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Abstract—Wireless Sensor Networks (WSNs) are characterized by resource constraints and large scalability. Many applications of

WSNs require secure communication, a crucial component especially in hostile environments. However, the low computational

capability and small storage budget within sensors render many popular public-key-based cryptographic systems impractical.

Symmetric key cryptography, on the other hand, is attractive due to its efficiency. Nevertheless, establishing a shared key for

communicating parties is a challenging problem. In this paper, we propose and analyze an in situ PAirwise Key bootstrapping scheme

(iPAK) for large-scale WSNs. Our theoretical analysis and simulation study demonstrate that iPAK can achieve a high key-sharing

probability between neighboring sensors and a strong resilience against node-capture attacks at the cost of low storage overhead.

Index Terms—Wireless sensor networks, in situ key establishment, key predistribution, security.
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1 INTRODUCTION

AS Wireless Sensor Networks (WSNs) approach wide-
spread deployment, security provisioning has become

a central concern. A significant problem in secure commu-
nication is the symmetric key establishment between
neighboring sensors. Building upon a solid pairwise
shared-key bootstrapping infrastructure, most security
services such as confidentiality, authenticity, and privacy
can be addressed.

There are three types of secret key construction techni-
ques: key distribution using trusted third parties (TTPs),
key agreement, and key predistribution. TTP-based
schemes rely on a trusted server or servers organized in a
hierarchical structure for key agreement between nodes (for
example, Kerberos [1]). These schemes may not be practical
for large-scale sensor networks, since the deployment of
TTP servers is either prohibited due to environmental
constraints or uneconomical because of the scalability issue.

Key agreement schemes (such as the Diffie-Hellman key
agreement [2]) set up pairwise keys through successive
message exchanges in a secure manner by using asym-
metric cryptography. Their applicability is mainly barri-
caded by the limited computation and communication
capabilities within sensor devices [3]. For example, the
MICA2 Berkeley mote has an 8-bit 7.3828-MHz Atmega
128L processor with a 4-Kbyte static RAM (SRAM) and a
128-Kbyte ROM [4].

Key predistribution schemes (KPSs), on the other hand,
have attracted much attention to the sensor network
research society due to their efficiency and simplicity. In
KPS, keys or keying materials are preloaded into sensors
before deployment. Neighboring sensors discover shared
keys after deployment through partial keying information
exchanges. A number of KPS protocols have been proposed
in the literature [5], [6], [7], [8], [9], [10].

To compensate for the unpredictability of the network
topology prior to deployment, KPS requires a large amount
of keying information to be preloaded in order to achieve a
desirable key-sharing probability between neighboring
sensors. As a side effect, part of the keying information
may never be utilized during the entire network lifetime.
Such an inefficient use of the limited memory in sensors
makes the current KPSs scale poorly to very large networks.

In this paper, we propose an in situ PAirwise Key
bootstrapping scheme, termed as iPAK, to facilitate the
shared-key establishment between neighboring sensors.
The proposed scheme aims at achieving a satisfying key-
sharing probability among sensors with low memory
overhead in large-scale sensor networks. To achieve this
goal, service sensors are introduced to assist the key
establishment procedure of normal sensors, namely, worker
sensors. Note that service sensors are considered as
sacrificers, whose major task is to distribute the keying
information to worker sensors. The keying information is
delivered through a computationally asymmetric secure
channel after deployment. Worker sensors discover shared
keys with their neighbors after obtaining credentials from
the nearby service nodes. Service sensors erase the stored
security information immediately after their duty is com-
plete to further enhance security.

The major contributions of this paper are threefold:

1. We propose iPAK, a distributed key bootstrapping
protocol for large-scale WSNs. The proposed scheme
explores the direction of in situ key computation
instead of keying information predistribution, ad-
dressing the extreme resource constraint problem
with a careful design.
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2. Theoretical analysis and plausible simulation studies
of iPAK are presented in detail, demonstrating that
iPAK can achieve a very high key-sharing prob-
ability with low storage overhead.

3. In addition, we introduce a novel analytical model
for estimating the number of multihop neighbors in
a uniform random graph. This model is exploited to
help analyze the performance of iPAK.

The remaining parts of this paper are organized as
follows: A brief overview of the related research is given in
Section 2. The assumptions and background knowledge are
presented in Section 3. We propose our in situ key
management scheme iPAK in Section 4. An Effective Radius
(ER) model is derived and evaluated in Section 5. This
model is employed for performance evaluation of iPAK in
Section 6. Finally, we conclude our paper in Section 7.

2 RELATED WORK

In this section, we summarize some of the key management
schemes for sensor networks. For a more comprehensive
literature survey, we refer the readers to [11] and the
references therein.

The pioneer work on random key predistribution for
sensor networks was proposed by Eschenauer and Gligor in
[5]. A large key pool K is computed offline and each sensor
picks k keys randomly from K without replacement before
deployment. These k keys form the key ring of a sensor.
After deployment, a sensor establishes a shared key with a
neighbor if their key rings have at least one key in common.
The security of the basic random KPS is enhanced by the
q-composite scheme in [6], in which q > 1 common keys are
required to establish a shared key. These q keys are hashed
into one key to achieve better resilience against node
capture.

Du et al. [7] are the first to apply Blom’s scheme [12] for
shared-key establishment in sensor networks. Blom’s
scheme is based on the computation of a symmetric matrix,
which provides a key space for all nodes that possess a
public share and a private share of the key space. In [7],
! key spaces instead of one key space are precomputed, and
each sensor stores the private/public shares from � key
spaces. These � key spaces are randomly selected from the
! key spaces without replacement. If two sensors share
information from one common key space, they can establish
a shared key after exchanging their public shares. This
scheme actually combines the idea of the random key
predistribution [5] with Blom’s method. It has better
resilience against node-capture attacks, with a reasonable
number of storage and communication overheads. We will
elaborate on Blom’s scheme in Section 3.

Key predistribution takes advantage of the fact that a
random graph is almost certainly connected if its average
degree is above a threshold. However, it requires each sensor
to be preloaded with a large amount of cryptographic
information in order to achieve a satisfying key-sharing
probability between neighboring sensors. Furthermore, the
probabilistic nature of key predistribution results in serious
storage wastage because much of the preloaded information
may never be used during the lifetime of the sensor.
Consequently, the scalability of key predistribution is poor,

since the amount of required security information to be
preloaded increases with the network size.

To improve the scalability, a deployment-knowledge-
based key management approach is proposed in [8]. In this
scheme, multiple deployment points are identified in a
sensor network. For each deployment point, a key space is
precomputed from a large key pool. Neighboring deploy-
ment points have a number of keys in common. In other
words, their key spaces consist of common keys. All sensors
are grouped before deployment, and each group corre-
sponds to one deployment point. Each sensor randomly
picks k keys from the key space of its group. After
deployment, sensors in a close neighborhood have a high
probability to share a common key. This scheme puts strong
requirements on deployment knowledge, but achieves
better scalability compared to those proposed in [5], [6],
and [7]. Chan and Perrig [13] propose exploiting trusted
intermediaries for shared-key establishment between
nodes. It is shown that both communication and storage
overheads scale sublinearly with respect to the number of
nodes in a network.

Liu et al. [14], [15] develop a general framework for
pairwise key establishment based on the polynomial-based
key predistribution protocol [16]. Location-aware key
establishment schemes are proposed in [17] and [18] for
better resilience against security attacks. Most recently, Ren
et al. [19] propose using a delicate key-generation technique
such that a large number of random keys can be
represented by a small number of key-generation keys.

SPINS [20] and the Lightweight Extensible Authentica-
tion Protocol (LEAP) [21] establish various keys with the
assistance of a base station. Two group-based pairwise key
establishment schemes [9], [10] have been proposed in the
Proceedings of the Fourth ACM Workshop on Wireless
Security (WiSe ’05). In these two works, sensors are divided
into horizontal and vertical groups, and each sensor resides
in exactly one horizontal and one vertical group. A pair of
sensors within the same group share a unique key, and path
keys are utilized to boost the key-sharing probability.
Compared to [8], [9] and [10] release the strong requirement
on deployment knowledge, with a trade-off of higher
communication overhead.

As pointed out in [22] and [23], the current shared-key
establishment solutions are not perfect. They still have to
struggle with the conflicts among memory limits, desired
key-sharing probability, scalability in network size, and
resilience against node compromise.

Our work is different from those mentioned above in
that it is an in situ key bootstrapping protocol. Since the
location of sensor nodes and network connectivity in a large
deployment cannot be predetermined, we choose not to
preload any key-space-related information to worker
sensors. Instead, service nodes convey security information
to worker nodes in their neighborhood after deployment.
This is a fundamental difference compared to existing
schemes ([5], [6], [7], and so forth).

The nice features of iPAK include the following: 1) iPAK
is a truly localized scheme because the keying information
is only distributed to the worker sensors in the vicinity after
deployment and, therefore, it has no limitations on the
scalability concerning the network size. 2) iPAK introduces
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a reasonable amount of storage overhead in worker sensors,
but achieves a high key-sharing probability between
neighbors. 3) Because computation-intensive operations
have been shifted to service nodes, the battery powers of
worker sensors can be conserved.

3 PRELIMINARIES

3.1 Blom’s Key Management Scheme

We adopt Blom’s key management scheme [12] for shared-
key computation. Note that iPAK works equivalently well if
the polynomial-based key space model [16] is employed.

Let G be a ð�þ 1Þ �M matrix over a finite field GF ðqÞ,
where q is a large prime.1 The connotation of M will become
clear later. G is public, with each column called a public
share. Let D be any random ð�þ 1Þ � ð�þ 1Þ symmetric
matrix. D must be kept private. D and G jointly define a key
space ðD;GÞ.

The transpose of D �G is denoted by A, that is,
A ¼ ðD �GÞT . A is private, too, with each row called a
private share. Since D is symmetric, A �G is symmetric as
well. If we let K ¼ ðkijÞ ¼ A �G, then we have kij ¼ kji,
where kij is the element at the ith row and the jth column of
matrix K, i; j ¼ 1; 2; � � � ;M. The basic idea of Blom’s scheme
is to use kij as the secret key shared by node i and node j.

The ith column ofG, a public share, and the ith row ofD, a
private share, form the ith keying pair, which will be loaded
into sensor i. Two sensors with keying pairs obtained from
the same key space compute a shared key after exchanging
their public shares. From this analysis, it is clear thatM is the
number of sensors supported by one key space.

Blom’s key-generation scheme [16] ensures the so-called
�-secure property, which means that the network should be
perfectly secure as long as no more than � keying pairs are
exposed. This requires any �þ 1 columns of G to be linearly
independent.

3.2 Rabin’s Scheme

Rabin’s scheme [26] is a public cryptosystem, which is
adopted by iPAK to establish a computationally asymmetric
secure channel between a worker sensor and a service sensor.

. Key Generation. Choose two large distinct primes p
and q such that p � q � 3 mod 4. ðp; qÞ is the private
key and n ¼ p � q is the public key.

. Encryption. Let Pl be the plain text that is
represented as an integer in Zn. Then, the cipher
text c ¼ P 2

l mod n.
. Decryption. Since p � q � 3 mod 4, we have

mp ¼ c
pþ1

4 mod p

and

mq ¼ c
qþ1

4 mod q:

By applying the extended Euclidean algorithm, yp and yq
can be computed such that yp � pþ yq � q ¼ 1.

From the Chinese remainder theorem, four square roots
þr, �r, þs, and �s can be obtained:

r ¼ ðyp � p �mq þ yq � q �mpÞ mod n; ð1Þ
� r ¼ n� r; ð2Þ
s ¼ ðyp � p �mq � yq � q �mpÞ mod n; ð3Þ

� s ¼ n� s: ð4Þ

Note that Rabin’s encryption [26] requires only one
squaring, which is several hundreds of times faster than
RSA [24]. However, its decryption time is comparable to
RSA. The security of Rabin’s scheme is based on the
factorization of large numbers; thus, it is comparable to that
of RSA, too. Since Rabin’s decryption produces three false
results in addition to the correct plain text, a prespecified
redundancy, a bit string B, is appended to the plain text
before encryption for ambiguity resolution.

3.3 Network Model and Security Assumptions

We consider a large-scale sensor network consisting of two
types of sensors, namely, worker nodes and service nodes,
randomly distributed over the deployment region. No
neighborhood information is available before deployment.
Worker sensors are in charge of normal network operations,
whereas service sensors intend to provide keying informa-
tion to facilitate shared-key computation between worker
sensors in close proximity. Since the number of service
sensors is expected to be much smaller than that of the
worker sensors, service sensors are assumed to have much
higher capability (computational power, energy, and so
forth) in order to complete the key bootstrapping procedure
before they run out of energy.

In our consideration, sensors are not tamper resistant.
The compromise or capture of a sensor releases all its
security information to the attacker. Nevertheless, a sensor
deployed in a hostile environment must be designed to
survive at least a short interval longer than the key
bootstrapping procedure when captured by an adversary;
otherwise, the whole network can be easily taken over by
the opponent [25].

There is a unique key k0 preloaded to all sensors such
that all exchanged messages are authenticated during the
bootstrapping procedure. Therefore, any node deployed by
an adversary can be excluded from key establishment as
long as k0 remains secure before the procedure is complete.
Each service node carries one key space (as explained in
Section 3.1) and two large primes p and q (as explained in
Section 3.2), computed by a supercomputer before deploy-
ment. Each key space is uniquely identified by an ID. All
sensors remove their stored keying information (k0 and/or
the key space) at the end of the key bootstrapping
procedure.

4 iPAK SCHEME

In this section, we elaborate iPAK, an in situ key boot-
strapping scheme for large-scale sensor networks. This
scheme contains three phases: the preloading of the key
space information to each service node, the keying pair
acquisition between worker sensors and service sensors,
and the computation of a shared key between two
neighboring worker sensors. A secure channel is utilized
for a worker sensor to obtain keying information from a
service sensor in the vicinity.
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4.1 Key Space Preloading Phase

During the predeployment phase, each service node pre-
loads with a key space ðD;GÞ, as defined in Blom’s scheme
[12], an integer n, and two large primes p and q such that
n ¼ p� q (see Section 3). Keying shares from the key space
are to be disseminated to the worker sensors in the vicinity
after deployment through a computationally asymmetric
channel protected by p and q based on Rabin’s public
cryptosystem [26].

Note that the adoption of Blom’s scheme [12] in iPAK is
mainly motivated by its �-collusion property. To break a key
space in Blom’s scheme, at least �þ 1 worker sensors
associated with the same service sensor must be captured.
This makes a successful attack much harder. If random keys
(for example, a key ring) instead of keying information, as
defined in Blom’s scheme, are disseminated from a service
sensor to a worker sensor, then the decryption of such a
message releases all the keys assigned to the worker sensor.

4.2 Keying Pair Acquisition Phase

The applicability of iPAK relies on the availability of a
secure channel between a worker sensor and the corre-
sponding service sensor because the keying pair of each
worker sensor needs to be transferred securely. In this
section, we propose a public-key-assisted key exchange
protocol to establish a secret key Ks between a worker
sensor and a service sensor. Since worker sensors are
supposed to operate for years, whereas service nodes can
die after their duty is complete, cryptographic algorithms
that shift a large amount of the computation overhead to the
service node are preferred. Based on this consideration,
iPAK adopts Rabin’s public cryptosystem [26].

4.2.1 Secure-Session Establishment

Based on Rabin’s scheme [26], described in Section 3.2, we
propose the following secure-session establishment proto-
col between a worker sensor and a service sensor:

. Each service sensor broadcasts n, announcing its
existence to worker sensors within one T0-hop away
(called forwarding bound). Note that the hop count T0

is a design parameter that greatly affects the
performance of the scheme in terms of key sharing
probability and storage overhead.

. After receiving an announcement from a service
node I, a worker sensor picks Ks and computes
EnðKskBÞ ¼ ðKskBÞ2 mod n, where B is a prede-
fined bit pattern to resolve the ambiguity in Rabin’s
decryption [26] and transmits EnðKskBÞkB to I.
Note that B is transmitted as plain text. Ks is the
shared key between the worker sensor and the
service sensor I.

. Upon receiving the EnðKskBÞkB from a worker
sensor, the service sensor computes Dðp;qÞðEnðKskBÞÞ
based on Rabin’s decryption algorithm [26].

Note that, in this protocol, each worker sensor executes
one Rabin’s encryption [26] for each service sensor from
which an existence announcement is received, whereas the
computationally intensive decryption of Rabin’s system is
performed only at service sensors. This can conserve the
energy of worker sensors to extend the operation time of the

network. Also, note that, even though it is computationally
favorable to adopt a simple scheme such as computing a
secret key by XORing k0 (Section 3.3) and service node ids to
secure the disseminated keyshare, we believe that this
method is not strong enough in a harsh environment.
However, the security of Rabin’s scheme [26] is comparable
to that of RSA [24], since both rely on the hardness of
factoring large primes.

4.2.2 Keying Pair Acquisition

The secure channel established based on Rabin’s public
cryptosystem (Section 4.2.1) is employed for keying pair
acquisition:

. Each worker sensor sends a request to the service
sensor, asking for a keying pair containing a public
share and a private share. This message is optional,
since a service node can treat the message containing
Ks from the worker sensor as a request.

. Upon receiving a request from sensor i, the service
sensor selects an unused keying pair and transmits it
to i together with the key space id. This message
must be encrypted by Ks.

Keying pair acquisition can be further secured with the
introduction of nonces to avoid replay attacks.

4.3 Shared-Key Discovery Phase

After obtaining keying pairs from service sensors in the
vicinity, each worker sensor broadcasts the tuple < key
space id; public share > for each key space once.2 Two
neighboring sensors are able to compute a shared key
based on Blom’s scheme [12] if they have acquired keying
information from at least one common service node.
Blom’s �-secure key management scheme [12] has been
well tailored for lightweight sensor networks in [7].

5 THE ER MODEL

To study the performance of iPAK, we need the ER model
presented in this section to identify the expected number of
t-hop neighbors3 that a sensor may have in a randomly
distributed network, where t ¼ 1; 2; � � � . Note that this is a
nontrivial problem due to the randomness of the node
positions.

5.1 Model Derivation

We assume that there are N nodes randomly distributed in
the deployment region with an area of A. Furthermore, we
assume that all the nodes have the same radio transmission
range R. Thus, an arbitrary node u can cover d1 ¼ �R2 N

A � 1
nodes within one hop on the average. Now, how do we
derive dt, where t ¼ 2; 3; � � � , that is, the expected number of
t-hop neighbors (in the shortest path) that an arbitrary node
may have? In the following, we will introduce our
ER model to recursively compute these values.

In the first place, we consider the case of t ¼ 2. Let v be
another arbitrary node whose euclidean distance to u is
denoted by r. If r � R, then v is a one-hop neighbor of u. On

MA ET AL.: IPAK: AN IN SITU PAIRWISE KEY BOOTSTRAPPING SCHEME FOR WIRELESS SENSOR NETWORKS 1177

2. The broadcastings for all associated key spaces can be combined into a
larger message.

3. In the shortest path.



the other hand, if r > 2R, then v cannot be reached by u via
two hops. Therefore, v is a two-hop neighbor of u if and
only if 1) R < r � 2R and 2) u and v share at least one
immediate neighbor.4

Let E1 be the event that the distance r 2 ðR; 2R� and E2

be the event that u and v have at least one common
immediate neighbor. Let Ao

1 be the overlapping area of u
and v, as shown in Fig. 1a. We have

Pr½E2jE1� ¼ 1� 1� Ao
1

�R2

� �d1

; ð5Þ

where Ao
1 is defined as

Ao
1 ¼ 2R2 arccos

r

2R

� �
� r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 � r2
p

: ð6Þ

Based on (5), the expected value of Pr½E2jE1� throughout
the annulus region from R to 2R (see Fig. 1a), denoted by
Pa

2 , can be represented by

Pa
2 ¼

R 2�
0 d�

R 2R
R 1� 1� Ao

1

�R2

� �d1

� �
rdr

�ðð2RÞ2 �R2Þ
: ð7Þ

As a result, the number of u’s two-hop neighbors, denoted
by d2, is given as follows:

d2 ¼ ð3�R2ÞN
A
Pa

2 : ð8Þ

Directly computing the exact number of t-hop neighbors
is a difficult problem when t is greater than 2. Therefore, we
introduce the ER model to facilitate this computation. Let
Dt be the expected number of neighbors that are at most
one t-hop away. In our ER model, the ER of the t-hop
coverage of a node u is defined as the radius of a virtual
disk centered at u, which can cover Dt number of nodes.

For example, Fig. 1b depicts the ER for the case of two
hops. In this figure, the virtual disk centered at u, with a
radius of Re

2, covers d1 þ d2 number of nodes in total.
These covered nodes include all the one-hop neighbors
(labeled with plus signs), a number of two-hop neighbors
(labeled with dots), and a few other nodes (labeled with
star signs). Note that the number of two-hop neighbors
that fall out of the virtual disk equals the number of
nodes that cannot be reached from u within two hops,
but fall into this virtual disk.

Accordingly, the ER Re
2 for the two-hop case can be

calculated as follows:

�ðRe
2Þ

2 N

A
¼ d1 þ d2 þ 1: ð9Þ

By plugging in d1 ¼ �R2 N
A � 1 and (8) into (9), we obtain

Re
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 3R2Pa

2

q
: ð10Þ

Now, we are ready to derive the number of three-hop

neighbors for u. In our ER model, v’s transmission range

remains to be R, whereas u’s transmission range is set to be

Re
2. In other words, the virtual disk with a radiusRe

2 centered

at u represents u’s two-hop coverage. In this case, v is a three-

hop neighbor of u if and only if 1)Re
2 < r � Re

2 þR and 2) u’s

two-hop virtual disk covers at least one of v’s immediate

neighbors, where r is the euclidean distance between u and v.
With a similar analysis, we obtain Pa

3 , the probability that

v is a three-hop neighbor of u, given Re
2 < r � Re

2 þR:

Pa
3 ¼

R 2�
0 d�

R ðRe
2þRÞ

Re
2

1� 1� Ao
2

�R2

� �d1

� �
rdr

�ððRe
2 þRÞ

2 � ðRe
2Þ

2Þ
; ð11Þ

where Ao
2, the overlapping area covered by both u and v, as

shown in Fig. 2a, is regulated by

Ao
2 ¼ R2 arccos

r2 þR2 � ðRe
2Þ

2

2rR

 !

þ ðRe
2Þ

2 arccos
r2 þ ðRe

2Þ
2 �R2

2rRe
2

 !

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2ðRe

2Þ
2 � ðr2 �R2 þ ðRe

2Þ
2Þ2

q
:

ð12Þ

Thus, the number of u’s three-hop neighbors can be

approximated by

d3 ¼ �ððRe
2 þRÞ

2 � ðRe
2Þ

2ÞN
A
Pa

3 : ð13Þ

Furthermore, the effective radius for three hops is

Re
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe

2Þ
2 þ ððRe

2 þRÞ
2 � ðRe

2Þ
2ÞPa

3

q
: ð14Þ

By recursively applying this procedure, we get the

probability Pa
t of v being u’s t-hop neighbor, the expected
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effective two-hop radius Re
2 of u.

Fig. 2. ER for t-hop neighbors. (a) v is a three-hop neighbor of u. (b) v is

a t-hop neighbor of u.



number of u’s t-hop neighbors dt, and the equivalent radius

Re
t as follows:

Pa
t ¼

R 2�
0 d�

R ðRe
t�1þRÞ

Re
t�1

1� 1� Ao
t�1

�R2

� �d1

� �
rdr

�ððRe
t�1 þRÞ

2 � ðRe
t�1Þ

2Þ
; ð15Þ

dt ¼ �ððRe
t�1 þRÞ

2 � ðRe
t�1Þ

2ÞN
A
Pa
t ; ð16Þ

Re
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe

t�1Þ
2 þ ððRe

t�1 þRÞ
2 � ðRe

t�1Þ
2ÞPa

t

q
: ð17Þ

Our ER model will be validated through a simulation

study in Section 5.2.

5.2 Evaluation of the ER Model

5.2.1 Validation Settings

. There are 6,400 nodes randomly distributed in a field
with a length and width of 80� 80. Therefore, the
node density � ¼ 1; that is, there is one node in a
unit square on the average.

. By varying the transmission range R from 1.0 to 4.5,
with a step of 0.5, we achieve the average node
degree (the number of immediate neighbors) of 2.1,
6.1, 11.5, 18.6, 27.2, 37.5, 49.3, and 62.6, respectively.

. The results are averaged over 1,000 runs.

5.2.2 Validation Results

The results are reported in Fig. 3. Based on this study, we

draw the following conclusions:

. The ER model does not give accurate results when
the node degree is below a certain threshold, as
shown in Fig. 3a. As a matter of fact, when the node
degree is less than 6, the whole network tends to

become disconnected in simulation, which is con-
sistent with [27].

. The results of the ER model approach those of the
simulation when the node degree becomes greater,
as illustrated in Figs. 3b, 3c, 3d, 3e, 3f, 3g, and 3h.

. The higher the node degree, the more accurate the
ER model. When the transmission range R � 3:0, as
shown in Figs. 3e, 3f, 3g, and 3h, the difference of the
results obtained from the ER model and those of the
simulation is less than 7 percent. In the best case, as
shown in Fig. 3h, the maximum difference between
the results of the simulation and the analysis is less
than 3.5 percent.

. The ER model is accurate and suitable for sensor
networks that are densely deployed.

6 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of iPAK in
terms of storage requirement, key sharing probability
between neighboring sensors, resilience against node-
capture attacks, and computation and communication
overheads. We will conduct both theoretical analysis and
simulation studies. This evaluation approach is consistent
with the previous work in [5], [6], [7], and so forth. In the
following sections, we describe our simulation settings.

6.1 Settings

. There are Nw worker sensors. In the simulation, Nw

is set to be 1,000.
. The number of service sensors, denoted as Ns, is

determined by � 	Nw=�, where � is a parameter to
compensate for the nonuniformity of the deploy-
ment. In ideal cases, when the deployment of worker
sensors is a perfect uniform, � ¼ 1:0 suffices to
ensure that a service node serves � worker nodes. In
our simulation, � is set to 1.0, 1.5, 2.0, 2.5, and 3.0.
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Fig. 3. Analytical results versus simulation results. (a) R ¼ 1:0, d1 ¼ 2:1. (b) R ¼ 1:5, d1 ¼ 6:1. (c) R ¼ 2:0, d1 ¼ 11:5. (d) R ¼ 2:5, d1 ¼ 18:6.

(e) R ¼ 3:0, d1 ¼ 27:2. (f) R ¼ 3:5, d1 ¼ 37:5. (g) R ¼ 4:0, d1 ¼ 49:3. (h) R ¼ 4:5, d1 ¼ 62:6.



. All service and worker sensors are randomly and
independently deployed over an area of A, where A
is set to be either 10� 10 or 15� 15, mimicking a
high-density network and a medium-density net-
work, respectively. The corresponding average node
degrees are 31 and 13.

. The transmission range of all service and worker
sensors is set to be 1 unit.

. The security parameter � is set to be either 50 or 100
to be consistent with those in [7] and [14].

. The forwarding bound T0 can be 1, 2, or 3.

. All simulation results are obtained by averaging
over 100 runs.

6.2 Storage Requirements

The average number of keying pairs stored in a single
worker sensor, denoted as � , depends on the node degree,
the forwarding bound T0, and �.

Let Si be an arbitrary service node, where i ¼ 1; 2; � � � ; Ns.
By applying the ER model derived in Section 5, we can
easily compute dt, the expected number of t-hop sensors
covered by Si. Fig. 4 reports the results of dt for t ¼ 1, 2, 3,
and 4. Therefore, Si will distribute the keying information toPT0

t¼1 dt nodes in total on the average. We have

� ¼ Ns

Nw

XT0

t¼1

dt ¼
�

�

XT0

t¼1

dt: ð18Þ

Fig. 5 illustrates the relationship of � versus� for a different
forwarding boundT0. It can be easily observed that � grows as
T0 grows because a worker sensor can detect more service
nodes for keying pair acquisition. For the same reason, �
increases as � increases. Furthermore, the higher the node
degree, the higher the � value because more worker nodes can
be covered by a service node on the average.

In Blom’s key space model [12], a keying pair takes 2 	
ð�þ 1Þ units of memory, since its private share is a row of
D, and its public share is a column of G, where ðD;GÞ is a
�-secure key space. Therefore, each worker sensor needs
m ¼ �ð2ð�þ 1ÞÞ units of memory on average to store the
keying information.

6.3 Keysharing Probability

In this section, we study the key-sharing probability
between two neighboring sensors.

Let E0 be the event that two worker sensors, say, u and v,
are immediate neighbors. If u gets a keying pair from a
service node Si, then we say that u is associated with Si. If
both u and v are associated with Si, then one of the
following cases must happen:

. Case E1. u is a t-hop neighbor of Si, where
t ¼ 1; 2; 3; � � � ; ðT0 � 1Þ, and v is a t-hop neighbor (in
the region At in Fig. 6) or a ðtþ 1Þ-hop neighbor (in
the region Atþ1 in Fig. 6) of Si.

. Case E2. Both u and v are the T0-hop neighbors of Si.

Therefore, the probability Psi that both u and v are
associated with the service node Si can be expressed as

Psi ¼ Pr½E1jE0� þ Pr½E2jE0�: ð19Þ

According to the ER model proposed in Section 5.1, the
probability thatu is a t-hop neighbor ofSi is dt

Nw
, where dt is the

expected number of t-hop neighbors of Si. Let pAt
be the

probability that v falls into the region At. We have

Pr½E1jE0� ¼
XT0�1

t¼1

dt
Nw

pAt
þ pAtþ1

� �� �
; ð20Þ

where pAt
can be computed based on the region At.

Similarly, we obtain

Pr½E2jE0� ¼
dT0

Nw
pAT0

: ð21Þ

Therefore, the key-sharing probability between neighbor-
ing worker sensors, denoted by Plocal, can be regulated by

Plocal ¼ 1� ð1� PsiÞ
Ns : ð22Þ
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Fig. 4. dt versus t when the node degree is 13 or 31.

Fig. 5. Average storage � at worker sensors: � ¼ �	Ns

Nw
.

Fig. 6. Case E1.



Fig. 7 demonstrates the relationship between Plocal and �
under a different forwarding bound T0. Similar to the case
of storage overhead, increasing T0 or � improves Plocal
because of the availability of a larger number of service
sensors from which a worker node requests a keying pair.
Moreover, a higher node degree leads to a higher Plocal
because more neighbors are associated with the same
service node.

By combining the analytical results in Section 6.2 with
this study, we obtain the relationship between Plocal and � in
iPAK. As reported in Fig. 8, a worker node can establish
pairwise keys with over 90 percent of its immediate
neighbors if it is associated with about two service nodes
on average. If it is associated with a little more than one
service node, then Plocal approaches 70 percent. If a worker
node is associated with more than five service nodes, then it
can securely communicate with almost all its neighbors.

iPAK is superior compared with the two random key
spaces schemes [7], [14], the two most related works in
which a sensor is preloaded with keyshares from � key
spaces randomly selected from a key space pool of size !.
Since each service node in iPAK contains a key space, Ns in
iPAK is equivalent to the ! in [7] and [14]. In our
comparison study, the tuple of ð!; �Þ for the random key
spaces schemes [7], [14] is set to be (10, 1), (20, 2), (30, 3), (40,
4), (50, 5), or (60, 6), whereas the ðNs; �Þ pair for iPAK is set
to be (10, 1.1), (20, 2.2), (30, 3.2), (40, 4.3), (50, 5.4), or (60,
6.5). Fig. 8 manifests that the random key spaces schemes
[7], [14] require the preloading of six keying pairs in order
to achieve a 50 percent key-sharing probability between
neighbors.

This difference is attributed to the fact that the keying
pairs from a single service node are distributed to the
vicinity of the service node in iPAK, whereas in [7] and [14],
they may reside in any sensor at any location. Note that

Plocal in iPAK is solely determined by the triplet ðT0; d1; �Þ,
which has nothing to do with the network size Nw.
Therefore, our scheme scales well to large sensor networks.
On the other hand, ! and � in the two random key spaces
schemes [7], [14] must grow with the network size for better
resilience and key-sharing probability.

6.4 Resilience against Node-Capture Attacks

In this section, we study the resilience of iPAK against
node-capture attacks. In our security model, a captured
node releases all stored information. Let Nc denote the
number of sensors that have been captured. Since Blom’s
key space [12] is �-secure, Nc has to be at least �þ 1 in order
for one key space to be broken.

We consider two types of attacks:

. Oblivious attack. The compromised nodes are
independently and randomly selected from the
entire deployment region.

. Smart attack. All compromised nodes reside in a
circular region Ac, with a radius

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=ð� 	Nw=AÞ

p
:

The center of Ac is randomly selected from the
deployment region A.5

Let P1�kc be the probability that an arbitrary key space is
compromised. In other words, P1�kc is the probability that
at least �þ 1 compromised worker sensors are associated
with the same service sensor, say, Sa. Let pa�kc denote the
probability that a compromised worker node carries
security information from Sa. We have

P1�kc ¼
XNc

j¼�þ1

Nc

j

� �
pja�kcð1� pa�kcÞ

Nc�j: ð23Þ

Therefore, the probability of at least one key space being
compromised, denoted as Pkc, can be expressed as

Pkc ¼ 1� ð1� P1�kcÞNs: ð24Þ

Next, we will study pa�kc for each case.

Oblivious attack. From the ER model derived in

Section 6.2, Sa provides keying pairs to
PT0

t¼1 dt number of

worker sensors on average. Thus, we have pa�kc ¼
PT0

t¼1
dt

Nw
.
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Fig. 7. Keysharing probability Plocal : � ¼ � 	Ns=Nw.

Fig. 8. Plocal versus � .
5. If Ac is not an ideal disk due to the boundary effect, we increase Rc

until Nc is reached.



Smart attack. For simplicity, we assume that the service
sensor Sa is located at (0, 0). Based on the ER model, Sa can
cover a circular region, denoted as Ae

a (see Fig. 9), with an
ER Re

T0
. Assume that the center of the compromised area is

located at ðr; �Þ.
If the overlapping region of Ae

a and Ac, denoted as Ao in

Fig. 9, contains more than �þ 1 worker nodes, then the key

space Sa will be compromised. In other words, the area ofAo

should be at least ð�þ1Þ	A
Nw

. Therefore, pa�kc is regulated by

pa�kc ¼
1; if Ao � ð�þ1Þ	A

Nw

0; if 0 < Ao <
ð�þ1Þ	A
Nw

:

(
ð25Þ

In this study, we fix � ¼ 50. Note that similar results can
be obtained for the case of � ¼ 100. Based on Fig. 4, we
choose T0 ¼ 3 when the node degree is 13 and T0 ¼ 2 when
the node degree is 31 such that, in general, a service node
covers more than �þ 1 worker sensors.

Fig. 10 shows the results when node-capture attacks are
launched. It is clear that Pkc increases with Nc for both
oblivious attacks and smart attacks. Furthermore, the values
of Pkc obtained from the simulation are closer to those of
analysis under a higher node degree. This is because, the
denser the network, the less the boundary effects. Besides,
analytical results are higher compared to the simulation
results in general because each run of our simulation
randomly selects the center of Ac in the deployment region,
whereas our theoretic analysis assumes Ac to be an ideal
disk in any case.

For oblivious attacks, we observe that it is possible to
break one key space with about 300 sensors captured. For
smart attacks, on the other hand, compromising 300 sensors
can almost certainly break at least one key space, as

reported in Figs. 10c and 10d. Actually, when the number
of compromised sensors reaches �þ 1 ¼ 51, Pkc becomes
nonnegligible, indicating that a smart attacker can relatively
easily break a key space with less effort. There is a dramatic
mismatch of Pkc between the simulation and the analysis
when Nc is 51. The smaller value of Pkc obtained from the
simulation results arises from the fact that a number of
service sensors close to the boundary provide keying
information to less than � number of worker sensors and,
therefore, they can never be broken no matter how many
worker sensors are captured.

In addition, Pkc in the simulation is higher than that in
the analysis when Nc � 100, as shown in Fig. 10c. This is
caused by the fact that, when Ac is not an ideal disk, we
increase Rc in order to capture Nc. In our theoretical
analysis, however, Ac is always an ideal disk covering
exactly Nc nodes.

6.5 Computation Overhead

The computation overhead of an arbitrary worker sensor
mainly comes from two parts:

. Secure-channel establishment. In order to set up
the secure channel with a service sensor, a worker
sensor needs to perform Rabin’s encryption once,
which requires one modular multiplication (squar-
ing) [26]. This computation occurs exactly once for
each piece of keying information. As indicated in
Section 6.2, each worker node obtains � keying pairs
on average. Therefore, the computation overhead for
secure-channel establishment involves � modular
multiplications for each worker sensor.

. Shared-key computation. The computation of a

shared key based on Blom’s key space model [12]

requires �þ 1 modular multiplications. To achieve a

perfect local connectivity ðPlocal ¼ 1Þ, each worker

sensor needs to conduct ð�þ 1Þ 	 d1 modular multi-

plications, where d1 is the total number of one-hop

neighbors.

Due to the fact that � is usually small in our scheme, the
dominant computation overhead lies in the shared-key
calculation. Therefore, the computation overhead of our
scheme is similar to that of [7]. Since service nodes are
sacrificers, their computation overhead is not considered.

6.6 Communication Overhead

The communication overhead of a worker sensor also arises
from two sources: the secret-key exchange and the shared-
key discovery. Note that the communication overheads of
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Fig. 9. The Nc captured nodes reside in the region Ac. Those nodes that

fall into the overlapping region Ao obtain keying information from the

service node Sa.

Fig. 10. Resilience against node-capture attacks. (a) and (b) Oblivious attacks. (c) and (d) Smart attacks.



the service sensors are not considered because they are
sacrificers. In the following, we derive the average commu-
nication overhead of an arbitrary worker sensor:

. Secret-key exchange. A worker sensor is required to
relay the existence announcements of nearby service
sensors. Since an announcement is broadcast to
T0 hops, each worker sensor relays ð

PT0�1
t¼1 dtÞ Ns

Nw

messages on average. Assume that this procedure
computes a route between a worker sensor and the
corresponding service sensor that it is associated
with via a protocol similar to the route discovery in
Ad Hoc On-Demand Distance Vector Routing
(AODV) [28] or Dynamic Source Routing (DSR)
[29]. This route is employed for secure-channel
establishment and keying information acquisition.

Therefore, each message from a t-hop worker

sensor needs to be broadcasted t times before reaching

the target service node. Thus, the communication

overhead of secure-channel establishment for each

worker sensor is estimated by ð
PT0

t¼1 dt � tÞ Ns

Nw
. With a

similar justification, each worker sensors needs to

relay ð
PT0

t¼1 dt � ðt� 1ÞÞ Ns

Nw
messages on average for

keying information acquisition.
. Shared-key discovery. Since each worker sensor

broadcasts the tuple < key space id; public share >
once for each key space that it is associated with, the
average communication overhead is approximated
by � . Note that no path key is sought, since iPAK
achieves a satisfying key-sharing probability al-
ready. This is another dramatic improvement
compared to the two random spaces schemes in [7]
and [14].

7 CONCLUSIONS

The design of iPAK targets large-scale WSNs with
constrained resources (battery, memory, CPU, and so forth).
In iPAK, worker sensors bear no key space information
before deployment. They acquire keying pairs from service
sensors in the neighborhood after deployment. To the best
of our knowledge, this is the first localized key boot-
strapping algorithm for shared-key establishment. The “in
situ” property of iPAK significantly improves its scalability
and greatly reduces the storage overhead of worker sensors.
Furthermore, the probability of key-sharing in iPAK is
much higher compared to those in [7] and [14] under the
same storage constraint. Moreover, the introduction of the
computationally asymmetric channel shifts the heavy
computation overhead of Rabin’s decryption [26] to service
sensors, conserving the resources of worker sensors. iPAK
is more favorable when high-power service nodes are
available in a heterogeneous sensor network.
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