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Introduction

Let      be an event with possible outcomes: A 1, , nA A"

A = “Flipping a coin”

1A = 2  A ={Heads} {Tails}

The total event (or sample space) of event      is the 
collection of all possible outcomes of 

A
A

Ω

Ω = {Heads, Tails}

Formally:

1 2 1 1

n
n n ii

A A A A A− =
Ω = ∪ ∪ ∪ ∪ =" ∪
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Probability Calculus

Probability rules may be derived using VENN DIAGRAMS

1. Probabilities must be between 0 and 1 for all possible
outcomes in the sample space       :Ω

1A

Ω
0 Pr( ) 1,iA≤ ≤ for all outcomes     that are in iA Ω

Ratio of the area of the oval and the area of the total rectangle
can be interpreted as the probability of the event
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Probability Calculus

2. Probabilities must add up if both events cannot occur 
at the  same time:

1A 2A

Ω

)Pr()Pr()Pr( 212121 AAAAAA +=∪⇒=∩ φ
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Probability Calculus

3. If are all the possible outcomes and not two 
of these can occur at the same time, their Total 
Probability must sum up to 1:

1, , nA A"

1A 2A

Ω

3A

1, , nA A" are said to be collectively exhaustive
and mutually exclusive
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Probability Calculus

4. The probability of the complement of      equals 1 minus
the probability of

1A
1A

1A 1A

Ω

)Pr(1)Pr( 11 AA −=
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Probability Calculus

5. If two events can occur at the same time the probability 
of either of them happening or both equals the sum of 
their individual probability minus the probability of them 
both happening at the same time. 

1A 2A

Ω

)Pr()Pr()Pr()Pr( 212121 AAAAAA ∩−+=∪
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Probability Calculus

Conditional probability:

Dow Jones Up

Stock Price Up{
Ω

New Total Event based on the condition
that we know that the Dow Jones went up

6.
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Probability Calculus: Conditional Probability

)Pr(
)Pr()|Pr(

↑
↑∩↑=↑↑

Dow
DowStockDowStock

Intuition: If I know that the market as a whole will go up, 
the chances of the stock of an individual company going 
up will increase.

Pr( )Pr( | )
Pr( )
A BA B
B
∩=

Informally: Conditioning on an event coincides with 
reducing the total event to the conditioning event
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Example: The probability of drawing an ace of spades 
in a deck of 52 cards equals 1/52. However, if I tell you 
that I have an ace in my hands, the probability of it 
being the ace of spades equals ¼.

4
1

52/4
52/1

)Pr(
)Pr()|Pr( ==∩=

Ace
SpaceAceAceSpades

Pr( )Pr( | )
Pr( )
A BB A
A
∩=

Note also that:

Probability Calculus: Conditional Probability
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Probability Calculus

7. Multiplicative Rule: Calculating the probability of two  
events happening at the same time. 

Pr( ) Pr( | ) Pr( )iA B B A A∩ = ∗
Pr( | ) Pr( )A B B= ∗

8. Independence between two events: Informally, two 
events are independent if information about one does 
not provide you any information about the other and vice 
versa. Consider:

Event      with possible outcomesA 1, , nA A"
Event      with possible outcomesB 1, , mB B"
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Probability Calculus: Independence

Example: is the event of flipping a coin and      is 
the event of throwing a dice. If you know the outcome 
of flipping the coin you do not learn anything about the 
outcome of throwing the dice (regardless of the outcome 
of flipping the coin). Hence, these two events are 
independent.

A B

Formal definition of independence between event 
and event      :

A
B

Pr( | ) Pr( )i j iA B A=
For all possible combinations      and iA jB



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 7 – Probability Basics
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi

http://www.seas.gwu.edu/~dorpjr/

Slide 13 of 62
COPYRIGHT © 2006
by GWU

D
ra

ft:
 V

er
si

on
 1

Probability Calculus: Independence

Equivalent definitions of independence between 
event and event      :

A
B

Pr( | ) Pr( )j i jB A B=
For all possible combinations      and iA jB

1.

2. Pr( ) Pr( ) Pr( )i j i jA B A B∩ = ×
For all possible combinations      and iA jB

Independence/dependence in influence diagrams:
• No arrow between two chance nodes implies independence
between the uncertain events

• An arrow from a chance event A to a chance event B does not
mean that "A causes B". It indicates that information about A
helps in determining the likelihood of outcomes of B. 
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Probability Calculus: Conditional Independence

Example: The performance of a person on any IQ test
is uncertain and may range anywhere from 0% to 
100%. However, if you to know that the person in 
question is highly intelligent it is expected his\her score 
will be high, e.g. ranging anywhere from 90% to 100%.

On the other hand, the person’s IQ does not explain
this remaining uncertainty, and it may be considered 
measurement error affected by other conditions. For 
example, having a good night sleep during the previous 
night. On any two IQ tests, these measurement errors 
may be reasonably modeled as independent, if we 
know the IQ of the person. 
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Probability Calculus: Conditional Independence

Event      with possible outcomesA 1, , nA A"
Event      with possible outcomesB 1, , mB B"
Event      with possible outcomesC 1, , pC C"

Formal definition: Event      and event      are 
conditionally independent given event       if and only if 

A B
C

Pr( | , ) Pr( | )i j k i kA B C A C=
For all possible combinations             and ,i jA B kC

Informally: If I already know C, any information or 
knowledge about B does not tell me anything more about A
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Probability Calculus: Conditional Independence

Equivalent definitions: Event      and event      are 
conditionally independent given event       if and only if 

A B
C

Pr( | , ) Pr( | )j i k j kB A C B C=
For all possible combinations             and ,i jA B kC

1.

2. Pr( | ) Pr( | ) Pr( | )i j k i k j kA B C A C B C∩ = ×
For all possible combinations             and ,i jA B kC
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Probability Calculus: Conditional Independence

Equivalent definitions: Event      and event      are 
conditionally independent given event       if and only if 

A B
C

Pr( | , ) Pr( | )j i k j kB A C B C=
For all possible combinations             and ,i jA B kC

1.

2. Pr( | ) Pr( | ) Pr( | )i j k i k j kA B C A C B C∩ = ×
For all possible combinations             and ,i jA B kC
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Probability Calculus: Conditional Independence

Conditional independence in influence diagrams:

A B

C

A B

C
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Probability Calculus: Law of Total Probability

• Let  be mutually exclusive, collectively exhaustive: 1 3, ,B B"

1B

2B

3B
A

1 2 3Pr( ) Pr( ) Pr( ) Pr( )A A B A B A B= ∩ + ∩ + ∩ ⇔

1 1 2 2 3 3Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )A A B B A B B A B B= + +
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Probability Calculus: Law of Total Probability

Example:

A

B

C

SYSTEM: X,  X = failure , X = No FailureX = System fails

A = Component A fails,

B = Component B fails,

C = Component C fails

Assume that components A, B and C 
operate independently.
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Probability Calculus: Law of Total Probability

Task:
Write the probability of failure Pr(X) as a function of the 
component failure probabilities Pr(A), Pr(B) and Pr(C).

1.Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )X X A A X A A= + =
1 Pr( ) Pr( | ) Pr( )A X A A= ∗ +

2.Pr( | ) Pr( | , ) Pr( | )X A X B A B A= +
Pr( | , ) Pr( | )X B A B A
Pr( | , ) Pr( ) 0 Pr( )X B A B B= + ∗
Pr( | , ) Pr( )X B A B=

)Pr()Pr(),|Pr()Pr()Pr(.3 ABABXAX +=

Substitute result 2 into 3



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 7 – Probability Basics
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi

http://www.seas.gwu.edu/~dorpjr/

Slide 22 of 62
COPYRIGHT © 2006
by GWU

D
ra

ft:
 V

er
si

on
 1

Probability Calculus: Law of Total Probability

Intermediate conclusion: Hence we need to further develop 

),|Pr( ABX

4.Pr( | , ) Pr( | , , ) Pr( | , )X B A X C B A C B A= +
Pr( | , , ) Pr( | , )X C B A C B A
1 Pr( ) 0 Pr( ) Pr( )C C C= ∗ + ∗ =
Substitute result 4 into 3

)Pr()Pr()Pr()Pr()Pr(.5 ABCAX +=

6.Pr( ) 1 Pr( )A A= − Substitute result 6 into 5

7.Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( )X A C B C B A= + −
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Probability Calculus: Law of Total Probability

Example: Oil Wildcatter Problem

Drill at Site 2

Drill at Site 1

Low (0.8)

Dry (0.2)

Max Profit

-100K

-200K

50K

High (?)

Dry (?)

150K
Low (?)

500K

Payoff at site 1 is uncertain. Dominating factor in 
eventual payoff at Site 1 is the presence of a dome or not.
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Probability Calculus: Law of Total Probability

DOME

Pr(Dome) Pr(No Dome)
0.600 0.400

Outcome Pr(Outcome|Dome) Outcome Pr(Outcome|No Dome)
Dry 0.600 Dry 0.850
Low 0.250 Low 0.125
High 0.150 High 0.025
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Probability Calculus: Law of Total Probability

Pr( ) Pr( | ) Pr( )Dry Dry Dome Dome= +

0.600 0.600 0.850*0.400 0.700= ∗ + =

Pr( ) Pr( | ) Pr( )Low Low Dome Dome= +

0.250 0.600 0.125*0.400 0.200= ∗ + =

0.150 0.600 0.025*0.400 0.100= ∗ + =

Pr( |  ) Pr(  )Dry No Dome No Dome

Pr( |  ) Pr(  )Low No Dome No Dome

Pr( ) Pr( | ) Pr( )High High Dome Dome= +
Pr( |  ) Pr(  )High No Dome No Dome
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Probability Calculus: Law of Total Probability

High (0.150)

Dry (0.600)

Low (0.250)

High (0.025)

Dry (0.850)

Low (0.125)No Dome (0.400)

Dome (0.600)

High (0.150  0.600 + 0.025  0.400 = 0.10)

Dry (0.600  0.600 + 0.850  0.400 = 0.70)

Low (0.250  0.600 + 0.125  0.400 = 0.20)

LAW OF TOTAL PROBABILITY

-100K

150K

500K

-100K

150K

500K

-100K

150K

500K

Informally: when we apply LOTP we are 
collapsing a probability tree 
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Probability Calculus: Bayes Theorem

• Let  be mutually exclusive, collectively exhaustive: 1 3, ,B B"

1B

2B

3B
A

1. From the multiplicative rule it follows that:

Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )j j j jA B B A A A B B∩ = =
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Probability Calculus: Bayes Theorem

2. Dividing the LHS and RHS of 1. by Pr(A) yields:

Pr( | ) Pr( )
Pr( | )

Pr( )
j j

j

A B B
B A

A
=

3. We may rewrite Pr(A) using the Law of Total
Probability, yielding

1 1 2 2 3 3Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )A A B B A B B A B B= + +

4. Substituting the result of 3. into 2. gives perhaps the
most well known theorem in probability theory:

Bayes Theorem.
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Probability Calculus: Bayes Theorem

1 1 2 2 3 3

Pr( | ) Pr( )
Pr( | )

Pr( | ) Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )
j j

j

A B B
B A

A B B A B B A B B
=

+ +

Bayes’ theory of probability was 
published in 1764. His 
conclusions were accepted by 
Laplace in 1781, rediscovered 
by Condorcet, and remained 
unchallenged until Boole
questioned them. Since then 
Bayes' techniques have been 
subject to controversy. 

Thomas Bayes (1702 to 1761):

Source: http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Bayes.html
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Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

• We drilled at site 1 and the well is a high producer. Given 
this new information what are the chances that a dome 
exists? (Perhaps that information is important when 
attracting additional investors.)

Pr( | )Pr( )
Pr( )Pr( | ) High Dome Dome
HighDome High =

1. From the rule for conditional probability it follows that:

2. From the LOTP it follows that:

Pr( ) Pr( | ) Pr( )High High Dome Dome= +
Pr( |  ) Pr(  )High No Dome No Dome
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Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:
3. Substitution of 2 in 1 yields:

Pr( | )Pr( )
Pr( | )Pr( ) Pr( |  )Pr(  )

High Dome Dome
High Dome Dome High No Dome No Dome+ =

Pr( | )Dome High =

0.150*0.600
0.150*0.600 0.0250*0.400 0.90+ =

Pr(Dome) – The Prior Probability

Pr(Dome|Data) – The Posterior Probability

Data = “The well is a high produces”
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Probability Calculus: Bayes Theorem

Oil Wildcatter Problem
Example Continued:

• Notice that Pr(Dry),Pr(Low)
and Pr(High) have been
inserted in the tree.These
were calculated using LOTP.

• Notice that Pr(Dome|High)
has been inserted as well
This one was calculated using
Bayes Theorem.

• We need to fill out the
Remainder of the question
Marks.

High (0.150)

Dry (0.600)

Low (0.250)

High (0.025)

Dry (0.850)

Low (0.125)No Dome (0.400)

Dome (0.600)

High (0.10)

Dry (0.7)

Low (0.2)

No Dome (?)

Dome (?)

No Dome (?)

Dome (?)

No Dome (?)

Dome (0.90)

-100K

150K

500K

-100K

150K

500K

-100K

-100K

150K

150K

500K

BAYES THEOREM
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Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

When we reverse the order of the chance nodes in 
a decision tree we need to apply Bayes Theorem

Pr(Dome) Pr(No Dome)

0.600 0.400

X Pr(X|Dome) Pr(X|No Dome) Pr(X ∩ Dome) Pr(X ∩ No Dome) Pr(X) Pr(Dome|X) Pr(No Dome|X) Check

Dry 0.600 0.850 0.360 0.340 0.700 0.514 0.486 1.000

Low 0.250 0.125 0.150 0.050 0.200 0.750 0.250 1.000

High 0.150 0.025 0.090 0.010 0.100 0.900 0.100 1.000

Check 1.000 1.000 0.600 0.400 1.000

Next, we allocate the probabilities from the table at
their appropriate locations in the tree
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Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:
 

High (0.10)

Dry (0.7)

Low (0.2)

No Dome (0.486)

Dome (0.514)

No Dome (0.250)

Dome (0.750)

No Dome (0.100)

Dome (0.900)
500K

-100K

-100K

150K

150K

500K

AFTER BAYES THEOREM
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Probability Calculus: Bayes Theorem

The Game Show Example:
Suppose we have a game show host and you. There are 
three doors and one of them contains a prize. The 
game show host knows the door containing the prize but 
of course does not convey this information to you. He 
asks you to pick a door. You picked Door 1 and are 
walking up to door 1 to open it when the game show 
host screams: STOP!.

You stop and the game show host shows Door 3 which 
appears to be empty. Next, the game show asks: 

"DO YOU WANT TO SWITCH TO DOOR 2?"

WHAT SHOULD YOU DO?
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Probability Calculus: Bayes Theorem

The Game Show Example:
Assumption 1: The game show host will never show the 

door with the prize.

Assumption 2: The game show will never show the door
that you picked.

Define: 
Di ={Prize is behind door i }, i=1,…,3

Hi ={Host shows Door i containing no prize
after you selected Door 1}, i=1,…,3

1. It seems reasonable to set prior probabilities: 
3
1)Pr( =iD
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Probability Calculus: Bayes Theorem

2. Apply LOTP to calculate Pr(H3):3

3 3
1

Pr( ) Pr( | ) Pr( )i i
i

H H D D
=

= =∑
1 1 1 1 1* 1* 0*
2 3 3 3 2

= + + =

3. Calculate Pr(D1|H3):

3
1

2
1

3
1*

2
1

)Pr(
)Pr()|Pr()|Pr(

3

113
31 ===

H
DDHHD

4. Apply the complement rule: 

3
2

3
11)|Pr(1)|Pr( 3132 =−=−= HDHD

So YES, you should SWITCH since 
you would increase your chances of winning!
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Probability Calculus: Uncertain Quantities

Example: When a student attempts to log on to a computer 
time-sharing system, either all ports are busy (B) in which 
case the student will fail to obtain access, or else there is at
least one port free (F), in which case the student will be 
successful in accessing the system.

{ , }B FΩ =Total Event: 

Definition: For a given total event     , a random variable
(rv) is any rule that associates a number with each 
outcome in. 

In mathematical language, a random variable is a 
function whose domain is the total event and whose 
range is the real numbers.

Ω
Ω
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Probability Calculus: Uncertain Quantities

B

Ω
( ) 0=X B ( ) ( ) 1= =X F X B

F

Example: Consider the experiment in which batteries are 
examined until a good (G) is obtained. Let B denote a bad
Battery.

Total Event: { , , , ,...}G BG BBG BBBGΩ =
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Probability Calculus: Uncertain Quantities

Define a rv X as follows:
X = The number of batteries examined before the 

experiment terminates.
Then:

( ) 1, ( ) 2, ( ) 3,X G X BG X BBG etc= = =

The argument of the random variable function is typically
omitted. Hence, one writes

Pr( 2) Pr(   )X Second Battery Works= =

Note that the above statement only has meaning with the 
above definition of the random variable. It is good practice
to always include the definition of a random variable in 
words.
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Probability Calculus: Uncertain Quantities

The nature of random variables can be
discrete and continuous.

Definition:
A discrete random variable is an rv whose possible 
values either constitute a finite set or else can be listed in 
an infinite sequence in which there is a first element, a 
second element, and so on. (Think of the previous 
batter example). 

A random variable is continuous if its set of possible 
values consists of an entire interval on the number line.
(For example, the failure time of a component).
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Discrete Probability Distributions

The nature of random variables can be
discrete and continuous.

Definition:
A discrete random variable is an rv whose possible 
values either constitute a finite set or else can be listed in 
an infinite sequence in which there is a first element, a 
second element, and so on. (Think of the previous 
batter example). 

A random variable is continuous if its set of possible 
values consists of an entire interval on the number line.
(For example, the failure time of a component).
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Discrete Probability Distributions

Example:
Y = Number of Raisins in an Oatmeal Cookie
Assume possible outcomes: Y=1,…,5

Definition: The probability mass function (PMF) of Y
is the collection of probabilities such that Pr(Y=i)=pi

Y 1 2 3 4 5
Pr(Y=i) 0.1 0.15 0.3 0.35 0.1

Note that:
Pr( 1) Pr( 2) Pr( 3) Pr( 4) Pr( 5)Y Y Y Y Y= + = + = + = + = =

5

1
Pr( ) 1

i
Y i

=

= =∑
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Discrete Probability Distributions

0

0.1

0.2

0.3

0.4

1 2 3 4 5

y

pi

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

y

pi

Graphical Depictions of PMF’s

A Histogram An Line Graph
Definition: The cumulative distribution function (CDF) 
of Y at y is the sum of the probabilities such that Y≤ y:

:
( ) Pr( ) Pr( )

i i y
F y Y y Y i

≤

= ≤ = =∑
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Discrete Probability Distributions

Graphical Depictions of CDF:

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

y

F(y)

0.10

0.15

0.30

0.35

0.10

In Decision Analysis a CDF is referred to as a CUMMULATIVE 
RISK PROFILE and a PMF is referred to as a RISK PROFILE
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Probability Calculus: Expected Value

We know the random variable Y has many possible 
outcomes. However, if you were forced to give a “BEST 
GUESS” for Y, what number would you give? (Managers, 
CEO’s, Senators etc. typically like POINT ESTIMATES, 
unfortunately). Why not use the expected value of Y?

1 1
[ ] Pr( )

n n

i i i i
i i

E Y y Y y y p
= =

= × = = ×∑ ∑

1 1
[ ] ( ) Pr( ) ( )

n n

i i i i
i i

E Z g y Y y g y p
= =

= × = = ×∑ ∑
• If Z = g(Y):

Interpretation: If you were able to observe many outcomes 
of Y, the calculated average of all the outcomes would be 
close to E[Y].
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Probability Calculus: Expected Value

[ ] [ ]E Z aE Y b= +• If Z=aY+b, a,b constants, Y a rv:

• If Z=aX+bY, a,b const., X,Y a rv: [ ] [ ] [ ]E Z aE X bE Y= +

1

3 Raisins (0.30)

1 Raisin   (0.10)

22 Raisins (0.15)

3

4

5

4 Raisins (0.35)

5 Raisins (0.10)

3.20

#Raisins # Raisins*Pr(Y = # Raisins)
1 1*0.10=0.10
2 2*0.15=0.30
3 3*0.30=0.90
4 4*0.35=1.40
5 5*0.10=0.50

3.20

Oatmeal Cookie Example:

“On average an oatmeal cookie has 3.2 Raisins”
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Variance and Standard Deviation

We know the random variable Y has many possible 
outcomes. If you were forced to give a “BEST GUESS” for 
the uncertainty in Y, what number would you give? 

Some people prefer to give the range of the outcomes of 
Y, i.e. the MAX VALUE of Y minus the MIN VALUE of Y. 

However, this completely ignores that some values of Y 
may be more likely than others.

SUGGESTION:

Calculate the “BEST GUESS” for the DISTANCE from the 
MEAN. The standard deviation can be thought of such a 
guess. The standard deviation of Y is the square root of 
the variance of Y.
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Variance and Standard Deviation

( )2 2[ 2 [ ] [ ] ]E Y Y E Y E Y= − ⋅ ⋅ +
2 2[ ] 2 [ ] [ ] [ ]E Y E Y E Y E Y= − ⋅ ⋅ +
2 2[ ] [ ]E Y E Y= −

( )22( ) [ [ ] ]YVar Y E Y E Yσ= = −

2 2 2[ ] [ ]Y Y E Y E Yσ σ= = −

Variance:

Standard Deviation:
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Variance and Standard Deviation

• If Z=aY+b, a,b constants, Y a rv:

• If Z=aX+bY, a,b const., X,Y indepent rv’s:

2( ) ( )Var Z a Var Y=

2 2( ) ( ) ( )Var Z a Var X b Var Y= +

B

A

(0.40)

(0.25)

Max Profit
$20

-$9

$95

(0.29)

(0.24)

$35
(0.47)

$50

(0.35) $0

$35.75

$35.75

Example:

Pr(Profit 0 | ) 0;
Pr(Profit 0 | ) 0.6

A
B

≤ =
≤ =

[ ] [ ]E A E B=

Note that:
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Variance and Standard Deviation

Alternative A
Prob Profit Profit^2 Prob*Profit Prob*(Profit^2) Variance St. Dev

0.24 20 400 4.80 96.00
0.47 35 1225 16.45 575.75
0.29 50 2500 14.50 725.00

35.75
1278.0625 1396.75 118.69 10.89438

Alternative B
Prob Profit Profit^2 Prob*Profit Prob*(Profit^2) Variance St. Dev

0.25 -9 81 -2.25 20.25
0.35 0 0 0.00 0.00
0.4 95 9025 38.00 3610.00

35.75
1278.0625 3630.25 2352.19 48.49936

][][ 22 YEYE −=][ 2YE=][2 YE=

[ ]EY =

Yσ
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Expected Value, Variance and Standard Deviation

Example: 
Oil Wildcatter
Problem Continued Drill at Site 2

Drill at Site 1

Low (0.8)

Dry (0.2)

Max Profit
-100K

-200K

50K

High (0.1)

Dry (0.7)

150K
Low (0.2)

500K

10K

0K

Drill at Site 1
Prob Profit Profit^2 Prob*Profit Prob*(Profit^2) Variance St. Dev

0.7 -100 10000 -70.00 7000.00
0.2 150 22500 30.00 4500.00
0.1 500 250000 50.00 25000.00

10.00
100 36500.00 36400.00 190.7878

][][ 22 YEYE −=
][ 2YE=][2 YE=

][YE=

Yσ
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Expected Value, Variance and Standard Deviation

Example: 
Oil Wildcatter
Problem Continued Drill at Site 2

Drill at Site 1

Low (0.8)

Dry (0.2)

Max Profit
-100K

-200K

50K

High (0.1)

Dry (0.7)

150K
Low (0.2)

500K

10K

0K

Drill at Site 2
Prob Profit Profit^2 Prob*Profit Prob*(Profit^2) Variance St. Dev

0.2 -200 40000 -40.00 8000.00
0.8 50 2500 40.00 2000.00

0.00
0 10000.00 10000.00 100

][][ 22 YEYE −=
][ 2YE=][2 YE=

][YE=

Yσ
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Expected Value, Variance and Standard Deviation

Drill at Site 2

Drill at Site 1

Low (0.8)

Dry (0.2)

Max Profit

-100K

-200K

50K

High (0.025)

Dry (0.850)

150K
Low (0.125)

500K

-100K

High (0.15)

Dry (0.60)

150K
Low (0.25)

No Dome (0.4)

Dome (0.6)

500K

Prob Profit Prob*Profit
0.600 -100.00 -60.00
0.250 150.00 37.50
0.150 500.00 75.00

52.50

Prob Profit Prob*Profit
0.850 -100.00 -85.00
0.125 150.00 18.75
0.025 500.00 12.50

-53.75

Prob Profit Prob*Profit
0.200 -200.00 -40.00
0.800 50.00 40.00

0.00

Prob Profit Prob*Profit
0.600 52.50 31.50
0.400 -53.75 -21.50

10.00

EMV=0K

EMV=-53.75K

EMV=52.50K

EMV=10K

EMV=
10K

Expected Values can be calculated by “folding back the tree”
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Continuous Probability Distributions

Let: X = The failure time of a component

Definition: Let X be a continuous rv. Then a probability density
function (pdf) of  X is a function f(x) such that for any two 
numbers  a and b with a < b: 

Pr( [ , ]) ( )
b

a

X a b f x dx∈ = ∫

x

f(x)

a b

For  f(x) to be a legitamate
pdf we must have:

( ) 1f x dx
∞

−∞

=∫

( ) ,  for all 
possible values 
f x x

x
≥
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Continuous Probability Distributions

x

f(u)

u

( ) Pr( ) ( )
−∞

= ≤ = ∫
x

F x X x f u du

Cumulative distribution function:

xp

f(x)

x

( ) Pr( )p pF x X x p= ≤ =

xp

F(x)

x

p
1

The p-th quantile xp:
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Continuous Probability Distributions

Let: X = The failure time of a component

x

f(x)

a b

Pr( )a X b≤ ≤

x

f(x)

a

( ) Pr( )F x X a= ≤

b

f(x)

x

( ) Pr( )F x X b= ≤

Conclusion:
Pr( ) Pr( ) Pr( ) ( ) ( )≤ ≤ = ≤ − ≤ = −a X b X b X a F b F a
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Continuous Probability Distributions

[ ] ( )E X xf x dx
∞

−∞

= ∫Expected Value:

Variance: 2( ) ( [ ]) ( )Var X x E X f x dx
∞

−∞

= −∫

Examples theoretical density functions:

( ) exp( ), 0f x x xλ λ= ⋅ − ⋅ >

1 1( )( ) (1 ) , [0,1]
( ) ( )

f x x x xα βα β
α β

− −Γ += − ∈
Γ ⋅ Γ

2

2

1 1 ( )( ) exp( ),
22
xf x xµ

σσ π
−= ⋅ − ∈ RNormal:

Exponential:

Beta:

More in Chapter 9

Formulas carry over from the discrete to the continuous case
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Dominance Revisited
 

Assume random Variable X Uniformly Distributed on [A,B]

Assume random Variable Y Uniformly Distributed on [C,D]

DETERMINISTIC DOMINANCE

A B C D

A B C D

0

0

1

PD
F

C
D

F

X

YX

Y
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Dominance Revisited
 

Assume random Variable X Uniformly Distributed on [A,B]

Assume random Variable Y Uniformly Distributed on [C,D]

STOCHASTIC DOMINANCE

A BC D

A BC D

0

0

1

PD
F

C
D

F

Pr(Y<z) < Pr(X< z) 
Note:

for all z

X

X

Y

Y
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Dominance Revisited
 

Assume random Variable X Uniformly Distributed on [A,B]

Assume random Variable Y Uniformly Distributed on [C,D]

CHOOSE ALTERNATIVE WITH BEST EMV

A BC D

A BC D

0

0

1

PD
F

C
D

F

X

Y
X

Y

E(Y)E(X)



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 7 – Probability Basics
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi

http://www.seas.gwu.edu/~dorpjr/

Slide 62 of 62
COPYRIGHT © 2006
by GWU

D
ra

ft:
 V

er
si

on
 1

Making Decisions under Uncertainty

Deterministic Dominance Present

Stochastic Dominance Present

Making Decisions based on EMV

Chances of
an unlucky
outcome
increase


