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We present a two parameter family of continuous distribution on a bounded domain

which has an elevated but finite density value at its lower bound. Such a characteristic

appears to be useful, for example, when representing income distributions at lower

income ranges.  The family generalizes the one parameter Topp and Leone distribution

originated in the 1950's and recently rediscovered. The family of beta distributions has

been used for modeling bounded income distribution phenomena, but it only allows for

an infinite and zero density values at its lower bound, and a constant density in case of its

uniform member. The proposed family alleviates this apparent jump discontinuity at the

lower bound. The U.S. Income distribution data for the year 2001 is used to fit

distributions for Caucasian (Non-Hispanic), Hispanic and African-American populations

via a maximum likelihood procedure. The results reveal stochastic ordering when

comparing the Caucasian (Non-Hispanic) income distribution to that of the Hispanic or

African-American population. The latter indicates that although substantial advances

have reportedly been made in reducing the income distribution gap  amongst different

ethnic groups in the U.S. during the last 20 years or so, these differences still exist.

1.  Introduction

In a 1955 issue of the  anJournal of the American Statistical Association
isolated paper on a bounded continuous distribution by  Topp and Leone [1]
appeared which received little attention. The paper was re-discovered by
Nadarajah and Kotz [2] and motivated by investigations of van Dorp and Kotz
[3,4] on the Two-Sided Power (TSP) distribution and other alternatives to the
popular and versatile beta distribution which has been used in various
applications for over a century. Even in the late nineties of the 20-th century the
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arsenal of  univariate distributions contained very few members.bounded
Amongst them, the triangular and uniform distribution are the most widely used
together with some "curious" distributions appearing as problems or exercises in
various Mathematical and Statistical journals. Other, somewhat artificial
empirical bounded continuous distributions, are based on mathematical
transformations of the normal distribution (of an unbounded domain) - the most
wide spread amongst them are perhaps the Johnson [5] family of
transformations. On the other hand the existence of multitudes of unbounded
continuous distributions developed in the 20-th century is well known and
amply documented.

The construction of the distribution Topp and Leone is quite
straightforward and based on the principle that by raising an arbitrary cdf
JÐBÑ − Ò!ß "Ó  ! KÐBÑ œ J ÐBÑ to an arbitrary power , a new cdf  emerges" "

with one additional parameter. The cdf in the above construction methodJÐBÑ

may be referred to as the Figure 1 demonstrates the constructiongenerating cdf. 
of the Topp and Leone distribution. The generating density of the Topp and
Leone family is the right triangular density . It is displayedÐ#  #BÑß B − Ò!ß "Ó

in Figure 1A. Figure 1B depicts its cdf  and Figures 1C and 1D plotÐ#B  B Ñ#

the pdf and cdf of a one parameter Topp and Leone distribution for . Note," œ $

the appearance of a mode in the  presented in Figure 1C due to S-shapednesspdf
of the corresponding cdf in Figure 1D obtained by using a  transformationcdf
with . Topp and Leone's [1] original interest focused on the construction"  "

of J-shaped distributions utilizing similar cdf transformations with 1;!  "

They have fitted their distribution to transmitter tubes failure data. Nadarajah
and Kotz [2] showed that the -shaped Topp and Leone distributions exhibit aN

bath tub failure rate functions with natural applications in reliability.
Our generalization of the Topp and Leone distribution (GTL) utilizes a

slightly more general  distribution with pdf , slope α α αB  #Ð  "ÑB ! Ÿ Ÿ #ß

as the generating density (see Figure 2A with ), where . Sα œ "Þ& B − Ð!ß "Ñ lope
distributions possess linear pdf's and play a central role in deriving a
generalization of the trapezoidal distribution (see, e.g., Van Dorp and Kotz [7]).
From the restriction that  for all , it follows thatα αB  #Ð  "ÑB   ! B − Ð!ß "Ñ
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! Ÿ Ÿ #Þ − Ò!ß "Ñ Ð − Ð"ß #ÓÑα α α For  , the slope of the pdf is increasing
(decreasing). For , the slope distribution simplifies to a uniformα œ "

distribution on . Figure 2B plots the cdf of the linear pdf in Figure 2A.Ð!ß "Ñ
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Figure 1. Construction of Topp and Leone Distribution from a Right Triangular Distribution.

Now the Generalized Topp and Leone (GTL) distribution that follows from
Figure 2B (utilizing the above construction method with 3) is depicted in" œ

Figure 2D. The density associated with this cdf is displayed in Figure 2C. Note
that, while a mode in  is present in Figure 2C, it has been shifted to theÐ!ß "Ñ

right when compared to the situation in Figure 1C. More importantly, the
density at the upper bound is strictly positive in Figure 2C while being zero in
Figure 1C (representing the original Topp and Leone density).

Our main interest in this paper is to represent income distributions. We
shall therefore consider the  of the Generalized Topp and Leonereflected version
(GTL) distribution utilizing the cdf transformation ,LÐBÑ œ "  KÐ"  BÑ

where  is a GTL cdf on . The latter transformation typically assigns theK Ò!ß "Ó
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mode towards the left hand side of its support and allows for strictly positive
density values at the lower bound. This form seems to be appropriate when
representing income distributions at lower income ranges. (Compare, e.g., with
Figure 2 of Barsky et al. [8], p. 668).
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Figure 2. Construction of Generalized Topp and Leone Distribution from a slope distribution.

The U.S. Income distribution data for the year 2001 is used to fit Reflected
GTL (RGTL) distributions for Caucasian (Non-Hispanic), Hispanic and
African-American populations via a maximum likelihood procedure. The results
reveal stochastic ordering when comparing the Caucasian (Non-Hispanic)
income distribution to that of the Hispanic or African-American populations. In
particular when comparing Americans of Caucasian Origin, African-Americans
appear to be approximately  times as likely and the Hispanics  times as"Þ* "Þ&

likely to have inadequate or no income at all. The latter indicates that although
substantial advances have indeed occurred in reducing the income distribution



5

gap  amongst different ethnic groups in the U.S. during the last 20 years or so
(see, e.g., Couch and Daly [9]), these differences still exist.

Another reason to consider reflected GTL distribution rather than GTL
distributions is that a drift of the mode towards the left hand side mimics the
behavior of the classical unbounded continuous distributions such as the
Gamma, Weibull and Lognormal. (We note, in passing, that these three
distributions are in a strong competition amongst themselves as to which is the
best one for fitting numerous phenomena in economics, engineering and
medical applications). One can therefore conjecture that application of Reflected
GTL (RGTL) distributions  may not be limited to the area of income
distributions.

In Section 2, we shall present the cdf and pdf of a four parameter RGTL
distribution and investigate its various forms. In Section 3, we will elaborate on
some properties of RGTL distributions. Moment expressions for RGTL
distributions, to the best of our knowledge, cannot be derived in closed form
(except for certain special cases). The cdf of the beta distribution while not
available in a closed form (whereas that of an RGTL distribution is) is,
however, useful for calculating moments of RGTL distributions for ."  Ÿ #α

In Section 4, we shall discuss a Maximum Likelihood Estimation (MLE)
procedure utilizing standard root finding algorithms that are readily available in
various software packages such as e.g. Microsoft Excel. In Section 5, we shall
fit RGTL distributions to the U.S. 2001 income distribution data with seemingly
satisfactory results. Some brief concluding remarks are presented in Section 6.

2.  Cumulative Distribution Function and Density Function

The four parameter RGTL distribution with support  has the cdfÒ+ß ,Ó

J ÐBl+ß ,ß ß Ñ œ "   Ð  "Ñ Ð Ñ
,  B ,  B

,  + ,  +
α " α αŠ ‹ š Š ‹›" "

. 1

where and Evidently, and .+ Ÿ B Ÿ ,ß !  Ÿ #  !Þ J Ð+Ñ œ ! JÐ,Ñ œ "α "

The probability density function (pdf) follows from 1  to beÐ Ñ
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0ÐBl+ß ,ß ß Ñ œ ‚ Ð Ñ
,  + ,  +

,  B

 Ð  "Ñ  #Ð  "Ñ ß
,  B ,  B

,  + ,  +

α "
"

α α α α

Š ‹
š Š ‹› š Š ‹›

"

"

"

"

2

with the same constraint on ,  and  as in 1 . From 2  it follows that inB Ð Ñ Ð Ñα "

particular

0Ð+l+ß ,ß ß Ñ œ Ð Ñ
Ð#  Ñ

,  +
α "

" α
3

and

0Ð,l+ß ,ß ß Ñ œ Ð Ñ

!  "

œ "

Ä ∞ B Å ,  "Þ

α "

"

"

"

Ú
ÛÜ

"α
,+

as 
4

Relation 3 shows that the RGTL family allows for arbitrary density values atÐ Ñ

its lower bound . Expressions 1  and 2 are reduced to the Topp and Leone+ Ð Ñ Ð Ñ

distribution (see Topp and Leone [1]):

0ÐBl+ß ,ß ß Ñ œ #  "  Ð Ñ
# B B B

, , , ,
α "

"Š ‹ š Š ‹› š Š ‹›" "" "

5

by setting ,   and utilizing the reflection transformation+ œ ! œ #α

] œ ,  + \. Figure 1C depicts a graph of the Topp and Leone distribution
with parameters  and  in 5 . Figure 3A displays its reflected, œ " œ $ Ð Ñ"

version. Note the transition in the form of graphical representations of the pdf's
from Figure 3B to Figure 3D which all have the same value of  withα

decreasing values of . Note that in case of Figure 3B the pdf assumes a similar"

form to that of a reliability function whereas Figure 3C displays a mode at a
value greater than . Similarly in Figures 3E to 3H the pdf's with the same value!

of  (  with progressively decreasing  from to , indicate theα "œ !Þ&Ñ # !Þ#&

change in form of the pdf from a monotonically decreasing concave form, a
linear function with decreasing slope, a mild U-shaped function, up to a
monotonically increasing convex curve.
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Figure 3. Examples of Standard RGTL distributions ( ): A:  ; B:+ œ !ß , œ " œ #ß œ $α "

α " α "œ "Þ&ß œ ' œ "Þ&ß œ #à;  C:  D: ; E: ; F: ;α " α " α "œ "Þ&ß œ " œ !Þ&ß œ # œ !Þ&ß œ "

G: ; H: α " α "œ !Þ&ß œ !Þ(& œ !Þ&ß œ !Þ#&.
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The J-shaped form of the pdf in Figure 3E ( )+ œ !ß , œ "ß œ !Þ&ß œ #α "

resembles that of a Weibull distribution with the shape parameter less than one
(but on a bounded domain). Figures 3G and 3H depict a U-shaped pdf form
( ) and a J-shaped pdf form (+ œ !ß , œ "ß œ !Þ&ß œ !Þ(& + œ !ß , œ "ßα "

α "œ !Þ&ß œ !Þ#&) respectively, and are similar to those appearing in the beta
family, but with a bounded density value at its lower bound (cf. 3 ). SettingÐ Ñ

α "œ "ß œ " Ð Ñ Ò+ß ,ÓÞin 2  yields a uniform distribution on  Hence, analogously
to the four parameter beta distribution with the pdf

> α "

> α > "

Ð  Ñ

Ð Ñ Ð ÑÐ,  +Ñ
Ð ÑŠ ‹ Š ‹B  + ,  B

,  + ,  +

α "" "

, 6

where  and  and the Two-Sided Power family (see van+ Ÿ B Ÿ ,ß  !  !α "

Dorp and Kotz [3,4]) with the pdf
ÚÝÛÝÜ

Š ‹
Š ‹

8 B+
Ð,+Ñ 7+

8"

8 ,B
Ð,+Ñ ,7

8"

+  B Ÿ 7

7 Ÿ B  , ß
Ð Ñ
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where , the RGTL family has the uniform distribution on  as one of8  ! Ò+ß ,Ó

its members. Another common member amongst these 3 families (Beta, TSP
and RGTL) is the reflected power (RP) distribution on with the pdfÒ+ß ,Ó

0ÐBl+ß ,ß ß Ñ œ Ð Ñ
,  + ,  +

,  B
α "

" Š ‹""

8

obtained by substituting  in 2 . Substituting  in 2  also yields theα αœ " Ð Ñ œ ! Ð Ñ

reflected power distribution but with parameter . The reader is encouraged to#"

construct diagrams connecting the above cited distributions.
A distinguishing feature amongst RGTL distributions, compared with

distributions 6  and , is the existence of additional pdf forms with a positiveÐ Ñ Ð*Ñ

density value at its lower bound (see Figures 3B-3H) allowing representation of
uncertain phenomena with such a property. Another feature of RGTL
distribution (indicating a lesser flexibility within the same family) is that the
pdf's of a GTL distributions and its reflections possess different functional
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forms, whereas the reflection of a TSP pdf as well as a beta pdf belong to the
same functional family.

3.  Properties of Standard RGTL Distributions

We shall provide some properties of the  Standard RGTL (SRGTL) distributions
(setting  and  in 1  and 2  with the cdf+ œ ! , œ " Ð Ñ Ð ÑÑ

J ÐBl ß Ñ œ "  Ð"  BÑ  Ð  "ÑÐ"  BÑ Ð Ñα " α α"
"š › . 9

and the pdf

0ÐBl ß Ñ œ Ð"  BÑ ‚ Ð Ñ

 Ð  "ÑÐ"  BÑ  #Ð  "ÑÐ"  BÑ Þ

α " "

α α α α

"

"

"

"š › š ›
10

where and Results may be extended to the general forms of!  Ÿ #  !Þα "

Ð Ñ Ð Ñ1  and 2  by means of a linear scale transformation.

3.1.  Limiting Distributions

It immediately follows from 9  that the pdf 10  converges to a degenerateÐ Ñ Ð Ñ

distribution with a probability mass of  at  when  ( )" + Ð,Ñ Ä ∞ Æ !" "

regardless of the value of .α

3.2.  Stochastic Dominance Properties

Note that for  9  simplifies to a slope distribution with the cdf" œ " Ð Ñ

JÐBl ß œ "Ñ œ  Ö Ð"  BÑ  Ð  "ÑÐ"  BÑ × Ð Ñα " α α1 11#

which is stochastically decreasing in , i.e.,α

α α α " α "" # " #Ÿ ß B − Ð!ß "Ñ Ê JÐBl ß œ "Ñ   JÐBl ß œ "Ñ Ð Ñ. 12

Let now . From 12  it follows that for all (0,1) and for any " " "" # "   ! Ð Ñ B −
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"  Ö  JÐBl ß œ "Ñ×   "  Ö  JÐBl ß œ "Ñ× Ð Ñ1 1 . 13α " α "" #
" "" "

From the fact that the function  is a decreasing function in  for (0,1) itD + D −+

follows from  that" "" #   !

"  Ö  JÐBl ß œ "Ñ×   "  Ö  JÐBl ß œ "Ñ× Þ Ð Ñ1 1 14α " α "# #
" "" #

However, simple algebra shows that

JÐBl ß Ñ œ "  Ö  JÐBl ß œ "Ñ× Ð Ñα " α "1 15"

where ,  are given by 9  and 11 , respectively, whichJÐBl ß Ñ J ÐBl ß œ "Ñ Ð Ñ Ð Ñα " α "

together with 13 and 14 impliesÐ Ñ Ð Ñ

α α " " α " α "" # " # " " # #Ÿ ß   ß B − Ð!ß "Ñ Ê JÐBl ß Ñ   JÐBl ß Ñ Ð Ñ. 16

Hence, RGTL distributions are stochastically increasing in and stochasticallyα

decreasing in . This seems to be an interesting property shedding an additional"

light on the meaning of the parameters  and  in 9  and 10 , especially inα " Ð Ñ Ð Ñ

applications. Note that, relation 15 could be verbally expressed as connectingÐ Ñ

the  with the generated one, i.e. .generating cdf JÐBl ß œ "Ñ JÐBl ß Ñα " α "

3.3.  Mode Analysis

As it was already mentioned for and  the pdf 10  simplifies to a" αœ " œ " Ð Ñ

uniform  density. For the pdf 10  becomes a RP distributionÒ!ß "Ó œ "ß Á " Ð Ñα "

(cf. 8 ) with a finite mode at  with value  and an infinite mode at  forÐ Ñ !  " ""

"  " Ð Ñ B. Taking the derivative of 10  with respect to  we have

.0ÐBl ß Ñ

.B
œ ÐBl ß Ñ0ÐBl ß Ñß Ð Ñ

α "
V α " α " 17

where the multiplier

V α "

α "
α α α α

α α

ÐBl ß Ñ œ Ð Ñ

Ð  "Ñ  Ð  "Ñ
#

 #Ð  "Ñ "  B Ð"  BÑ  Ð  "ÑÐ"  BÑ

 #Ð  "ÑÐ"  BÑ

Š ‹ š ›
š ›

18
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is a linear function in . From the relations"

 ,  190ÐBl+ß ,ß ß Ñ  ! Ð Ñ

Ö  #Ð  "ÑÐ"  BÑ×  !ß

Ö  Ð  "ÑÐ"  BÑ×  !

α "

α α

α α

for  and  it follows from 17  and 18  that the following fourα "− Ò!ß #Óß  " Ð Ñ Ð Ñ

additional cases should be considered:  ; Case Case" À !   "ß   "α "

# À "  Ÿ #ß Ÿ " $ À "  Ÿ #ß  " % À !   "ß  "α " α " α ";   ;  .Case Case
Case " À !   "ß   " À Àα " See Figures 3E and 3F

From 17 , 18  and 19  it follows that the SRGTL pdf 10  is strictlyÐ Ñ Ð Ñ Ð Ñ Ð Ñ

decreasing on  and hence possesses a mode at  with the value Ò!ß "Ó ! Ð#  Ñ" α

(cf. 3 ). For example, setting  and  (as in Figure 3E) yields aÐ Ñ œ !Þ& œ #α "

mode at  with value . Setting  and 1 (as in Figure 3F) yields a! $ œ !Þ& œα "

mode at  with value .! "Þ&

Case # À "  Ÿ #ß Ÿ " À : See Figure 3Dα "

From 17 , 18  and 19  it follows that the SRGTL pdf  is strictlyÐ Ñ Ð Ñ Ð Ñ Ð"#Ñ

increasing on . From 4  it follows that the pdf 10  has an infinite mode atÒ!ß "Ó Ð Ñ Ð Ñ

"  " " œ "Þ œ "Þ& œ for  and a finite mode at  for Setting  and 1 (as in" " α "

Figure 3D) yields a finite mode at  with value " "Þ&Þ

Case $ À "  Ÿ #ß  " Àα " : See Figures 3A, 3B and 3C
This seems to be the most interesting case. From 17 , 18  and 19  it followsÐ Ñ Ð Ñ Ð Ñ

that the SRGTL pdf  may possess a mode in . DefiningÐ"#Ñ Ð!ß "Ñ

C œ "  B

and setting the derivative 17  to zero yields the following quadratic equation inÐ Ñ

C

#Ð  "Ñ C  # Ð  "ÑC  œ ! Ð Ñ
 "

#  "
α α α

α "

"
# #

#( )
. 20

(The left hand side of 20 is a parabolic function in .) Noting that theÐ Ñ C

symmetry axis of the parabola associated with the l.h.s. of 20  has the valueÐ Ñ
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α

α2( )
21

 "
Ð Ñ

which is strictly greater than  for , and that"  "α

C œ "  B − Ò!ß "Ó Í B − Ò!ß "Óß  

it follows that out of the two possible solutions of 20  only the solutionÐ Ñ

C œ † "  Ð Ñ
#Ð  "Ñ #  "

"‡ α

α "
œ Ë 22

can yield a mode . Moreover, from it follows thatB − Ð!ß "Ñ "  Ÿ #ß  "‡ α "

C  ! Ð Ñ C Ä  " "  Ÿ #‡ ‡
#Ð "Ñ. Also, from 22 we have that  for  whenα
α α

" Ä ∞ Ð Ñ B œ "  C. Hence, from 22 we conclude that the mode  is‡ ‡

B œ Q+B !ß "   # Ð Ñ
" "

#Ð  "Ñ #  "
‡ ” •š Š ‹ ›Ëα "

α . 23

Setting ,  (as in Figure 3C) yields α "œ "Þ& œ # B œ Q+BÒ!ß   $‡ " "
# #

È
Ó ¸ !Þ$''Þ œ "Þ& œ 'Setting ,  (as in Figure 3B) yieldsα "

B œ Q+BÒ!ß   Ó œ !‡ "
# ##

3 È11  and hence a mode is located at the lower
bound  with value  (cf. 3  with ). Utilizing 23  it! Ð  #Ñ œ $ Ð Ñ + œ !ß , œ " Ð Ñ" α

follows that a Standard Reflected Topp and Leone distribution ) has aÐ œ #α

mode at

Ë "

#  ""

for . Setting  (as in Figure 3A) yields a mode at ." "  " œ $ & ¸ !Þ%%("
&
È

Case % À !   "ß  " À : See Figures 3G and 3Hα "

Similarly to  it follows that the pdf 10  has an infinite mode at  forCase # Ð Ñ "

!   "ß  " Ð Ñ Ð Ñ Ð Ñα " . However, from 17 , 18  and 19  it follows that the pdf
Ð Ñ B − Ð!ß "Ñ Y10 may also have an anti-mode (resulting in a -shaped form) in‡

this case. The formula for the anti-mode is also given by 23  provided .Ð Ñ " "
#

For example, setting ,  (as in Figure 3G) yieldsα "œ !Þ& œ !Þ(&
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B œ Q+BÒ!ß  # Ó !Þ(*$Þ‡ $ "
# #È  and hence an anti-mode at approximately For

" Ÿ "
#  (as in Figure 3H) the anti-mode of an RGTL distribution occurs at

B œ ! Ð#  Ñ Ð Ñ + œ !ß , œ "‡ , with value  (cf. 3  with )." α

3.3.  Failure Rate

The failure rate function for an SRGTL density follows<Ð>Ñ œ 0Ð>ÑÎÖ"  JÐ>Ñ×

from 9  and 10  to beÐ Ñ Ð Ñ

W α
"

Ð ß BÑ
"  B

Ð Ñ24

where

W α
α α

α α
Ð ß BÑ œ Ð Ñ

 #Ð  "ÑÐ"  BÑ

 Ð  "ÑÐ"  BÑ
25

and it is straightforward to check that  is the failure rate of a standard"ÎÐ"  BÑ

reflected power (SRP) distribution ( 10  with 1). From 24  it follows thatÐ Ñ œ Ð Ñα

W αÐ ß BÑ may be interpreted as the relative increase (or decrease) in the failure
rate of an SRGTL distribution as compared to a SRP distribution. Taking the
derivative of 25  with respect to  yieldsÐ Ñ B

 . 26
` Ð ß BÑ Ð"  Ñ

`B  Ð  "ÑÐ"  BÑ×
œ Ð Ñ

W α α α

α αÖ #

Hence,  for all  and it follows from 26  that HÐ"ß BÑ œ " B − Ò!ß "× Ð Ñ HÐ ß BÑ  "α

(  for all  when   Thus,  may be "Ñ B − Ò!ß "Ó "  Ÿ # Ð! Ÿ  "ÑÞα α α

interpreted as a failure deceleration parameter (relative to the reflected standard
power distribution) when  and a failure acceleration parameter when"  Ÿ #α

! Ÿ  " Ð Ñα ". On the other hand, 24  shows that  is a failure acceleration
parameter for all ."  !

3.4.  Cumulative Moments

Due to the functional form of the cdf 9 calculations of cumulative momentsÐ Ñ
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Q œ B Ð"  JÐBÑÑ.B Ð Ñ5
!

"
5( 27

for SRGTL distributions have a slight advantage over that of central moments
about the mean. The mean  and the central moments about the mean . .

w

" #

(variance)  (skewness) and  (kurtosis) are connected with the cumulativeß . .$ %

moments , viaQ ß5 œ "ßá ß %5

.

.

.

.

w

" !

# " !
#

$ # " ! !
$

% $ # ! " ! !
# %

œ Q Ð Ñ

œ #Q Q

œ $Q  'Q Q  #Q

œ %Q  "#Q Q  "#Q Q  $Q

28

(see, e.g., Stuart and Ord [10]). The cumulative moments  for SRGTLQ5

distributions follow from 9  and 27  to beÐ Ñ Ð Ñ

( š ›
�Œ  ( š ›
!

"
5

3œ!

5
3 3

!

"

B Ð"  BÑ  Ð  "ÑÐ"  BÑ .B œ

5 Ð  "ÑB

3
Ð  "Ñ B "  .B

"
"

" "
"

α α

α
α

α

Ð Ñ29

For , expression 29 simplifies to that of the cumulative moments of anα œ " Ð Ñ

SRP distribution cf. 10  with ). For , the cumulative momentsÐ Ð Ñ œ " − Ð"ß #Óα α

can be expressed utilizing the incomplete Beta function
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where Numerical routines > > >Ð+ ,Ñ œ Ð+Ñ Ð,ÑÎ Ð+  ,Ñ,  is the Beta function. 
for evaluating the incomplete Beta function 30  are well known for a long timeÐ Ñ
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and are provided in standard PC software such as e.g. Microsoft Excel.
However, for  expression 29  cannot be further simplified and oneα − Ð!ß "Ñ Ð Ñ

has to resort to numerical integration. The moments of the original Topp and
Leone [1] distribution (cf. 5 ) were derived by Nadarajah and Kotz [2]. Ð Ñ  For
α − Ð"ß #Ó, we have for the cumulative moments Q ßQ ßQ Q! " # $ and 
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Substituting , in 32  yields the mean α œ # Ð Ñ %.
w

" !œ Q œ " " "Ð  "  "Ñ,  of a
Standard Reflected Topp and Leone (SRTL) distribution and hence 1 

%" " "Ð  "  "Ñ,  is the mean of a Standard Topp and Leone (STL) distribution
on  (see, Nadarajah and Kotz [2]).Ð!ß "Ñ

3.4.  Inverse Cumulative Distribution Function

Utilizing the inverse cdf technique random samples from RGTL distributions
may straightforwardly be generated. From 9 we derive thatÐ Ñ

Ö"  J ÐDl ß Ñ×ß D − Ò!ß "Ó C" α "  is one of the roots of the quadratic equation in 

Ð  "ÑC  C  Ð"  DÑ œ ! Ð Ñα α# "Î" . 33

Noting that (similarly to equation 20 ) the symmetry axis associated with theÐ Ñ

l.h.s. of the quadratic 33 has a value 21  which is strictly larger than  forÐ Ñ Ð Ñ "

1 , it follows that out of the two solutions of 33  only the solution Ÿ # Ð Ñα

α α α

α
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#Ð  "Ñ

È # "Î"
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can yield . Analogously, it follows that forÖ"  J ÐDl ß Ñ× − Ò!ß "Ó" α "

0  only the solutionŸ  "α

α α α

α
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#Ð  "Ñ

È # "Î"

can result in . Hence, we haveÖ"  J ÐDl ß Ñ× − Ò!ß "Ó" α "
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where the case  follows from the cdf of a standard reflected power (SRP)α œ "

distribution (  in 9 ).α œ " Ð Ñ

4.  Maximum likelihood estimation

Below we shall discuss an approximate MLE procedure for a total of R
observations grouped  in  intervals  with  observations each and7 ÒB ß B Ó 83" 3 3

interval mean values , where  andB B ´ !ß B ´ "
3 ! 7

R œ 8�
3œ"

7

3.

The data described above may be summarized in an -vector 7 Bwhose elements
are the interval mean values and   containing the number ofan -vector7 8

observations in each interval. The approximate MLE procedure below may
easily be modified to a non-approximate MLE procedure utilizing order
statistics, but here our approach is tailored to the format of the income
distribution data to be presented in Table 1. The approximate MLE procedure
will assume that the probability mass is concentrated at the interval mean  ofB3

the intervals . Utilizing 10  we have the likelihood ÒB ß B Ó Ð Ñ Ð ß l3" 3 _ α " B 8ß Ñ to be
proportional to
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" α α α αR #
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where

C œ " 3 B Ð Ñ
3 . 36

Instead of maximizing _ α "Ð ß lB 8ß Ñ we may equivalently maximize the log-
likelihood. Taking the logarithm of 35  and calculating the derivative withÐ Ñ

respect to  we obtain"
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is the unique MLE of  given a particular value of . " α Taking the logarithm of
Ð Ñ35  and calculating the derivative with respect to , one obtainsα
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Substituting 38  into 39  (utilizing   instead of  and expressing  in termsÐ Ñ Ð Ñ s s" " "

of ) the following function  is derivedα Z αÐ Ñ À
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where  is given by 36 and the function defined on a bounded range ofC Ð Ñ3  is 
! Ÿ Ÿ #Þ Ð Ñ œ !sα α Z α The MLE  follows as one of the roots of the equation  or
as one of the boundary values  or . The bounded domain of α αœ ! œ # Z αÐ Ñ

allows for straightforward plotting of the function in standard spreadsheet
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software such as Microsoft Excel and subsequent determination of an
approximate solution of the MLE . Using the root finding algorithm Goalseek,αs

available in Microsoft Excel, and the approximate solution of   allows us toαs

calculate   up to a desired level of accuracy. Finally, substitution of   in toα αs s

Ð Ñ s38  yields the MLE . The MLE procedure above will be demonstrated in the"

next section using U.S. 2001 income data.

5.  Fitting 2001 U.S. Income Distribution Data

In a leading article of the 459 issue of the Journal of the American Statistical
Association (2002, Vol. 97, pp. 663-673) by Barsky et al. [8] an illuminating
and comprehensive analysis of the African-American and Caucasian (Non-
Hispanic) wealth gap was presented based on a longitudinal survey of
approximately over 6000 households over the period 1968-1992. The authors
argue that a parametric estimation of the wealth-earning relationship by race is
not an appropriate approach. Their main objection is that the wealth-earning
relationship is non-linear with an unknown functional form which is difficult to
parameterize and parametric estimation may thus likely yield inaccurate
estimates. The authors also provide an extensive and up-to-date bibliography up
to and including 2001. Barsky et al. [8] note that the racial wealth gap far
exceeds the racial income gap at the higher wealth ranges, suggesting that the
racial wealth gap is too large to be explained by income gap alone. On the other
hand, they conclude that the role of earnings differences is largest at the lower
tails of the wealth distribution and decreases dramatically at higher wealth
levels. In fact, their results indicate that differences in household earnings
account for all of the racial wealth difference in the first quartile of the wealth
distribution. Interested readers are also referred to Couch and Daly [9] and
O'Neill et al. [11] who study the related topic of the racial wage gap in the US.

Our approach to this problem is somewhat different. We attempt to use the
distribution developed in the previous sections to fit the more recent household
income data in the US for the year 2001 (Source: U.S. Census Bureau, Current
Population Survey, March 2002) classified according to the Caucasian (Non-
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Hispanic), African-American and Hispanic populations and draw some tentative
conclusions about the racial income gap based on this data. Parametric
estimation of income data is quite common for almost 100 years and a wide
variety of distributions have been proposed (see, Kleiber and Kotz [12] for an
extensive bibliography). RGTL distributions (which are not discussed in Kleiber
and Kotz [12]) allow for a strictly positive density value at its lower bound,
which is observed in a non parametric kernel density estimate of the 1989
income data (see Figure 2 of Barsky et al. [8] p. 668). The new distribution we
are proposing turns out to be appropriate for the US 2001 household income
data, especially for that of the African-American sub population. We emphasize
that the main purpose of the numerical analysis below is to illustrate the fitting
attributes of the RGTL distribution and properties of its parameters. The
numerical analysis herein in no way yields a conclusive answer to the problem
of racial income gaps (nor that of racial wealth and racial wage gaps) while
providing indications of the current state of affairs and further study is in order.

Table 1 below contains income distribution data for households in the year
2001 for the different ethnic groups: Caucasian (Non-Hispanic), African-
American and Hispanic throughout the U.S.A. The MLE procedure above will
be used to fit RGTL distributions for incomes of these three groups. Only the
data up to $250,000 will be used in Table 1 since the U.S. Census Bureau data
does not provide the maximum observed income in their statistics. Of the total
number of U.S. households surveyed %, %, % have in 2001 an*)Þ&) **Þ%% **Þ'&

income less than $250,000 for the Caucasian (Non-Hispanic), Hispanic and
African-American ethnic groups, respectively.

Figure 4 displays a graph of the function  (cf. 40 ) for the incomeZ αÐ Ñ Ð Ñ

data of Caucasian (Non-Hispanic) Americans presented in Table 1. From Figure
4 we observe an approximate root of the equation  to be the valueZ αÐ Ñ œ !

α Z α α α α α‡ ‡ ‡¸ "Þ(!Þ Ð Ñ  !  ! ! Ÿ  Ÿ Ÿ # Since,  ( ) for  ( ) it follows that
α α αs œ Ð Ñ‡ is the unique MLE of  35  for . Using Goalseek (a standard root
finding algorithm in Microsoft Excel) with a accuracy of , utilizing the" † "!'
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Table 1. US Income Distribution for Households in year 2001 (Source: U.S. Census Bureau,

Current Population Survey, March 2002.  Numbers in Thousands, Households as of March of

the Following Year)

Number Mean Number Mean Number Mean
Income of Household Income Income Income
Under $2,500............... 1,443 $168 520 $439 273 $426
$2,500 to $4,999........... 773 $3,808 388 $3,842 137 $3,767
$5,000 to $7,499........... 2,141 $6,450 698 $6,359 304 $6,387
$7,500 to $9,999........... 2,561 $8,749 756 $8,658 404 $8,663
$10,000 to $12,499......... 3,142 $11,220 621 $11,173 458 $11,214
$12,500 to $14,999......... 2,946 $13,615 543 $13,672 411 $13,659
$15,000 to $17,499......... 3,167 $16,091 660 $16,089 553 $15,993
$17,500 to $19,999......... 2,803 $18,660 479 $18,655 418 $18,579
$20,000 to $22,499......... 3,099 $21,082 610 $21,094 490 $21,005
$22,500 to $24,999......... 2,697 $23,706 447 $23,682 373 $23,691
$25,000 to $27,499......... 3,055 $26,064 570 $26,061 477 $26,011
$27,500 to $29,999......... 2,446 $28,673 464 $28,544 330 $28,617
$30,000 to $32,499......... 3,277 $31,059 492 $31,040 479 $30,998
$32,500 to $34,999......... 2,330 $33,679 375 $33,655 335 $33,601
$35,000 to $37,499......... 2,950 $36,045 437 $35,944 412 $36,082
$37,500 to $39,999......... 2,114 $38,713 310 $38,626 249 $38,641
$40,000 to $42,499......... 2,846 $41,052 434 $41,004 424 $40,938
$42,500 to $44,999......... 1,924 $43,679 260 $43,693 231 $43,668
$45,000 to $47,499......... 2,236 $46,058 289 $45,908 291 $46,044
$47,500 to $49,999......... 1,966 $48,709 256 $48,655 205 $48,607
$50,000 to $52,499......... 2,403 $51,042 350 $50,924 247 $51,021
$52,500 to $54,999......... 1,736 $53,679 210 $53,553 153 $53,725
$55,000 to $57,499......... 2,014 $56,127 249 $55,972 224 $55,992
$57,500 to $59,999......... 1,528 $58,650 177 $58,680 177 $58,764
$60,000 to $62,499......... 2,047 $61,053 248 $60,979 219 $61,106
$62,500 to $64,999......... 1,417 $63,719 162 $63,761 141 $63,801
$65,000 to $67,499......... 1,710 $66,048 175 $65,990 157 $66,018
$67,500 to $69,999......... 1,325 $68,677 150 $68,705 124 $68,734
$70,000 to $72,499......... 1,622 $71,067 190 $71,090 159 $71,112
$72,500 to $74,999......... 1,248 $73,707 142 $73,589 128 $73,711
$75,000 to $77,499......... 1,608 $75,981 133 $75,974 132 $75,860
$77,500 to $79,999......... 1,073 $78,662 100 $78,693 72 $78,726
$80,000 to $82,499......... 1,380 $81,051 100 $80,950 125 $80,976
$82,500 to $84,999......... 993 $83,688 90 $83,584 90 $83,708
$85,000 to $87,499......... 1,144 $86,057 103 $85,984 76 $85,830
$87,500 to $89,999......... 803 $88,696 86 $88,754 55 $88,636
$90,000 to $92,499......... 985 $91,051 78 $91,103 83 $90,997
$92,500 to $94,999......... 701 $93,658 83 $93,666 41 $93,579
$95,000 to $97,499......... 915 $96,071 71 $95,901 65 $95,999
$97,500 to $99,999......... 712 $98,682 65 $98,639 48 $98,811
$100,000 to $149,999....... 8,374 $119,083 554 $117,549 515 $119,016
$150,000 to $199,999....... 2,689 $169,312 115 $172,222 113 $164,692
$200,000 to $249,999....... 993 $219,285 29 $218,672 43 $221,737
$250,000 and above......... 1,345 $462,675 46 $433,097 59 $474,843
Total ................... 90,682 $60,512 13,315 $39,248 10,499 $44,383

Caucasian         
(Non-Hispanic) Black Hispanic
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approximate solution  we obtain  The unique MLE "Þ(!ß œ œ "Þ'(*Þs sα α "‡

œ 'Þ('( œ "Þ'(* Ð Ñsfollows from substituting in 38 . Figure 5 below plots bothα

the empirical and their fitted RGTL counterparts (cf. 1  and 2 ) withÐ Ñ Ð Ñ

+ œ !ß , œ #&!ß !!!ß œ "Þ'(* œ 'Þ('($ $ and . Differences between theα "

empirical cdf and fitted cdf can be observed in Figure 5A. The Kolmogorov-
Smirnov Statistic , which is the maximum observed difference between theH

empirical and fitted cdf's (see, e.g., DeGroot [13]), in Figure 5A equals %.)Þ'!
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Figure 4. A graph of the function  (cf. 40 ) for the income data of Caucasian (Non-Hispanic)Z αÐ Ñ Ð Ñ

Americans presented in Table 1.

Hence, with  degrees of freedom (Table 1 has  rows up to $ ) the%$ %$ #&!ß !!!

Kolmogorov-Smirnov test accepts the fitted RGTL distribution at the %"!

ÐH ¸ !Þ")#Ñß & ÐH ¸ !Þ#!$Ñ " ÐH ¸ !Þ#%$Ñ!Þ"! !Þ!& !Þ!"% as well as %  levels,
respectively. Table 2 provides the unique MLE estimators for and αs "s

(obtained using the procedure described in Section 4) for the Caucasian (Non-
Hispanic), African-American and Hispanic income data presented in Table 1.
Figure 6A (Figure 6B) plots the empirical and fitted RGTL pdf with MLE
α αs sœ œ"Þ'"$ß œ "!Þ'#* "Þ')& œ "!Þ$!'s s and  for the African-American" "( )
(Hispanic) income data as presented in Table 1. The Kolmogorov-Smirnov
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Statistic  for the African-American (Hispanic) income data equals %H 'Þ!"

( %) which is smaller than that of the Caucasian (Non-Hispanic) income)Þ!*

data (indicating a better fit). Hence with  degrees of freedom the%$

Kolmogorov-Smirnov test accepts both MLE fitted RGTL distributions in
Figure 6A and 6B at the % % and %  levels, respectively."! ß & "
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Figure 5. Empirical and an MLE fitted RGTL distribution ( and ) of theα "s œ "Þ'%$ œ 'Þ"(*s

Caucasian (Non-Hispanic) income data in Table 1; A: CDF ; B: PDF.

Table 2. Maximum Likelihood Estimators for

the parameters  and  of RGTL distributionsα "s s

for the Income Data in Table 1 up to $250,000.

α "s s

"Þ'(* 'Þ('(
"Þ')& "!Þ$!'
"Þ'"$ "!Þ'#*

 
Caucasian (Non-Hispanic)
Hispanic
African American

Table 3 contains the (standardized) cumulative moments Q œ ßQ ß! "
w
".

Q ßQ ß Ð Ñ# $ # $ %and the central moments  and  calculated utilizing 32  and. . .

Ð Ñ28 . Note that there is a strict ordering column-wise for all the values in Table
3 in the order: Caucasian American (non-Hispanic),  Hispanic, African-
American. From Table 3 we can calculate values for the mean and standard
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deviation utilizing the transformation $ . In a similar manner, the] œ #&!ß !!!\

median and mode of the MLE RGTL distributions can be evaluated utilizing the
parameter values in Table 2, 34  and 23 .  In addition, we may utilize Table 3Ð Ñ Ð Ñ

to calculate the coefficient of skewness  and coefficient of kurtosis  given" "" #

by

" "
.

.

.

.
" #

#
$
$ #
#

%

#

œ ß œ

These estimated statistics are provided in Table 4 for the three subpopulations
under consideration.
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Figure 6. Empirical and MLE fitted RGTL pdf's for the income data in Table 1; A: African-

American ( and ) ; B: Hispanic ( and ).α " α "s sœ "Þ'"$ œ "!Þ'#* œ "Þ')& œ "!Þ$!'s s

Table 3. Cumulative Moments and Central Moments of the MLE fitted RGTLQ5 5".

distributions for the Income Data in Table 1 up to $250,000 calculated utilizing 32  andÐ Ñ

Ð Ñß 5 œ "ßá ß $28 .

Q œ Q Q Q
#Þ$%/ " $ $Þ)!/ $ #Þ%(/ # #Þ&%/ $ "Þ(&/ $
"Þ((/ " #Þ$) &Þ#'/ $ "Þ&"/ $ "Þ'!/ # "Þ''

! " # $ # $ %.w
" . . .

Caucasian (NH) - -
Hispanic -

- - - - -
- - - -

Þ*(/ # "Þ""/ #
/ # / $ )Þ%!/ %

"Þ&*/ " "Þ*) %Þ"(/ $ "Þ"%/ $ "Þ%%/ # "Þ'!/ $ (Þ$"/ %
- -

- - - - - -African Amer. -/ #
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A similar ordering as observed in Table 3 can be observed throughout
Table 4. Note that the difference in the point estimates in Table 4 between the
Caucasian (Non-Hispanic) population and the African-American Population is
approximately $  or more and those associated with the Hispanic")'!(

population $  or more. The latter observation is amplified somewhat in"$*#)

Table 4 by the fact that the fitted mean income for the Caucasian (Non-
Hispanic) population overestimates the empirical mean (of income up to
$ ) by $  whereas the fitted mean income for the African-American#&!ß !!! $*$'

(Hispanic) population is overestimated by only $  $ . Perhaps the")*) Ð #$&(Ñ

most notable difference is the modal income value of $  for the MLE fitted!

RGTL distribution for the African-American population while the modal
income value for the Caucasian (Non-Hispanic) and Hispanic population have a
value substantially larger than zero (and the mode for the Caucasian (Non-
Hispanic) population is more than twice that of Hispanics).  A similar
observation can be made by comparing the RGTL distributions in Figure 5B,
6A and 6B. Finally, from Table 2 and 3  we may evaluate the density values atÐ Ñ

the lower bound, i.e. 0Ð!l!ß #&!ß !!!ß ß Ñs s$ , presented in Table 5. α " Hence, in
comparison with Americans of Caucasian origin, African-Americans appear to
be approximately  times as likely and Hispanics  times as likely, in the"Þ* "Þ&

year 2001, to have negligible income. It is the fact that our MLE fitted RGTL
pdf's may take any positive value at its lower bound, that allows us to reach such
a conclusion.

Table 4. Statistics associated with the MLE fitted RGTL distributions for the Income

Data in Table 1 up to $250,000.

 Mean Median Mode St. Dev.
Caucasian (Non-Hispanic) $ $ $ $
Hispanic $ $ $ $
A

" "" #

&)$*$ &#&$% #)$!' $*$#' !Þ%#% #Þ)&)
%%$"' $)'!' "")&" $"("! !Þ''! $Þ#%)

frican Amer. $ $ $ $$*()' $$&** ! $!!!# !Þ)&) $Þ&##

The analysis of our investigations presented below seems to be, in our
opinion, of some interest and value. In Figure 7A, we utilize the MLE fitted
RGTL income distributions by plotting the percentiles of the African-American
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and Hispanic income distributions against those of the Caucasian (Non-
Hispanic) one using 9 , 34 and the corresponding MLE values and  inÐ Ñ Ð Ñ sfor αs "

Table 2. For example, from Figure 7A, we observe that approximately %(!

Ð'&%) of the African-American (Hispanic) population have less income than the
median ( %)of the Caucasian (Non-Hispanic) income distribution. Similar&!

comparisons can be made for other percentiles of the Caucasian (Non-Hispanic)
income distribution utilizing Figure 7A. For example, % ( %) of the$% #*

African-American (Hispanic) population earn less than what less than % of#!

the Caucasian (Non-Hispanic) population earn (i.e. the % percentile of the#!

Caucasian (Non-Hispanic) income distribution).  Note that the solid curve in
Figure 7A involving the African-American (Hispanic) income distribution is
located completely above the unit diagonal which implies stochastic dominance
of Caucasian (Non-Hispanic) income over that of the African-American
(Hispanic) one. The latter can be directly concluded from the MLE values for αs
and  in Table 2 and 16  for the African-American and Caucasian (Non-"s Ð Ñ

Hispanic) comparison but  the Hispanic and Caucasian (Non-Hispanic)not
comparison. This shows that the implication arrow in 16  cannot in general beÐ Ñ

reversed.

Table 5. Density values at the lower bound of the MLE fitted

RGTL distributions for the Income Data in Table 1 up to

$250,000.

0Ð!l!ß #&!ß !!!ß ß Ñs s$ α "
Caucasian (Non-Hispanic)
Hispanic
African American

)Þ')/ '
"Þ$!/ &
"Þ'&/ &

-
-
-

In a similar manner, Figure 7B utilizes the MLE fitted RGTL income
distributions by plotting the percentiles of the African-American and Caucasian
(Non-Hispanic) income distributions against those of the Hispanic one. For
example, from Figure 7B, we observe that approximately % %) of the&' Ð$(

African-American (Caucasian Non-Hispanic) population have less income than
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Figure 7. Stochastic Dominance Analysis by Ethnicity for the income data in Table 1 utilizing the

MLE fitted RGTL cdf's.

the median %  of the Hispanic income distribution. We now conclude fromÐ&! Ñ

Figure 7B that Hispanic income stochastically dominates the African-American
one. The latter conclusion also follows immediately from the corresponding
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MLE values and  in Table 2 and 16 . However, we can conclude, oncefor αs "s Ð Ñ

again,  by  in Figure 7B that Hispanic income is stochasticallyonly observation
dominated by Caucasian (Non-Hispanic) income (since the line associated with
the Caucasian (Non-Hispanic) now happens to be completely below the unit
diagonal). This conclusion, as before, cannot be directly obtained from the
corresponding MLE values and  in Table 2 and 16 .for αs "s Ð Ñ

 Summarizing, Table  and 16  alone imply that the chances of a# Ð Ñ

Caucasian (Non-Hispanic) or Hispanic American earning more than a specified
amount (anywhere within the range from $  to $ ) are higher than those! #&!ß !!!

for an African-American. In addition, the analysis in Figure 7 allows us to
conclude that the chances of a Caucasian (Non-Hispanic) earning more than a
specified amount (anywhere within the range from $  to $ ) are higher! #&!ß !!!

than those of a Hispanic. Moreover, Figure 7 and Table 4 demonstrate that
although substantial advances have reportedly been made in reducing the
income distribution gap amongst these three subpopulations in the U.S. during
the last 20 years or so (see, e.g., Couch and Daly [9]), these differences still
exist and are quite noticeable.

6.  Concluding Remarks

We have attempted to construct and investigate a new four-parameter
continuous family of distributions on a bounded domain possessing arbitrary
strictly positive density values at its lower bound. As an illustration, the new
family is applied to fitting the distributions of income of Caucasians (Non-
Hispanic), Hispanics and African-Americans in the U.S.A. in the year 2001
based on U.S. Census bureau data. The results seems to be quite satisfactory and
allow us to compare the incomes of the above 3 groups in a novel manner which
seems to be revealing by shedding additional light on features which are not
obvious from a direct examination of the raw data.
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