry system (van Dorp et al. 
2001) was chosen to demonstrate the Bayesian accident 
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probability model presented in this paper. A brief 
summary of the results will be presented here.  
 During the summer of 1998, the Washington state 
legislature called upon the Washington State 
Transportation Commission to establish a Blue Ribbon 
Panel to assess the adequacy of provisions for 
passenger and crew safety aboard the Washington 
State Ferry (WSF) system. The George Washington 
University was selected to be a part of the consulting 
team for assessing the adequacy of passenger and crew 
safety on the WSF, evaluating the level of risk present 
in the WSF system, and developing recommendations 
for prioritized risk reduction measures to improve the 
level of safety in the WSF system. 
 To lend some perspective to the risk analysis (both 
the original and the model presented here), the system 
under investigation will be briefly described. The WSF 
system is the largest ferry system in the U.S. Serving 
the central Puget Sound, Admiralty Inlet, and the San 
Juan Islands; the WSF system consists of 27 vessels 
operating between 20 terminals on 10 routes at that 
time. Annual ridership has been estimated at about 
26.2 million passengers annually (more passengers 
each year than the domestic U.S. passenger rail 
service, Amtrak) during that period. The Puget Sound 
is also the home to several major ports for domestic 
and Pacific Rim trade with thousands of commercials 
ships arriving and departing annually. 
 Step 1: An accident probability model was 
developed for the system based on the ten situational 
variables in Exhibit 2. 
 
 Exhibit 2. Description of the situational 

variables for the 10 waterway attributes 
examined in the WSF study. 

 
Name Description Discretization 
FR_FC Ferry route-class combo 13 combos 
TT_1 1st interacting vessel type 13 types  
TS_1 Scenario of 1st interaction 4 meetings 
TP_1 Proximity of 1st vessel Binary 
TT_2 2nd interacting vessel type 13 types  
TS_2 Scenario of 2nd interaction 4 meetings 
TP_2 Proximity of 2nd vessel Binary 
VIS Visibility Binary 
WS Wind speed Binary 
WD Wind direction Binary 

 
Sixty difference vectors, Z, were developed such that 
only one situational variable differed for each question. 
These situational variables were assembled into a 
useable questionnaire format. 
 Step 2: The questionnaires were administered to 
eight experts consisting of WSF captains, Puget Sound 
pilots, and Coast Guard officers. The following exhibit 
provides a graphical representation of their responses. 
 

 Exhibit 3. Individual expert judgment 
responses to 60 questions about the relative 
probability of collision between scenario pairs 
in the WSF system given a propulsion failure 

 

 
 Calibration coefficients, CE,  were calculated based 
on the responses above, D, and the difference vector 
matrix, Z, as described in Equations (24) and (25). The 
following exhibit shows each expert’s calibration 
coefficient. 
 
 Exhibit 4.  Calibration coefficients for eight 

experts participating in WSF study 
 

 
Expert 

 
CE 

Relative
Rank 

1 0.83 5 
2 1.05 7 
3 0.87 6 
4 0.60 2 
5 0.52 1 
6 0.72 4 
7 0.67 3 
8 1.25 8 

 
Note that experts #1, 4, 5, 6, and 7 were the most 
highly calibrated. This seems to intuitively correspond 
to Exhibit 3 since the other experts had balanced 
responses even though the questionnaire favored the 
second scenarios (on the right).  

e. Expert #5, µ=3.40 σ=4.44 f. Expert #6, µ =2.53 σ=5.42

g. Expert #7, µ =2.37 σ=3.69 h. Expert #8, µ =-0.42 σ=1.70

a. Expert #1, µ =2.38 σ=2.76 b. Expert #2, µ =-1.12 σ=4.08

c. Expert #3, µ =1.47 σ=3.24 d. Expert #4, µ =0.45 σ=1.25

 8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8  8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8

 8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8  8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7     8

 8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7     8  8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8

 8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8  8    7    6    5    4   3    2    1    0   1    2    3   4    5    6    7    8
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 Step 3: Two cases were examined using the 
methodology presented in this paper. The first involved 
an uninformed decision maker (using flat priors) and 
the second an informed one (using the results of the 
WSF study as prior information; see Exhibit 5). 
 
 Exhibit 5.  Informed decision maker prior 

estimates of situational variables 
 

Name Mean Variance 
FR_FC 0.000 5.000 
TT_1 1.503 0.209 
TS_1 0.642 0.299 
TP_1 3.330 0.311 
TT_2 0.606 0.467 
TS_2 1.177 0.325 
TP_2 2.736 0.310 
VIS 3.343 0.310 
WS 1.775 0.310 
WD 3.737 0.621 

 
The flat priors for the uninformed decision maker’s 
situational variable have zero mean estimates and 
large variance much like the FR_FC waterway 
attribute above. 
 Step 4: Next, the experts’ posterior distributions 
were computed for each of the variables. This was 
accomplished using the above priors and the model 
developed previously. Generally, the expert posterior 
distributions varied depending upon the responses. The 
results of these responses are too extensive for 
presentation in this paper, but the combined responses 
will be provided in Step 7. (Readers interested 
obtaining complete results or a spreadsheet version of 
the model should contact the author.) 
 Step 5: The calibration and entropy were examined 
for each expert. Refer directly to Exhibit 4 for expert 
calibration. Cross-entropy was calculated for each 
expert and each variable according to all reference 
distributions (two cases of decision maker priors and 
aggregated consensus posterior distributions). Exhibit 6 
provides one typical representation of expert 
performance by plotting normalized calibration in 
terms of normalized average cross-entropy.  
 Step 6: All eight experts were examined in terms 
of their calibration and cross-entropy. The experts who 
exhibited relatively high average cross-entropy  (expert 
#5) demonstrated good calibration. Conversely, the 
experts who exhibited relatively high, or poor, 
calibration (expert #8) yielded low cross-entropy.  
Most experts had relatively good calibration and 
entropy (expert #4 for example). Therefore, none of the 
expert had poor calibration coupled with high cross-
entropy and all experts were selected for inclusion in 
the final aggregation. 
 

 Exhibit 6.  Normalized expert calibration vs. 
average cross-entropy (informed decision 
maker case) 

 
 Step 7: Since no experts were eliminated in either 
case (uninformed or informed), the final combination 
of expert judgment is exactly the same as the 
combination used in determining the reference 
distribution for the third diagnostic (Π(βT|D)). Exhibit 
7 presents the results for the case where the judgments 
of all eight experts were used to update an informed 
decision maker, or manager, using the Bayesian 
accident model presented in this paper. 
 
 Exhibit 7.  Parameter estimates and 

uncertainty for the probability of a collision 
given a propulsion failure on the WSF vessel 
found using the Bayesian accident probability 
model for an informed decision maker 

 
Name Mean Variance 
FR_FC 2.032 0.081 
TT_1 1.869 0.060 
TS_1 2.609 0.109 
TP_1 1.737 0.117 
TT_2 1.863 0.221 
TS_2 2.306 0.125 
TP_2 1.510 0.116 
VIS 1.207 0.116 
WS 2.419 0.116 
WD 2.422 0.339 

 
The uninformed case yields similar results to those of 
the informed case, but the mean values are shifted 
slightly and the variances are considerably larger. 
When compared with the results of the classical study 
(von Dorp et al., 2001), the results are similar. The 
classical study provides a model that emphasizes 
natural waterway attributes and proximity attributes. 
This study developed a model that emphasizes natural 
waterway attributes and scenario attributes. 
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Conclusions 
The model and methodology presented in this paper 
provides a means for gathering expert judgment 
through the well-established pairwise comparison 
technique and combining those judgments with the 
decision maker’s prior system knowledge using the 
Bayesian paradigm to provide an accident probability 
model for estimating accident probability. By taking 
advantage of previous system knowledge, engineering 
managers have the ability to obtain more complete risk 
information to account for rare event scenarios. This is 
useful when safety, accident prevention, and risk 
mitigation are part of system design and policy 
development. 
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