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Abstract—In this paper, we present a silent positioning scheme
termed UPS for underwater acoustic sensor networks. UPS relies
on the time difference of arrivals locally measured at a sensor to
detect range differences from the sensor to four anchor nodes.
These range differences are averaged over multiple beacon inter-
vals before they are combined to estimate the 3-D sensor location
through trilateration. UPS requires no time synchronization and
provides location privacy at underwater vehicles/sensors whose
locations need to be determined. To study the performance of
UPS, we model the underwater acoustic channel as a modified
ultrawideband Saleh–Valenzuela model: The arrival of each path
cluster and the paths within each cluster follow double Poisson
distributions, and the multipath channel gain follows a Rician
distribution. Based on this channel model, we perform both the-
oretical analysis and simulation study on the position error of
UPS under acoustic fading channels. The obtained results indicate
that UPS is an effective scheme for underwater vehicle/sensor
self-positioning.

Index Terms—Localization, navigation, UnderWater Acoustic
Sensor Networks (UWA-SNs), underwater Global Positioning
System (GPS), underwater positioning, ultrawideband (UWB)
Saleh–Valenzuela (S-V) model.

I. INTRODUCTION

UNDERWATER Acoustic Sensor Networks (UWA-SNs)
consist of a variable number of sensors and vehicles (the

unmanned underwater vehicle (UUV), the autonomous under-
water vehicle (AUV), etc.) to perform collaborative monitoring
tasks over a given area. The main motivation for UWA-SNs is
their relative ease of deployment since they eliminate the need
for cables, and they do not interfere with shipping activities.
UWA-SNs are envisioned to enable applications for environ-
mental monitoring of physical and chemical/biological indica-
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tors, tactical surveillance, disaster prevention, undersea explo-
ration, assisted navigation, etc.

Location discovery for underwater vehicles/sensors is non-
trivial in the oceanic medium. Propagation delays, motion-
induced Doppler shift, phase and amplitude fluctuations,
multipath interference, etc. are all significant factors in loca-
tion measurement. The well-known Global Positioning System
(GPS) receivers, which may be used in terrestrial systems
to accurately estimate the geographical locations of sensor
nodes, do not work properly underwater [7]. Some localization
schemes based on received signal strength (RSS), time of arrival
(ToA), or angle of arrival (AoA) could be used. Nevertheless,
the bandwidth constraint, sensor mobility, and unpredicted
variation in channel behavior make many of these approaches
inaccurate or unapplicable [15]. For example, the Doppler
shift introduced by mobility affects the AoA algorithm, and
the underwater power loss model (depending on distance and
frequency) makes the RSS-based estimation results ambiguous.
Moreover, the accuracy of the localization relates to the band-
width of the signal and the signal-to-noise ratio at the receiver
[5, p. 429]. The lower limit for σ2 estimation in the presence
of additive white Gaussian noise is given by the Cramer–Rao
lower bound, i.e., σ2 = (N0/2

∫ +∞
−∞ (2πf)2|p(f)|2df), which

indicates that σ2 is inversely proportional to the bandwidth. Un-
fortunately, the bandwidth of UWA-SNs is significantly limited,
which theoretically demonstrates that acoustic positioning in
UWA-SNs is very challenging.

Intuitively, ToA- or time difference of arrival (TDoA)-based
localization should be preferable. Nevertheless, ToA or TDoA
approaches require time synchronization if one-way sound
flying time is counted on; otherwise, a ping-pong-style round-
trip propagation delay needs to be measured. In UWA-SNs,
precise time synchronization is hard to achieve due to the char-
acteristics of sound when traveling in water [29]. In addition,
the low bandwidth of acoustic signals is shared by navigation
and data communication in UWA-SNs [26]; therefore, the ping-
pong-style alternative may significantly decrease the network
throughput. For the same reason, schemes requiring a large
number of anchor nodes whose locations are known a priori
are prohibitive to UWA-SN. In this paper, we propose UPS,
which is a ToA-based silent underwater positioning scheme,
to carefully address the concerns and challenges previously
mentioned.

The major contribution of this paper lies in three aspects:
First, we propose UPS, i.e., a silent positioning scheme for
UWA-SNs, and demonstrate our algorithm by simulation.

0018-9545/$25.00 © 2008 IEEE
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Second, we investigate the propagation delay and multipath
channel. We found that, in acoustic underwater networks with
large propagation delays, a multipath channel can be modeled
as a modified ultrawideband (UWB) Saleh–Valenzuela (S-V)
model: The arrival of each cluster and the paths within each
cluster follow double Poisson distributions, and the multipath
channel gain follows a Rician distribution. Third, we analyze
the theoretical performance of our scheme in propulsion noise
environments and identify the possible sources of errors with
measures to help mitigate them. Compared to existing schemes
proposed in the context of UWA-SNs, UPS has five character-
istics and advantages.

1) UPS utilizes very few anchor nodes (four anchors in our
study) and requires no special hardware to provide 3-D
localization.

2) UPS requires no time synchronization. All time differ-
ences are computed from the measurements by a local
timer.

3) UPS provides silent positioning. Underwater vehicles and
sensors do not actively transmit any beacon signal. They
just passively listen to the broadcasts of the anchor nodes
for self-positioning.

4) UPS has low computation overhead. It is based on simple
algebraic operations on scalar values.

5) As evidenced by our simulation study, UPS has low
position error. It is applicable to both localization and
navigation in UWA-SNs.

The silent positioning feature of UPS deserves further em-
phasis. First, it can significantly conserve bandwidth and, there-
fore, improve network throughput since sensors/vehicles do not
transmit any beacon for positioning purpose. This is particularly
true when a large number of vehicles and sensors need to be
positioned in a UWA-SN. Second, UPS is applicable to asym-
metric UWA-SNs where the transmission from an underwater
vehicle or sensor could not reach four or more anchor nodes.
Third, silent positioning provides strong location privacy, which
can help protect sensors/vehicles from being detected in critical
applications.

This paper is organized as follows: Section II summarizes the
major related works in UWA-SNs. Section III proposes UPS,
i.e., a silent underwater positioning scheme for UWA-SN. Un-
derwater acoustic channel modeling and theoretic performance
analysis are given in Section IV. Simulation results are reported
in Section V. We conclude our paper and report our future
research in Section VI.

II. RELATED WORK

Sensor self-positioning has been extensively studied for typ-
ical indoor and outdoor sensor networks [16], [20]. In this sec-
tion, we briefly overview the localization techniques proposed
in UWA-SNs. For a more detailed literature survey, see [15] and
the references therein.

Underwater acoustic localization can be broadly classified
into two categories: 1) range-based and 2) range-free. Range-
based schemes first measure or estimate distances or angles
to a small number of anchor nodes via ToA, RSS, AoA,
or even network connectivity and then apply triangulation or

multilateration to transform ranges into coordinates. Range-free
schemes explore the local topology, and the position estimate
is derived from the locations of the surrounding anchor nodes.
Generally speaking, range-based schemes have higher position
accuracy, whereas range-free schemes provide coarser location
estimation.

An area-based range-free underwater positioning (area local-
ization scheme, ALS) is proposed in [14]. ALS relies on the
variable power levels of anchor nodes to partition the plan into
areas. Each anchor node has its own nonoverlapping partition.
A vehicle/sensor receives its position estimate from a central
server after providing all the areas (one for each anchor node)
where it resides. UPS is a range-based scheme with much
higher position accuracy.

Range-based underwater localization requires either long-
range or short-range anchors. Since a short-range beacon covers
a smaller space, a larger number of anchor nodes are in-
volved; therefore, it is unfavorable in underwater environment.
Motivated by terrestrial GPS, underwater GPS, such as GPS
intelligent buoys (GIBs) [9] and PARADIGM [8], has been pro-
posed. Even though PARADIGM is able to compute location
onboard, GIB relies on a centralized server to compute location
for underwater vehicles/sensors. These two methods require
time synchronization for ToA measurement between anchor
nodes and underwater vehicles/sensors. Hahn and Rice [18]
propose a ping-pong-style scheme to measure the round-trip
delay for range estimation. All these long-range-based methods
require underwater vehicles/sensors to interrogate with multiple
surface buoys, which contributes to network throughput degra-
dation compared to UPS’s silent positioning.

If there is no direct communication between anchor nodes
and sensors, network connectivity can be explored for range
estimation. In [25], three range detection methods based
on network connectivity have been proposed: 1) DV-hop;
2) DV-distance; and 3) Euclidean. A comparison study in [25]
indicates that Euclidean performs best in anisotropic topologies
with a tradeoff of larger computation and communication over-
heads. Zhou et al. [32] have extended the Euclidean method to
3-D UWA-SN and studied its performance. This method relies
on a relatively larger number of anchor nodes, which results in
higher deployment cost. Zhang and Cheng [31] propose UR-
PLACE, i.e., a protocol for underwater robot self-positioning
that exploits the multihop connectivity to anchor nodes via
beacon flooding. The extensive local communication in [32]
and the global flooding in [31] worsen the bandwidth shortage
problem in UWA-SN, which unavoidably degrades the network
throughput. As a comparison, our UPS requires no active
transmission from underwater vehicles/sensors.

III. UPS: AN UNDERWATER POSITIONING SCHEME

In this section, we propose UPS, i.e., a silent acoustic posi-
tioning scheme for underwater vehicle/sensor localization. UPS
is motivated by our previous work presented for 2-D terrestrial
sensor networks [16], [22], [30], which rely on the ToA of
RF signals from three anchor nodes for location estimation.
The propagation characteristics of RF signals in free space and
those of acoustic signals underwater are significantly different,
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Fig. 1. Sensor S will measure the arrival times of beacon signals from anchor
nodes A, B, C, and D locally. S will also receive the turn-around delay
information from B, C, and D. B’s transmission will start after it receives A’s
beacon signal. C’s transmission will start after it receives the beacon signals of
both A and B. In addition, D’s transmission will start after it receives the beacon
signals of A, B, and C. This procedure will be repeated once every T seconds.

which fundamentally affect the performance of any position
algorithm.

UPS consists of two steps: The first step detects the differ-
ences of signal arrival times from four anchor nodes. These
time differences are transformed into range differences from the
underwater vehicle/sensor to the anchor nodes. In the second
step, trilateration is performed to transform these range esti-
mates into coordinates. In the following, we first discuss the
network model under our consideration.

A. Network Model

We assume that a UWA-SN consists of mobile underwater
vehicles (e.g., UUVs or AUVs) and stationary sensors. UUVs
and AUVs move about at a typical speed of about 2 m [26]
within a confined space, which also covers all nonmobile
sensors. To ease our elaboration, hereinafter, we use “sensor” to
denote both a mobile vehicle or a stationary sensor. There exist
at least four noncospace anchor nodes with long-range beacons,
whose locations are known a priori. Each of them is equipped
with an acoustic transmitter that can cover the whole activity
space. No three anchors are collinear. An example layout of
anchor nodes is illustrated in Fig. 1.

B. Time-Based Location Detection Scheme

Given the locations (xa, ya, za), (xb, yb, zb), (xc, yc, zc), and
(xd, yd, zd) of anchor nodes A, B, C, and D, respectively, we are
going to determine the location (x, y, z) of sensor S, as shown
in Fig. 1. Let dij be the distance between i and j, where i, j ∈
{a, b, c, d, s}, representing the four anchor nodes and sensor S.
We have

dab =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

dac =
√

(xa − xc)2 + (ya − yc)2 + (za − zc)2

dad =
√

(xa − xd)2 + (ya − yd)2 + (za − zd)2.

The first step of UPS computes the range differences between
dsa and dsb, dsc, and dsd, respectively.
Step 1—Range Difference Computation: Let A be the master

anchor node, which initiates a beacon signal every T seconds.
Each beacon interval begins when A transmits a beacon signal.
Considering any beacon interval i, at times ti1, tib, tic, and tid,
sensor S and anchor nodes B, C, and D receive A’s beacon
signal, respectively. At time ti′b , which is ≥ tib, B replies to
A with a beacon signal conveying information ti′b − tib = ∆tib.
This signal reaches S at time ti2. After receiving beacon signals
from both A and B, at time ti′c , C replies to A with a beacon sig-
nal conveying information ti′c − tic = ∆tic. This signal reaches
S at time ti3. After receiving beacon signals from A, B, and
C, at time ti′d , D replies to A with a beacon signal conveying
information ti′d − tid = ∆tid. This signal reaches S at time ti4.
Based on triangle inequality, ti1 < ti2 < ti3 < ti4. Letting ∆ti1 =
ti2 − ti1, ∆ti2 = ti3 − ti1, and ∆ti3 = ti4 − ti1, we obtain

dab + dsb − dsa + v · ∆tib = v · ∆ti1 (1)

dac + dsc − dsa + v · ∆tic = v · ∆ti2 (2)

dad + dsd − dsa + v · ∆tid = v · ∆ti3 (3)

which gives

dsb = dsa + v · ∆ti1 − dab − v · ∆tib = dsa + ki
1 (4)

dsc = dsa + v · ∆ti2 − dac − v · ∆tic = dsa + ki
2 (5)

dsd = dsa + v · ∆ti3 − dad − v · ∆tid = dsa + ki
3 (6)

where dsa, dsb, dsc, and dsd are positive real numbers; v is the
speed of the ultrasound; and

ki
1 = v · ∆ti1 − v · ∆tib − dab (7)

ki
2 = v · ∆ti2 − v · ∆tic − dac (8)

ki
3 = v · ∆ti3 − v · ∆tid − dad. (9)

Averaging ki
1, ki

2, and ki
3 over I intervals gives

k1 =
v

I

[
I∑

i=1

(
∆ti1 − ∆tib

)]
− dab (10)

k2 =
v

I

[
I∑

i=1

(
∆ti2 − ∆tic

)]
− dac (11)

k3 =
v

I

[
I∑

i=1

(
∆ti3 − ∆tid

)]
− dad. (12)

We are going to apply trilateration with k1, k2, and k3 to
compute coordinates (x, y, z) for sensor S in the next step.

Remarks:

1) All arrival times, including tij , where j = 1, 2, 3, 4, and
ti′j , where j ∈ {b, c, d}, are based on the local timers of
the anchor nodes and sensor S. No time synchronization
is required.

2) We require A to periodically initiate the beacon signal
transmission to decrease the measurement error and to
facilitate navigation.
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Step 2—Location Computation: From (4)–(6) and (10)–(12),
we have

dsb = dsa + k1 (13)

dsc = dsa + k2 (14)

dsd = dsa + k3. (15)

Based on trilateration, we obtain four equations with four
unknowns x, y, z, and dsa, where dsa > 0, i.e.,

(x − xa)2 + (y − ya)2 + (z − za)2 = d2
sa (16)

(x − xb)2 + (y − yb)2 + (z − zb)2 = (dsa + k1)2 (17)

(x − xc)2 + (y − yc)2 + (z − zc)2 = (dsa + k2)2 (18)

(x − xd)2 + (y − yd)2 + (z − zd)2 = (dsa + k3)2. (19)

Without loss of generality, we assume that the four anchor
nodes are located at (0, 0, 0), (xb, 0, 0), (xc, yc, 0), and
(xd, yd, zd), respectively, where xb > 0, yc > 0, and zd > 0.
Note that we can always transform real positions to this co-
ordinate system through rotation and translation.

From (16)–(19), we have

x2 + y2 + z2 = d2
sa (20)

(x − xb)2 + y2 + z2 = (dsa + k1)2 (21)

(x − xc)2 + (y − yc)2 + z2 = (dsa + k2)2 (22)

(x − xd)2 + (y − yd)2 + (z − zd)2 = (dsa + k3)2. (23)

Solving these equations, we obtain

d(1)
sa =

−β −
√

β2 − 4αγ

2α
(24)

d(2)
sa =

−β +
√

β2 − 4αγ

2α
(25)

x = Axdsa + By (26)

y = Aydsa + By (27)

z = Azdsa + Bz (28)

where

α =A2
x + A2

y + A2
z − 1 (29)

β = 2(AxBx + AyBy + AzBz) (30)

γ =B2
x + B2

y + B2
z (31)

Ax = − k1

xb
(32)

Fig. 2. Transection of the feasible space where z = 0.

Bx =
x2

b − k2
1

2xb
(33)

Ay =
k1xc

xbyc
− k2

yc
(34)

By =
x2

c + y2
c − xbxc + xck2

1
xb

− k2
2

2yc
(35)

Az =
k1xd

xbzd
− k3

zd
−

yd

(
k1xc

xb
− k2

)
yczd

(36)

Bz =
x2

d + y2
d + z2

d − xbxd + xdk2
1

xb
− k2

3 − ydx2
c

yc

2zd

+
−ycyd + xbxcyd

yc
− k2

1xcyd

xbyc
+ k2

2yd

yc

2zd
. (37)

We have conducted extensive simulation to study the feasible
space where dsa > 0 is unique. It is interesting to observe
that when S is not close to any anchor node and when it is
not behind any anchor node, (24) provides a unique feasible
solution. In addition, the correct position can be computed via
(24) if a sensor resides in the enclosed space by the four anchor
nodes, even when it is close to an anchor node. Figs. 2–4 report
the three transections (z = 0, 5, 10) of the feasible space (the
gray area) when the four anchor nodes A, B, C, and D reside in
(0, 0, 0), (10, 0, 0), (0, 10, 0), and (0, 0, 10), respectively.

IV. CHANNEL MODELING AND THEORETICAL

PERFORMANCE ANALYSIS

In this section, we study the position error of UPS that
resulted from the acoustic fading channel. In the following,
we first propose a modified UWB S-V model to characterize
the underwater acoustic fading channel; then, we apply this
model to study the position error of UPS. Major sources of
position errors are also identified. Note that, to the best of our
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Fig. 3. Transection of the feasible space where z = 5.

Fig. 4. Transection of the feasible space where z = 10.

knowledge, there is no standard channel model for underwater
so far, and our modified UWB S-V model is a reasonable
model based on the study on outdoor UWB channel detailed
in [21].

A. Channel Modeling for Underwater Sensor Networks

The underwater acoustic channel exhibits phenomena such
as signal fading and phase and amplitude fluctuation due
to the interactions with the boundaries and the scattering
from inhomogeneities within the ocean medium. The speed
of sound underwater is approximately 1500 m/s, which leads
to large propagation delays and motion-induced Doppler
effects. Phase and amplitude fluctuations may induce high bit-
error probability, compared to most radio channels. Multi-
path interference is another important phenomena in UWA
networks, causing frequency-selective fading in underwater
channels.

There has been much effort to model the underwater acoustic
fading channels and estimate their performance. Early research
[13], [28] assumes Rayleigh fading in nature, but it is later
observed in [17] that Rayleigh fading exhibits only in limited
cases. Geng and Zielinski [17] propose that, in an underwater
acoustic channel, there can be several distinct paths (eigen-
paths) over which a signal can propagate from transmitter to
receiver (eigenpath signals). Each eigenpath signal contains
a dominant stable component and many smaller randomly
scattered components (sub-eigenpath or eigenray components).
The envelope of the eigenpath signal can therefore be described
using a Rice fading model. Such an eigenpath or eigenray
concept was first introduced in [19]. The eigenray arrival an-
gles, as well as the amplitude and phase fluctuations, are all
statistically modeled and are assumed to be independent of
each other. The number of eigenrays reaching the receiver is
a Poisson distribution with a mean number calculated from the
Ray Theory.

Enlightened by the prior research on underwater acoustic
channel modeling, we propose a modified UWB S-V channel
model [27] for underwater acoustic networks, which can be
validated in three considerations: First, UWB comes from the
UWB radar world and refers to the electromagnetic waveforms
that are characterized by an instantaneous fractional energy
bandwidth greater than about 0.20–0.25. In an underwater
acoustic channel, the communication frequency range is in-
ferior to 10 kHz. In short-range transmission, the carrier fre-
quency is 550 Hz in shallow water and 2 kHz in deep water. The
carrier frequency for long-range transmission is 1500 Hz. In
all cases, the fractional bandwidth (fH − fL)/((fH + fL)/2)
is much greater than 0.20–0.25. Therefore, the underwater
acoustic channel can be modeled as a UWB channel. In July
2003, the Channel Modeling subcommittee of study group
IEEE 802.15.SG3a published the final report regarding the
UWB indoor multipath channel model [2]. It is a modified
version of the indoor S-V channel model [27]. Second, mul-
tipath channels can be modeled as an S-V model in UWB
communications. The S-V model is based on the observation
that, usually, multipath contributions generated by the same
pulse arrive at the receiver grouped into clusters. Such a chan-
nel behavior is analogous to the aforementioned eigenpath/
sub-eigenpath concept in underwater networks. Third, similar
to [19], two Poisson models are employed in the modeling of
the path arrivals in UWB communications. The first Poisson
model is for the first path of each path cluster, and the second
Poisson model is for the paths or rays within each cluster.

Applying the S-V model into underwater acoustic channels,
the arrival of clusters is modeled as a Poisson arrival process
with rate Λ, whereas, within each cluster, subsequent multipath
contributions or rays also arrive according to a Poisson process
with rate λ (see Fig. 5). We define the following.

• Tl is the arrival time of the first path of the lth cluster.
• τk,l is the delay of the kth path within the lth cluster

relative to the first path arrival time Tl.
• Λ is the cluster arrival rate.
• λ is the ray arrival rate, i.e., the arrival rate of the paths

within each cluster.
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Fig. 5. Channel impulse response.

By definition, we have τ0l = Tl. The distributions of the cluster
arrival time and the ray arrival time are given by

p(Tl|Tl−1) = Λ exp(−Λ(Tl − Tl−1) , l > 0

p
(
τk,l|τ(k−1),l

)
=λ exp

(
−λ

(
τk,l − τ(k−1),l

))
, k > 0.

(38)

In the UWB S-V model, the magnitude of the kth path
within the lth cluster is denoted by βkl. It follows a Rayleigh
distribution. However, in underwater acoustic networks, the
channel within the communication frequency range does not
behave like a Rayleigh channel. Based on the discussion in
[17] and [19], it is rather appropriate to model the multipath
channel gain as a Rician distribution. Then, in the underwater
S-V model, the gain of the kth path within the lth cluster is a
complex random value with a modulus βkl and a phase θkl. We
assume that the βkl values in a underwater acoustic channel
are statistically independent and are Rician-distributed positive
random variables, whereas the θkl values are assumed to be
statistically independent uniform random variables over [0, 2π).
We have

β2
kl = β2

00 exp(−Tl/Γ) exp(−τkl/γ) (39)

where the term β00 represents the average energy of the first
path of the first cluster, whereas Γ and γ are the power decay
coefficients for clusters and multipath, respectively. According
to (39), the average power decay profile is characterized by
an exponential decay of the amplitude of the clusters and a
different exponential decay for the amplitude of the received
pulses within each cluster, as shown in Fig. 6.

In [23], based on many experimentations carried out by
Loubet and Faure with the French Navy, it was shown that the
Rayleigh fading model is not fit for underwater transmissions.
They proposed the underwater channel model using ray trac-
ing by great deterministic propagation paths (macromultipath)
associated with random fluctuations (micromultipaths). The
macromultipaths are very similar to the clusters in our model,
and the micromultipaths are very similar to the rays within each
cluster in our model.

Fig. 6. Double exponential decay of the mean cluster power and the ray power
within clusters.

B. Theoretical Error Analysis

In this section, we study the position error of S that resulted
from the acoustic fading channel, which has been modeled as a
modified UWB S-V model in Section IV-A.

The trilateration equations (16)–(19) compute the coordi-
nates (x, y, z) for sensor S based on the measured values k1, k2,
and k3, which are determined by the time-related measurements
at the sensor (∆ti1, ∆ti2, and ∆ti3) and anchor nodes B (∆tib),
C (∆tic), and D (∆tid) over beacon interval i [see (10)–(12)].
Therefore, the errors of x, y, and z result from the measuring
errors of ∆ti1, ∆ti2, ∆ti3, ∆tib, ∆tic, and ∆tid. Since the error of
∆tib (∆tic,∆tid) plays the same role as that of ∆ti1 (∆ti2,∆ti3)
in the computation of k1 (k2, k3) and anchor node B (C, D)
and can have more sophisticated hardware to precisely estimate
∆tib (∆tic,∆tid), we consider the errors of ∆ti1, ∆ti2, and ∆ti3
only, which are computed from the arrival times of the beacon
signals transmitted from anchor nodes A, B, C, and D at beacon
internal i ti1, ti2, ti3, and ti4, respectively.

Assume that the underwater sensor always listens to the
first ray of the transmitted signal and records the arrival times,
which, in our case, are ti1, ti2, ti3, and ti4. Due to the underwater
multipath effect, as illustrated in Fig. 6, these arrival times con-
tain an error with an exponential distribution. Let δi

t1
, δi

t2
, and

δi
t3

be the measuring errors of ∆ti1, ∆ti2, and ∆ti3, respectively.
It is reasonable to assume that δi

t1
, δi

t2
, and δi

t3
are independent

from each other. Given ti1, the conditional probability density
functions of δi

t1
, δi

t2
, and δi

t3
are exponential with parameters

λ1, λ2, and λ3, respectively, i.e.,

Pe

(
δi
t1
|ti1

)
=λ1 exp

(
−λ1δ

i
t1

)
Pe

(
δi
t2
|ti1

)
=λ2 exp

(
−λ2δ

i
t2

)
Pe

(
δi
t3
|ti1

)
=λ3 exp

(
−λ3δ

i
t3

)
. (40)

To simplify the elaboration, we consider the case when
anchor nodes A, B, C, and D are located at (0, 0, 0), (R, 0, 0),
(0, R, 0), and (0, 0, R), respectively. To further simplify the
analysis, we consider the case when S resides in a small area
(with a diameter � R) whose center is equidistant to all anchor
nodes. The general case can be similarly analyzed.
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From (10)–(12), k1, k2, and k3 are the averaged results over I
beacon intervals, and based on the central limit theorem, k1, k2,
and k3 are approximately normally distributed when I is large.
Therefore, we may assume that k1, k2, and k3 are distributed ac-
cording to N (µ1, σ

2
1), N (µ2, σ

2
2), and N (µ3, σ

2
3), respectively.

Deducing from (10)–(12), we have

k1 : µ1 = v

(
1
λ1

+ ν1

)
− R, σ2

1 =
v2

Iλ2
1

k2 : µ2 = v

(
1
λ2

+ ν2

)
− R, σ2

2 =
v2

Iλ2
2

k3 : µ3 = v

(
1
λ3

+ ν3

)
− R, σ2

3 =
v3

Iλ2
3

(41)

where ν1, ν2, and ν3 are the mean of the accurate values for
∆ti1, ∆ti2, and ∆ti3, respectively.

Based on these assumptions, we have µ1/R ≈ 0, µ2/R ≈ 0,
and µ3/R ≈ 0. Plugging xb = yc = zd = R and other zero
coordinates into (24) and simplifying its solution by approxi-
mating k2

1/R2, k2
2/R2, and k2

3/R2 with 0, we end up with

dsa ≈
√

3R2 + (k1 + k2 + k3)2 − (k1 + k2 + k3)
2

. (42)

Substituting the preceding equation into (26) yields

x ≈ R

2
− k2

1

2R
− k1

R

√
3R2+(k1+k2+k3)2 − (k1+k2+k3)

2
.

(43)

Now, replacing (k1k2/R2) = (k1/R)(k2/R), (k1k3/R2) =
(k1/R)(k3/R), and (k2k3/R2) = (k2/R)(k3/R) by 0, we
obtain

x ≈ R

2
+

k1

2R
(k2 + k3) − k1

√
3
2

=
R

2
+ k1k

∗
2,3 (44)

where k∗
2,3 = (k2 + k3)/2R −

√
3/2. Similarly, from (27) and

(28), we have

y ≈ R

2
+

k2

2R
(k1 + k3) − k2

√
3
2

=
R

2
+ k2k

∗
1,3

z ≈ R

2
+

k3

2R
(k1 + k2) − k3

√
3
2

=
R

2
+ k3k

∗
1,2 (45)

where k∗
1,3 = (k1 + k3)/2R −

√
3/2, and k∗

1,2 = (k1 + k2)/
2R −

√
3/2.

Since (x, y, z) is used to estimate the location of S, the error
in the estimation must be addressed. There are several ways to
do this. The following is a common practice, where the variance
of each variable is computed, and the size of the variance
or standard deviation is used as a measure of the estima-
tion error.

As k1 has a Gaussian distribution with mean µ1 and vari-
ance σ2

1 , k2 has a Gaussian distribution with mean µ2 and
variance σ2

2 , and k3 has a Gaussian distribution with mean µ3

and variance σ2
3 , the linear combination k∗

1,3 has a Gaussian

distribution with mean (µ1 + µ3)/2R −
√

3/2 and variance
(σ2

1 + σ2
3)/4R2, k∗

1,2 has a Gaussian distribution with mean

(µ1 + µ2)/2R −
√

3/2 and variance (σ2
1 + σ2

2)/4R2, and k∗
2,3

has a Gaussian distribution with mean (µ2 + µ3)/2R −
√

3/2
and variance (σ2

2 + σ2
3)/4R2. Denote by E(X) and V (X)

the mean and variance of random variable X . We have,
from (44)

V (x) ≈V
(
k1k

∗
2,3

)
= E

(
k1k

∗
2,3

)2 −
[
E

(
k1k

∗
2,3

)]2
= E

(
k2
1

(
k∗
2,3

)2
)
−

[
E

(
k1k

∗
2,3

)]2
. (46)

By the independence between k1, k2, and k3, we have

E
(
k1k

∗
2,3

)
= E(k1)E

(
k∗
2,3

)
(47)

E
(
k2
1

(
k∗
2,3

)2
)

= E
(
k2
1

)
E

(
k2,3∗2

)

=
[
V (k1) + (E(k1))

2
]

×
[
V

(
k∗
2,3

)
+

(
E

(
k∗
2,3

))2
]
. (48)

Therefore, substitution gives

V (x) ≈V (k1)
[
E

(
k∗
2,3

)]2 + V
(
k∗
2,3

)
[E(k1)]

2

+ V (k1)V
(
k∗
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)

= σ2
1

(
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√
3
2

)2

+
σ2

2 + σ2
3

4R2
µ2

1 + σ2
1
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2 + σ2
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(
σ2

2 + σ2
3

)
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1

(
σ2

2 + σ2
3

)
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+ σ2
1

(
3
2
− µ2 + µ3

R

√
3
2

)
. (49)

Since µ1/R ≈ 0 and µ2/R ≈ 0, plugging in (42), the pre-
ceding equation reduces to

V (x) ≈ σ2
1

2

(
3 +

σ2
2 + σ2

3

2R2

)

=
v2

2Iλ2
1

[
3 +

v2

2IR (λ2
2 + λ2

3)

]
. (50)
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Similarly, we have

V (y) ≈V
(
k∗
1,3

)
[E(k2)]

2 + V (k2)
[
E

(
k∗
1,3

)]2
+ V

(
k∗
1,3

)
V (k2)

≈ σ2
2

2

(
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σ2
1 + σ2

3

2R2

)

=
v2

2Iλ2
2

[
3 +

v2

2IR (λ2
1 + λ2
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]
. (51)

V (z) ≈V
(
k∗
1,2

)
[E(k3)]

2 + V (k3)
[
E

(
k∗
1,2

)]2
+ V

(
k∗
1,2

)
V (k3)

≈ σ2
3

2

(
3 +

σ2
1 + σ2

2

2R2

)

=
v2

2Iλ2
3

[
3 +

v2

2IR (λ2
1 + λ2

2)

]
. (52)

From the preceding analysis, we make the following ob-
servations: First, the variances of x, y, and z depend on ray
arrival rates λ1, λ2, and λ3. Second, λ1 contributes more to
the variance of x than λ2 and λ3, λ2 contributes more to the
variance of y than λ1 and λ3, and λ3 contributes more to
the variance of z than λ1 and λ2. Third, when R is large,
V (x) ≈ 3σ2

1/2 = 3v2/2Iλ2
1, V (y) ≈ 3σ2

2/2 = 3v2/2Iλ2
2, and

V (z) ≈ 3σ2
3/2 = 3v2/2Iλ2

3, showing that the variance of x is
dependent on that of k1, the variance of y is dependent on that
of k2, and the variance of z is dependent on that of k3. Fourth,
if λ1 = λ2 = λ3, the variances of x, y, and z can be treated the
same in practice.

Note that the preceding analysis well explains our simulation
results, which indicate that position errors strongly depend on
the arrival rates of double exponential distributions.

C. Sources of Errors

There are three major sources of errors for time-based lo-
cation detection schemes in UWA-SNs: 1) the receiver system
delay; 2) the underwater multipath fading; and 3) the variable
acoustic speed underwater. The receiver system delay is the
time duration from which the signal hits the receiver antenna
until the signal is accurately decoded by the receiver. This time
delay is determined by the receiver electronics. Usually, it is
constant or varies in very small scale when the receiver and
the channel are free from interference. This system delay can
be predetermined and used to calibrate the measurements. For
example, anchor nodes B, C, and D can always eliminate the
system delay from ∆tib, ∆tic, and ∆tid before these values are
conveyed to the sensors in their reply messages to A’s beacon
signal. Meanwhile, as ∆ti1, ∆ti2, and ∆t23 are measured by one
sensor, the effect of receiver system delay may cancel out. Thus,
in our model, if anchor nodes B, C, and D can provide precise
a priori information on receiver system time delays, the effect
of these delays will be negligible.

The underwater multipath fading channel will greatly influ-
ence the location accuracy of any location detection system.
Major factors influencing terrestrial multipath fading [6] in-

clude multipath propagation, speed of the receiver, speed of the
surrounding objects, and the transmission signal bandwidth. In
the underwater environment, other important factors include
water temperature and clarity, motion behavior of receiver
and underwater objects, and transmission range. In our time-
based location scheme, we assume that the motion of the
underwater vehicles is relatively small such that the motion-
induced Doppler effect can be ignored.

There are two important characteristics of multipath signals:
First, the multiple nondirect path signals will always arrive
at the receiver antennas later than the direct path signal, as
they must travel a longer distance. Second, in the line-of-
sight transmission model, nondirect multipath signals will nor-
mally be weaker than the direct path signal, as some signal
power will be lost from scattering. If nonline-of-sight exists,
the nondirect multipath signal may be stronger, as the direct
path is hindered in some way. Based on these characteris-
tics, scientists can always design more sensitive receivers to
lock and track the direct path signal. For example, multipath
signals using a pseudorandom code arriving at the receiver
later than the direct path signal will have negligible effects
on a high-resolution direct-sequence binary phase-shift keying
receiver [11]. Our location detection scheme mitigates the
effect of multipath fading by measuring TDoA over multiple
beacon intervals and modeling the multipath arrival times as
the double exponential distribution. TDoA measurements have
been very effective in fading channels, as many detrimental
effects caused by multipath fading and processing delay can be
canceled [12].

Another source of position error is the variable speed of
sound, which significantly affects the precision of all local-
ization systems that assume a constant acoustic speed. The
velocity of underwater acoustics depends on temperature, salin-
ity, and depth [4]. In future research, we will investigate the
influence of the variable speed of sound on our positioning
scheme.

V. SIMULATION

In this section, we are going to study the performance of
UPS in UWA-SNs. We make the same assumptions as those
in Section IV-B; for a given ti1, the measuring errors of ∆tii,
∆ti2, and ∆ti3 are independent exponential distributions with
arrival rates λ1, λ2, and λ3, respectively, and the underwater
vehicle/sensor measures the arrival time of the first ray of the
first cluster only in a multipath fading channel. We further
assume that the measuring errors of ∆tib, ∆tic, and ∆tid are
negligible, as justified in Section IV-C. Therefore, λ1, λ2, and
λ3 can be assumed to be equal, and this value is denoted by λ.
We will investigate the influence of λ on position error. Another
factor that we will investigate is the number of beacon intervals
I used to compute k1, k2, and k3. Since we also consider
the localization of mobile underwater vehicles, we choose to
average over a small number of beacon intervals.

We use Matlab to code UPS. This tool provides procedures to
generate normally distributed and uniformly distributed random
numbers. Note that we do not use the sqrt function in Matlab.
Instead, we use Newton’s method [3]. We have found that four
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Fig. 7. Position errors versus real positions when λ = 0.1 in the x = y plane
with z = 5.

Fig. 8. Position errors versus real positions when λ = 2.5 in the x = y plane
with z = 5.

iterations generally yield good results. In addition, (24) will be
adopted for position estimation since, in our simulation, sensors
will be placed within the space enclosed by four anchor nodes.

First, we study the distribution of position errors over a 3-D
monitored space. In this simulation scenario, the four anchor
nodes are located at (0, 0, 0), (20, 0, 0), (0, 20, 0), and (0, 0, 20),
respectively. Sensors are placed at grid points (i + 0.5, j +
0.5, k + 0.5), where i, j, k = 0, 1, . . . , 19. The errors of ∆ti1,
∆ti2, and ∆ti3 are exponentially distributed with parameters
λ1 = λ2 = λ3 = λ. We average the sensor location estimation
over 1000 trials. For each trial, I = 16. In addition, we simulate
different λ settings and obtain similar results. Nevertheless, we
report the cases of λ = 0.1 and λ = 2.5 only in this paper.
Figs. 7 and 8 illustrate the x=y plane position errors versus
the real positions of the sensors for z=5. Results from the x=z
and y = z planes are close to those reported for the x = y plane.

We observe that a lower arrival rate gives a better estimation
since a higher arrival rate may bring motion-induced Doppler
shift in the channel and cause jittering in the measurement.
We also observe that, as the distances from a sensor to all
four anchor nodes become larger, the position errors will

Fig. 9. Position errors versus λ where ∠BAC = 90◦.

correspondingly become larger; when the sensor is closer to
any of the four anchor nodes, the errors become larger. Notice
that, in Fig. 7, the sensor at location (9.5, 9.5, 5.0), which is
close to the intersection of the three angle bisectors of ∆ABC,
has the smallest position error and that the sensors at its
neighboring area also demonstrate quite low position errors.
Interestingly, Bulusu et al. [10], Cheng et al. [16], and Nasipuri
and Li [24] provide similar results in their simulation study.
Intuitively, this is because the geometry of the intersection of
the range circles is poor when the sensors are far away from
any anchor node or when the sensors are close to any anchor
node. From this analysis, we conclude that the position error
is related to the placement of anchor nodes. Careful studies
will be conducted in the future as the results can be applied to
guide the deployment of anchor nodes for better performance.
For these reasons, in the following simulation, we intentionally
enforce an allowable shortest distance (1.0 unit) from any
randomly generated sensor to any anchor node. This means
that the four anchor nodes are placed some distance away from
the boundary of the monitored area.

Next, we consider the scenario when sensors are randomly
deployed in a cubic space with lower left corner (1, 1, 1) and
upper right corner (19, 19, 19). The four anchor nodes are
still located at (0, 0, 0), (20, 0, 0), (0, 20, 0), and (0, 0, 20),
respectively. For each λ value, we try 2000 random sensor
positions. The averaged results are reported in Fig. 9. Note
that, in this paper, I is selected from {1, 2, 3, 4} to demonstrate
the effectiveness of UPS when applied to positioning mobile
underwater vehicles.

We obtain three observations from Fig. 9: First, as I in-
creases, position error decreases. This is because averaging
over a larger number of beacon intervals to compute k1k2 and
k3 can better smooth out the effects of measuring errors in
∆ti1, ∆ti2, and ∆ti3 and, thus, produce an improved result. A
detailed theoretical explanation comes from Section IV-B. As I
increases, σ2

1 , σ2
2 , and σ2

3 will decrease, and thus, V (x), V (y)
and V (z) will decrease. Then, the errors from estimating the
coordinates of sensors by x, y, and z will decrease, implying
that the position error will become smaller. Second, position
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Fig. 10. Position errors versus λ where ∠BAC ≤ 90◦.

error increases as λ increases. This is reasonable in the under-
water acoustic channel, in which a higher λ comes from an even
higher transmission rate when asymmetry commonly exists
between the transmitter and the receiver. Such a characteristic
of the underwater medium brings significant multipath interfer-
ence at the receiver and causes jittering, as shown in Fig. 8.
Again, this can be well explained by Section IV-B. In fact, if λ
increases, which means that v increases at an even larger pace,
v2/λ2 increases. As a result, V (x), V (y), and V (z) increase,
so that the errors from estimating the coordinates of the sensor
by x, y, and z increase. Thus, the larger the arrival rate, the
larger the position error. Third, in the situation of small λ, e.g.,
λ ≈ 0.5, as shown in Fig. 9, the location errors vary very little
with the number of beacon intervals I . When λ is relatively
high, I plays a more important role. The higher the λ, the bigger
the difference induced from I . This observation is analogous
to the terrestrial wireless communication channels, in which
coherent time is introduced to depict a period of time where
the channel behavior or model can be considered as stationary.
For underwater wireless communications, not only temporal
coherence but also spatial and frequency coherences [19] are
significant parameters for signal propagation through acoustic
channels with multiple paths. Based on the third observation,
λ in underwater communications should not be neglected in
estimating the coherence parameters. Note that, by rotating the
square-cube monitored space within the open space formed
by anchor nodes A, B, C, and D, we obtain very similar
results.

In the following, we report the simulation results when
∠BAC ≤ 90◦. In this simulation, the four anchor nodes are
located at (0, 0, 0), (XB , YB , 0), (XC , YC , 0), and (0, 0, ZD),
respectively, where XB , YB , XC , YC , and ZD are randomly
drawn from [5, 20]. Two thousand sensors are randomly placed
within the overlapping space formed by the anchor nodes
(A,B,C,D) and the cube space with corners (0, 0, 0) and
(20, 20, 20). Fig. 10 reports the position error versus λ. Note
that the observations from Fig. 10 are very similar to those
from Fig. 9. Nevertheless, for the same λ, the acute angle case
performs slightly better than the right angle case.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we propose UPS, a silent underwater position-
ing scheme for UWA-SNs. UPS is superior to existing systems
in many aspects, such as lack of synchronization and low
computation overhead. To evaluate the performance of UPS,
we model the underwater acoustic channel with a modified
UWB S-V model and conduct both theoretical analysis and a
simulation study. Our scheme is simple and effective.

For future research, we will study the impact of the channel
modeling error on the position error of UPS. In addition, we
intend to design a general framework based on projection
such that localization algorithms proposed for 2-D terrestrial
sensor networks can be easily tailored to 3-D UWA-SNs. By
this approach, the anchor node at the seabed is expected to
be saved.

REFERENCES

[1] Global Positioning System Standard—Positioning Service Specification,
Jun. 2, 1995.

[2] IEEE 802.15.SG3a, Channel Modeling Sub-Committee Report Final,
Feb. 2003.

[3] MIT Books, Square Roots by Newton’s Method. [Online]. Available:
http://www.mitpress.mit.edu/sicp/chapter1/node9.html

[4] Underwater Acoustics Technical Guides—Speed of Sound in Sea-
water. [Online]. Available: http://www.npl.co.uk/accoustics/techguides/
soundseawater/speedsw.pdf

[5] M. G. Di Benedetto and G. Giancola, Understanding Ultra Wide Band
Radio Fundamentals, ser. Prentice-Hall Communications Engineering
and Emerging Technology. Englewood Cliffs, NJ: Prentice-Hall, 2004.

[6] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[7] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor
networks: Research challenges,” J. Ad Hoc Netw., vol. 3, no. 3, pp. 257–
279, Mar. 2005.

[8] T. C. Austin, R. P. Stokey, and K. M. Sharp, “PARADIGM: A buoy-based
system for auv navigation and tracking,” in Proc. MTS/IEEE Oceans,
2000, pp. 935–938.

[9] C. Bechaz and H. Thomas, “GIB system: The underwater GPS solution,”
in Proc. 5th Eur. Conf. Underwater Acoust., May 2000.

[10] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor
localization for very small devices,” IEEE Pers. Commun.—Special Issue
on Networking the Physical World, vol. 7, no. 5, pp. 28–34, Oct. 2000.

[11] J. J. Caffery, Jr. and G. L. Stüber, “Overview of radiolocation in CDMA
cellular systems,” IEEE Commun. Mag., vol. 36, no. 4, pp. 38–45,
Apr. 1998.

[12] J. J. Caffery, Jr. and G. L. Stüber, “Subscriber location in CDMA cellu-
lar networks,” IEEE Trans. Veh. Technol., vol. 47, no. 2, pp. 406–416,
May 1998.

[13] J. A. Catipovic, A. B. Baggeroer, K. Von Der Heydt, and D. Koelsch, “De-
sign and performance analysis of a digital telemetry system for short range
underwater channel,” IEEE J. Ocean. Eng., vol. OE-9, no. 4, pp. 242–252,
Oct. 1984.

[14] V. Chandrasekhar and W. K. G. Seah, “An area localization scheme for
underwater sensor networks,” in Proc. IEEE OCEANS Asia Pacific Conf.,
May 16–19, 2006, pp. 1–8.

[15] V. Chandrasekhar, W. K. G. Seah, Y. S. Choo, and H. V. Ee, “Localization
in underwater sensor networks—Survey and challenges,” in Proc. ACM
WUWNet, 2006, pp. 33–40.

[16] X. Cheng, A. Thaeler, G. Xue, and D. Chen, “TPS: A time-based po-
sitioning scheme for outdoor wireless sensor networks,” in Proc. IEEE
INFOCOM, 2004, vol. 4, pp. 2685–2696.

[17] X. Geng and A. Zielinski, “An eigenpath underwater acoustic communi-
cation channel model,” in Proc. OCEANS, MTS/IEEE, ‘Challenges Our
Changing Global Environment’ Conf., Oct. 1995, vol. 2, pp. 1189–1196.

[18] M. Hahn and J. Rice, “Undersea navigation via a distributed
acoustic communication network,” in Proc. Turkish Int. Conf. Acoust.,
Jul. 4–8, 2005.

[19] W. Jobst and X. Zabalgogeazcoa, “Coherence estimates for signals prop-
agating through acoustic channels with multiple paths,” J. Acoust. Soc.
Amer., vol. 65, no. 3, pp. 622–630, Mar. 1979.



1766 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 3, MAY 2008

[20] F. Koushanfar, S. Slijepcevic, M. Potkonjak, and A. Sangiovanni-
Vincentelli, “Location discovery in ad-hoc wireless sensor networks,” in
Ad Hoc Wireless Networking, X. Cheng, X. Huang, and D.-Z. Du, Eds.
Norwell, MA: Kluwer, 2003, pp. 137–173.

[21] Q. Liang, S.W. Samn, and X. Cheng, “Outdoor UWB channel modeling
in rich scattering and time-varying environment,” IEEE Trans. Wireless
Commun., submitted for publication.

[22] F. Liu, X. Cheng, D. Hua, and D. Chen, “Range-difference based location
discovery for sensor networks with short range beacons,” Int. J. Ad Hoc
Ubiquitous Comput., to be published.

[23] G. Loubet and B. Faure, “Characterization of the underwater channel for
acoustic communications,” J. Acoust. Soc. Amer., vol. 105, no. 2, p. 1364,
Feb. 1999.

[24] A. Nasipuri and K. Li, “A directionality based location discovery scheme
for wireless sensor networks,” in Proc. WSNA, 2002, pp. 105–111.

[25] D. Niculescu and B. Nath, “Ad hoc positioning system (APS),” in Proc.
IEEE GLOBECOM, 2001, pp. 2926–2931.

[26] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical issues
in underwater networks,” in Proc. 1st ACM Int. Workshop Underwater
Netw., Int. Conf. Mobile Comput. Netw., Los Angeles, CA, Sep. 2006,
pp. 17–24.

[27] A. A. Saleh and R. A. Valenzuela, “A statistical model for indoor mul-
tipath propagation,” IEEE J. Sel. Areas Commun., vol. JSAC-5, no. 2,
pp. 128–137, Feb. 1987.

[28] G. H. Sandsmark and A. Solstad, “Adaptive beam forming and adaptive
equalization for high-speed underwater acoustic data transmission,” in
Proc. Underwater Defence Tech. Conf., Apr. 1991, pp. 707–712.

[29] A. Syed and J. Heidemann, “Time synchronization for high latency
acoustic networks,” in Proc. IEEE INFOCOM, 2006, pp. 1–12.

[30] A. Thaeler, M. Ding, and X. Cheng, “iTPS: An improved location dis-
covery scheme for sensor networks with long range beacons,” J. Parallel
Distrib. Comput., vol. 65, no. 2, pp. 98–106, Feb. 2005.

[31] Y. Zhang and L. Cheng, “A distributed protocol for multi-hop under-
water robot positioning,” in Proc. IEEE Int. Conf. Robot. Biometr.,
Aug. 2004, pp. 480–484.

[32] Z. Zhou, J.-H. Cui, and S. Zhou, “Localization for large-scale underwater
sensor networks,” Univ. Connecticut, CSE Tech. Rep.: UbiNet-TR06-04,
Dec. 2006.

Xiuzhen (Susan) Cheng (M’03) received the M.S.
and Ph.D. degrees in computer science from the
University of Minnesota, Minneapolis, in 2000 and
2002, respectively.

In 2006, she was a Program Director with the Na-
tional Science Foundation (NSF) for six months. She
is currently an Assistant Professor with the Depart-
ment of Computer Science, The George Washington
University, Washington, DC. Her current research
interests include wireless and mobile computing,
sensor networking, wireless and mobile security, and

approximation algorithm design and analysis.
Dr. Cheng has served on the editorial boards of several technical journals

and in the technical program committees of various professional conferences/
workshops. She was the Program Cochair of the first International Conference
on Wireless Algorithms, Systems, and Applications (WASA06). She was the
recipient of the NSF CAREER Award in 2004.

Haining Shu (S’04) received the B.S. degree in elec-
tronics and information systems from Peking Uni-
versity, Beijing, China, in 1996, the M.S. degree in
electrical engineering from the University of Texas at
Dallas, Richardson, in 2002, and the Ph.D. degree in
electrical engineering from The University of Texas,
Arlington, in 2007.

Prior to the master program, she was a System
Engineer with the Telecom Planning and Research
Institute, Beijing. She is currently with the Depart-
ment of Electrical Engineering, The University of

Texas at Arlington. Her research interests include fuzzy logic systems and
applications, distributed source coding, sensor networks, and collaborative
radar systems.

Qilian Liang (M’01–SM’05) received the B.S. de-
gree from Wuhan University, Wuhan, China, in 1993,
the M.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 1996, and
the Ph.D. degree from the University of Southern
California (USC), Los Angeles, in 2000, all in elec-
trical engineering.

In August 2002, he joined the Department of
Electrical Engineering, The University of Texas at
Arlington (UTA). He was a member of Technical
Staff with Hughes Network Systems Inc., San Diego,

CA. He has published more than 120 journal and conference papers and six
book chapters. He is the holder of six pending U.S. patents. His research
interests include sensor networks, wireless communications, wireless networks,
communication systems and communication theory, signal processing for
communications, fuzzy logic systems and applications, and collaborative and
distributed signal processing.

Dr. Liang was the recipient of the 2002 IEEE TRANSACTIONS ON FUZZY

SYSTEMS Outstanding Paper Award, the 2003 U.S. Office of Naval Research
Young Investigator Award, and the 2005 UTA College of Engineering Outstand-
ing Young Faculty Award.

David Hung-Chang Du (S’81–M’81–SM’95–F’98)
received the B.S. degree in mathematics from
National Tsing Hua University, Hsinchu, Taiwan,
R.O.C., in 1974 and the M.S. and Ph.D. de-
grees in computer science from the University of
Washington, Seattle, in 1980 and 1981, respectively.

He is currently a Qwest Chair Professor with
the Department of Computer Science and Engineer-
ing, University of Minnesota, Minneapolis. He has
authored and coauthored more than 190 technical
papers, including 90 referred journal publications in

his research areas. He has also graduated 48 Ph.D. and 80 M.S. students. His
research interests include cyber security, sensor networks, multimedia com-
puting, storage systems, high-speed networking, high-performance computing
over clusters of workstations, database design, and computer-aided design for
very-large-scale integration circuits.

Dr. Du is a Fellow of the Minnesota Supercomputer Institute. He is currently
serving on a number of journal editorial boards. He has also served as guest ed-
itor for a number of journals, including IEEE Computer, and Communications
of ACM. He has also served as Conference Chair and Program Committee Chair
for several conferences in the multimedia, database, and networking areas.


