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Abstract—Wireless sensor networks have recently attracted lots of research effort due to its wide range of applications. These

networks must operate for months or years. However, the sensors are powered by battery, which may not be possible to be recharged

after they are deployed. Thus, energy-aware network management is extremely important. In this paper, we study the following

problem: Given a set of sensors in the plane, assign transmit power to each sensor such that the induced topology containing only

bidirectional links is strongly connected. This problem is significant in both theory and application. We prove its NP-Completeness and

propose two heuristics: power assignment based on minimum spanning tree (denoted by MST) and incremental power. We also show

that MST heuristic has a performance ratio of 2. Simulation study indicates that the performance of these two heuristics does not differ

very much, but, in average, the incremental power heuristic is always better than MST.

Index Terms—Minimum energy topology, power control, wireless sensor networks, NP-Completeness, incremental power heuristic.
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1 INTRODUCTION

THE research in wireless sensor networks has rapidly grown
in recent years, especially when the technologies of

sensor, actuator, and radio become more and more mature
[3], [11], [21]. Sensor network has many applications,
ranging from civil, such as smart classroom, medical
monitoring, and monitoring of natural habitats and eco-
systems, to military, such as security and surveillance, etc.
One of the most important features of wireless sensor
networks is the extreme energy constraint [19], [21]. In this
paper, we are going to consider the following problem:
What is the lower bound of the total energy consumed by all
sensors when they form a networked collaboration system? This
problem is significant in both theory and application.

A sensor network provides a global view of the
monitored object area based on many local observations.
The local information must be disseminated for further
processing to complete the job. Thus, global connectivity
should be maintained for proper data propagation. In a
sensor network or any other all-wireless network, the
connection between any two devices is controlled by their
transmit powers. If sensor A can correctly decode the signal
from sensor B, then there exists a unidirectional link from B
to A; otherwise, A is unreachable from B. If unidirectional
links from both A to B and B to A exist, then the link
between A and B is bidirectional. Usually, a sensor network

contains both unidirectional and bidirectional links. And,
these links must form a globally connected network.
Minimizing the total transmit power to maintain global
connectivity is a network optimization problem that attracts a
lot of attention [6], [9], [17].

There exist several variations of the problem formula-

tion, based on whether unidirectional links are allowed or

not, and how strong we want the connectivity to be. For

example, we may require that all bidirectional links form a

strongly connected graph (a graph with at least one path

from any node to any other node) or we relax this

requirement to allow unidirectional links. We may want

to compute a k-connected graph (a graph with at least

k disjoint paths from any node to any other node), where

k > 1 for network survivability; or, we simply ask for k ¼ 1.

We may even upper bound the degree of each node (the

number of one-hop neighbors) to balance the network load.

The problem we study in this paper considers only

bidirectional links and the resultant topology is strongly

connected. The formal definition of the problem is stated

below:

Definition 1 (Strong Minimum Energy Topology (SMET)

Problem). Given a set of sensors in the plane, compute the

transmit power of each sensor, such that there exists at least

one bidirectional path (containing only bidirectional links)

between any pair of sensors and the sum of all the transmit

powers is minimized.

Remarks.

1. Note that, in this paper, “sensor” and “node” are
exchangeable. By convention, in the context of
sensor networks, we use “sensor,” while in the
context of graph topology, we use “node.”
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2. We assume all sensors are located in the two-
dimensional plane.

3. The power function or the transmit power for
sensor u to reach sensor v is denoted by t � d�,
where d is the distance between u and v, t is the
threshold which is a function of the signal-to-
noise ratio at v, and � is a constant that is related
to path loss. In a typical application environment,
� is from two to four [26].

4. For better exposition, we use fðdÞ to refer to the
power function assigned to a node with transmis-
sion distance d.

Note that our problem formulation is different than those
in [6], [9], [17], which focus on strong connectivity with
unidirectional links. We denote their problem by gSMET. In
other words, gSMET seeks a power assignment for an ad
hoc network such that the total power is minimized and the
topology is strongly connected. The resultant topology in
gSMET may contain unidirectional links. The optimal
solution of SMET is no less than that of gSMET, for the
same given network. This is because only bidirectional link
will be considered in SMET. Chen and Huang [6] and
Clementi et al. [9] have proven that gSMET is NP-Complete.
Both references show that the minimum cost spanning tree
(with edge length as the cost) has a performance ratio of 2.
While gSMET and SMET are two variations of the general
minimum energy topology problem mentioned above, their
NP-Completeness proofs are totally different. The reduction
schemes used in [6] and [9] are not applicable to SMET. We
are going to use the “unidirectional graph model” [17] in
our NP-Completeness proof as we only consider bidirec-
tional links, while [6] and [9] use the “directed graph
model” [17], as they consider both unidirectional and
directional links.

Our problem formulation is also based on the following
observations:

1. Even though unidirectional links exist in sensor
networks, current MAC layer protocols such as
IEEE 802.11 [15] and S-MAC [31] only take bidirec-
tional links into consideration. And, it seems that a
MAC layer protocol, which efficiently supports
asymmetric links, may not exist in the near future
[22]. The promising network routing protocols for
multihop system such as DSR [14] and AODV [20]
assume 802.11 as their MAC layer protocol. AODV
itself even only works with bidirectional links.

2. A higher transmit power incurs higher interference
to the surrounding devices, thus decreasing network
throughput [26]. A transmit power strong enough
for the receiver to correctly decode data signal is
ideal in multihop wireless networks.

3. The solution to our problem and other variations of
the problem can provide reference to sensor network
deployment. For example, the heuristics proposed in
this work can serve as a theoretical guide for
determining strongly related key parameters such
as sensor density and transmit power [28].

4. Our work also provides reference to scientists who
depend on network simulators for their research. For
example, with either GloMoSim [2] or NS2 [1], the
two most popular wireless network simulators,

users need to determine the coverage area for each
network node if uniform transmission range is not
suitable [25]. Our heuristic can provide the lower
bound for the transmission range to maintain global
connectivity.

5. The minimum energy topology actually forms an
energy-efficient backbone. This backbone can be
used to facilitate control message dissemination in
an efficient way [7].

6. Recently, minimum energy broadcast/multicast is a
hot research topic [5], [29]. In these research works,
multicasting is realized through pruning a broadcast
tree, while a minimum energy broadcast tree is a
spanning tree constructed based on the following
assumption: Each inner (nonleaf) node transmits
with the minimum power to reach all of its children
and each leaf node does not transmit and, thus, does
not consume energy. According to [23], a sensor
consumes almost the same amount of energy when
transmitting, idle, and receiving. Thus, actually our
strong minimum energy topology is a better model
for energy-aware broadcasting and multicasting.

This paper is organized as follows: In Section 2, we first
prove that our SMETproblem isNP-Complete. Then,wegive
a very simple incremental power heuristic in Section 3 and
compare it with a minimum spanning tree based algorithm
by simulation. Finally, in Section 4, we briefly summarize
some related work and conclude our paper in Section 5.

2 NP-COMPLETENESS IN COMPUTING A SMET

A graph is planar if it can be drawn in a plane with no edge
crossing. Given an undirected graph G ¼ ðV ;EÞ, a vertex
cover C is a subset of V such that each edge in E is incident
to at least one vertex in C. A vertex cover problem asks for a
vertex cover with minimum cardinality in G. Vertex cover,
in general graphs is NP-Complete [10]. It is also NP-
Complete in planar graphs with no vertex degree exceeding
four [12]. For convenience, we denote this problem by
4PlanarVC. We are going to show that a vertex cover in planar
graphs with degree at most 3, denoted by 3PlanarVC, is also
NP-complete.

Lemma 2.1. 3PlanarVC is NP-complete.

Proof. 3PlanarVC is in NP since its superclass, VC in
general graphs, is in NP. Now, we show the Turing
reduction from 4PlanarVC to 3PlanarVC.

For a given instance of 4PlanarVC G ¼ ðV ;EÞ, we
construct an instance of 3PlanarVC G0 ¼ ðV 0; E0Þ in the
following way: Replace each degree 4 vertex v 2 Gwith a
widget shown in Fig. 1a. The resultant graph is G0, with a
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Fig. 1. Each degree-4 vertex (vertex v in (a)) is replaced with a widget (b).



degree at most 3. This construction takes polynomial
time.

Note that, for each widget, the minimum number of
vertices to cover the six edges formed by v1; v2; � � � ; v7, is
either 3 (fv2; v4; v6g), if noneof fv1; v3; v5; v7g is included; or
4, if at least one of fv1; v3; v5; v7g is included. No vertices
other than v inG has influence on the covering of these six
edges. In other words, at least four vertices are needed to
cover any of the edges in fðb; v1Þ; ða; v3Þ; ðd; v5Þ; ðc; v7Þg and
all of the edges in fðv1; v2Þ; ðv2; v3Þ; � � � ; ðv6; v7Þg, and at
least three vertices are needed to cover all of the edges in
fðv1; v2Þ; ðv2; v3Þ; � � � ; ðv6; v7Þg. Thus, we can compute a
vertex cover C0 for G0 from a vertex cover C of G in the
following way: If v 2 C, put fv1; v3; v5; v7g into C0,
otherwise, put fv2; v4; v6g into C0. Put all vertices in C
withdegree< 4 intoC0. From the aboveanalysis,C0 is aVC
of G0 if C is a VC of G. The size of C0 is

k� k1 þ 4k1 þ 3ðm� k1Þ ¼ kþ 3m;

where k is the size of C, m is the number of degree-4
vertices in G, and k1 is the number of degree-4 vertices
in C.

Conversely, assume we are given a VC C0 of G0

with size kþ 3m, where m is the number of widget (as
shown in Fig. 1) in G0. Let C ¼ �. For any widget with
vertices fv1; v2; � � � ; v7g in G0, find the corresponding
vertex v in G. Note that as elaborated in the previous
paragraph, if any of fv1; v3; v5; v7g is in C0, then four of
the seven vertices fv1; v2; � � � ; v7g must be in C0. Let k1
be the number of widgets with this feature. If none of
fv1; v3; v5; v7g is in C0, fv2; v4; v6g must be in C0. Thus,
we can compute C in the following way: For any
widget in G0 with corresponding vertex v in G, if at
least one of fv1; v3; v5; v7g is in C0, put v into C. Put all
vertices in C0 not belonging to the seven vertices of
any widget into C. It is clear that C is a VC of G with
size kþ 3m� 3ðm� k1Þ � 4k1 þ k1 ¼ k. tu

Now, we consider a restricted version of the 3Pla-

narVC problem: Given a planar graph G ¼ ðV ;EÞ satisfying

the following two constraints: 1) each node has degree at most

3 and 2) the shortest path (a path with minimum number of

edges) between any two degree-3 vertices is at least 3. Compute

a vertex cover with minimum size. We denote this problem

by 3rPlanarV C. Note that, in an instance of 3rPlanarVC,

the shortest path between two degree-3 vertices contains

at least two degree-2 vertices.

Lemma 2.2. 3rPlanarVC is NP-Complete.

Proof. 3rPlanarV C 2 NP is trivial. Now, we show that
3PlanarVC is polynomial time Turing reducible to
3rPlanarVC.

Consider any instance of 3PlanarVC, denoted by
G ¼ ðV ;EÞ. For each edge e 2 E, place two Steiner points
which divide e into three equal-sized edges, as shown in

Fig. 2. With this modification, we get G0 ¼ ðV 0; E0Þ, an
instance of 3rPlanarVC. This construction takes polyno-
mial time. Now, we show that G has a VC of size k iff G0

has a VC of size kþ jEj.
Let C be a VC of G with size k. Let C0 ¼ �. For each

edge ðu; vÞ 2 G, we have three edges ðu; aÞ; ða; bÞ; ðb; vÞ in
G0 as shown in Fig. 2. For each edge ðu; vÞ 2 G, if u 2 C,
put b to C0, otherwise, put a to C0. (Note that we only
consider one node u in edge ðu; vÞ.) After that, put all
vertices in C into C0. It is clear that C0 is a VC of G0 with
size jC0j ¼ kþ jEj.

Conversely, suppose we are given a VC C0 of G0 with
size kþ jEj. Let C ¼ �. For every three edges like
ðu; aÞ; ða; bÞ; ðb; vÞ in Fig. 2, C0 must contain either a or b
or both. If a 2 C0 and b =2 C0, then v 2 C0 to cover edge
ðb; vÞ. If b 2 C0 and a =2 C0, then u 2 C0 to cover edge
ðu; aÞ. If both a and b are 2 C0, then neither u nor vwill be
in C0 since C0 is minimal. Based on this analysis, we
compute C in the following way: let C ¼ C0 \ V . For
every three edges like ðu; aÞ; ða; bÞ; ðb; vÞ in Fig. 2, if both a
and b are included in C0, then set C ¼ C [ fug. It is clear
that C is a VC of G with size k. tu

2.1 SMET is NP-Hard

Now, we are going to show that 3rPlanarVC is polynomial
time Turing reducible to our SMET problem. The decision
version of 3rPlanarVC is denoted by P1 and is stated below:

P1. Given a planar graph G ¼ ðV ;EÞ and a constant k,
with G satisfying the following two constraints: 1) G has a
degree at most 3 and 2) the shortest path between any two
degree-3 vertices is at least 3. Is there a vertex cover of G
with a size at most k?

We use P2 to denote the decision version of our SMET
problem:

P2. Given a set of vertices V 0 and a real number P , is there
a power assignment such that the total energy is at most P?

We begin with a brief review of several terms in graph
theory. Each closed area in a planar graph is called a face.
According to Leonhard Euler formula, f ¼ jEj � jV j þ 1,
where f is the number of faces in a planar graph. Each face
F is associated with Fx edges and Fx vertices, which form
the boundary of the face. We denote the vertex set of F by
fvF1

; vF2
; � � � ; vFx

g. In an instance of P1, if a face has y
neighboring faces, then there are at least 2y degree-2
vertices on its boundary. Two neighboring faces share at
least two degree-2 vertices.

Now, we first construct an instance of P2 (denoted by V 00)
from any instance of P1 (denoted by graphG ¼ ðV ;EÞ). This
construction procedure is relatively complicated. First, we
compute a Steiner tree � to connect all vertices in G. The
superposition of � and G is a planar graph G0. Then, we use
slightly different strategies to Steinerize edges in � and
edges inG. After this Steinerization, we get an instance of P2

which contains all Steiner points and original vertices in G.

2.1.1 Constructing Steiner Tree �

This procedure contains two steps, as shown below:

1. Initally,F ¼ �. Start fromany faceF . Addavertex g in
thecenterofF .Drawedges ðg; vF1

Þ; ðg; vF2
Þ; � � � ; ðg; vFx

Þ
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Fig. 2. Each edge e ¼ ðu; vÞ in G ¼ ðV ;EÞ is replaced by three edges

ðu; aÞ; ða; bÞ; ðb; vÞ in G0 ¼ ðV 0; E0Þ.



to connect g and all vertices associated with F . Put F
intoF .

2. Choose a face F 0 =2 F satisfying the following
constraints: a) F 0 shares a common edge with some
face F 00 in F and b) F 0 has maximum number (� 1)
of new vertices not on the boundary of any face in F .
Add a vertex g0 inside F 0. Connect g0 with each of the
new vertices on the boundary of F 0. Choose a
degree-2 vertex q which is located on the boundary
of F 0 and F 00. Note that we can always find this
vertex q, since F 0 and F 00 share at least three edges as
their common boundary. Connect q and g0. Repeat
this step until no F 0 exists.

The Steiner tree � connects all vertices in G. No edge in �

overlaps with any edge in G. The superposition of � and G

forms planar graph G0. The degree of non-Steiner vertices

(vertices in V ) in G0 is at most 4. Each vertex v 2 V is

incident to exactly one edge in � , if v has a degree of 3 in G;

or one or two edges in � , if v has a degree of 2 in G. The

example in Fig. 3 demonstrates this construction procedure.

2.1.2 Steinerizing the Planar Graph G0

Before the Steinerization, we need to make some modifica-

tion to G0. Note that, with this procedure, bent or curved

edges may be introduced. But, the graph remains planar.

This modification is stated below:

1. If v 2 G0 has a degree of at most 4, as shown in Fig. 4,
we adjust the edges such that angles formed by any
two neighboring edges are the same.

2. Other vertices in G0 must belong to � and each has a
degree of at least 5. Replace each of these vertices by
a widget as shown in Fig. 5. After this modification,
each new vertex has a degree of at most 4. We now
adjust edges such that angles formed by any two
neighboring edges are the same, as shown in Fig. 4.

Let L1
0 be the smallest edge length in the modified G0. Let

L2
0 be the shortest Euclidean distance between two edges.

Set L0 ¼ minfL1
0; L

2
0g. Select two numbers L1 and L2 such

that L1 <
1
3 � L0, L2 < L1. We choose L1 ¼ 1

4 � L0. Choose L2

such that it is the largest common divisor, which is < L1, of

all jðu; vÞj � 2 � L1, where ðu; vÞ 2 E, and all jðu; vÞj, where

ðu; vÞ =2 E. Thus, both jðu; vÞj and jðu; vÞj � 2 � L1 are multi-

ples of L2. (Remember that E is the edge set of the original

graph G.)

. For each e ¼ ðu; vÞ 2 E, place equally spaced Steiner
points in the middle part of e , as shown in Fig. 6a.
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Fig. 3. The step by step demonstration for constructing a Steiner tree to connect all vertices in G. In this figure, solid lines represent edges in G, while
dashed lines represent edges in � .

Fig. 4. Modify nodes with a degree less than 5 in G0. (a) v 2 G0 has a degree of two, � ¼ 180 degrees, (b) v 2 G0 has a degree of three, � ¼ 120
degrees, and (c) v 2 G0 has a degree of four, � ¼ 90 degrees.

Fig. 5. Widget for transforming a node in � with a degree of � 5. (a) Vertex v has a degree of exactly 5. (b) Widget when v has a degree of x � 6.
Here, t ¼ dx�6

2 e þ 2.

Fig. 6. (a) e ¼ ðu; vÞ is an edge in the original graph G. (b) e ¼ ðu; vÞ is an edge in � .



. For each e ¼ ðu; vÞ =2 E, place equally spaced Steiner
points on e, as shown in Fig. 6b.

We denote this modified and Steinerized graph by G00.
All the vertices in G00 form an instance of P2, our SMET
problem. We denote the vertex set in G00 by V 00. This
construction takes polynomial time.

2.1.3 Transmit Power Assignment

Let C be any VC of G with size k. For each edge
ðu; vÞ 2 E, choose u if u 2 C, or v if v 2 C, but not both, as
its cover. In other words, each edge in G has exactly one
cover in C. Let pv be the power assigned to v. Note that,
any edge ðu; vÞ 2 E in G is divided into many short edges
in G00: ðu; u1Þ; ðu1; u2Þ; � � � ; ðux; vÞ, where ux ¼ ðjðu;vÞj�2�L1Þ

L2
þ 1

is the number of Steiner points on ðu; vÞ. If u is a cover of
ðu; vÞ in G, we also say u is a cover of edge ðu; u1Þ in G00.
Now, we assign energy to each vertex v00 2 V 00 according
to the following rule:

pv00 ¼
fðL1Þ ðv00 2 V ^ v00 2 CÞ _

ðv002V 00�V ; u2V ^u is a cover of edge ðu;v00Þ in G00Þ

fðL2Þ o:w:

8><
>:

ð1Þ

It is clear that this assignment generates a strong
topology with a total power of

P ¼ ðkþ jEjÞ � fðL1Þ þ ðjV 00j � k� jEjÞ � fðL2Þ:

Conversely, if 8v00 2 V 00 is assigned a power based on (1),
the set C ¼ fv00 j v00 2 V \ V 00 ^ pv00 ¼ fðL1Þg is a VC of G
with size k.

Theorem 2.3. SMET is NP-Complete.

Proof. It is obvious that SMET is in NP. From the above
analysis, we know that SMET is NP-hard. tu

3 TWO HEURISTICS TO APPROXIMATE SMET

SMET is NP-Complete, thus, no efficient exact algorithm
exists. The best we can do is to seek fast approximation
heuristic with good performance ratio. In this section, we
are going to analyze the performance of two heuristics. The
first one is based on minimum spanning tree (MST). We
assign power to each sensor such that it can reach the
farthest neighbor in the tree. The topology generated by this
power assignment (only bidirectional links are considered)
is globally connected. The second one is an incremental
power heuristic. We build a globally connected topology
from one node, selecting a node with minimum incremental
power to add to the topology at each step. At any time in
this heuristic, all bidirectional links in the partial topology
form a connected graph. These two heuristics are approx-

imation algorithms to SMET. We will compare them
through simulation.

3.1 Minimum Spanning Tree-Based Heuristic

A naive heuristic is to compute a minimum (edge-cost)
spanning tree (MST) and let each sensor transmit at a power
that can reach its farthest neighbor in the tree. We call this
power assignment based on MST and call this heuristic MST.

Lemma 3.1. Power assignment based on MST has performance
ratio 2.

Proof. Let PMST , PSMET , and PgSMET denote the total
transmit power assigned based on any minimum
spanning tree of the problem instance, in the optimal
solution of SMET, and in the optimal solution of gSMET,
respectively. Since PMST � 2 � PgSMET (as proven by [6],
[9]) and PgSMET � PSMET , we see PMST � 2 � PgSMET . tu

We claim that this performance analysis is tight. An
example with a tight bound of 2 is shown in Fig. 7. In this
example, � is a sufficiently small positive real number.
There are 4nþ 2 nodes in the plane. They form n �-shaped
structures connected by edges with a length of 1. The total
power assigned to each node based on the minimum
spanning tree (represented by solid and dashed edges) is
4n � fð1Þ þ 2 � fð1Þ, while the optimal topology generated by
optimal power assignment (represented by dotted and
dashed edges, and solid edges with length �) has a power of
2n � fð1þ �Þ þ 2 � fð1Þ þ 2n � fð�Þ. When n ! 1, PMST

POPT
¼ 2.

This indicates that power assignment based on MST has a
performance ratio of exactly 2.

Lemma 3.2. The MST heuristic takes time Oðn2 log nÞ, where n
is the number of nodes in the network.

Proof. We need time OðnÞ to assign transmit power (there
are n vertices and n� 1 edges in the MST, and we need
to examine each edge in the tree twice) after the MST is
constructed. The famous Kruskal’s algorithm and Prim’s
algorithm both take time Oðn2 log nÞ to construct a
minimum spanning tree. Thus, MST heuristic takes time
Oðn2 log nÞ þOðnÞ ¼ Oðn2 log nÞ. tu

3.2 An Incremental Power Greedy Heuristic

We propose the following Incremental Power heuristic to
approximate the SMET problem. Interestingly, this heuristic
gives optimal solution to the example in Fig. 7.

Input: A set V of n sensors in the plane.

Output: A power assignment to each sensor such that the

resultant topology is connected and there is at least one

bidirectional path between any pair of sensors.

Incremental Power Heuristic:
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Fig. 7. An example to demonstrate that power assignment based on MST has a performance ratio of exactly 2.



1. Initialization. Let S be a set containing the subset of
sensors considered so far during the execution of the
heuristic. Let P be the total assigned power of all
sensors in S, and pu be the power expenditure in
sensor u. Initially, P ¼ 0, S ¼ v0, where v0 is any
sensor, pv0 ¼ 0.

2. Let S0 ¼ V � S. Find u 2 S and v 2 S0 such that
connecting u and v needs minimum incremental
power �P . Here, �P ¼ pv þ �pu , where �pu is the
increased power needed for u to reach v and pv is
the power needed to reach u from v. Set S ¼ S [ fvg,
P ¼ P þ �P .

3. If S ¼ V , output P and pv for 8v 2 V , and then stop;
otherwise, go to Step 2.

To demonstrate our algorithm, we provide the following
example, as shown in Fig. 8. Note that, in this example, we
use vertex label ½x; y� at node v to indicate that after step x,
v’s power is set to be y. Edge label s is the Euclidean
distance of the edge. � is a sufficiently small positive real.
The corresponding steps are described below:

1. S ¼ fAg, P ¼ 0.
2. �P ¼ 2fð1Þ, S ¼ fA;Bg.
3. �P ¼ fð�Þ, S ¼ fA;B;Cg.
4. �P ¼ 2fð1þ �Þ � fð1Þ, S ¼ fA;B;C;Dg.
5. �P ¼ fð�Þ, S ¼ fA;B;C;D;Eg.
6. �P ¼ fð1Þ, S ¼ fA;B;C;D;E; Fg.

Note that the total power is 2fð1þ �Þ þ 2fð1Þ þ 2fð�Þ, while
the power assignment based on minimum spanning tree
gives 6fð1Þ.
Lemma 3.3. The incremental power heuristic takes time Oðn3Þ,

where n is the number of nodes in the network.

Proof. The heuristic takes n steps, thus each edge will be
examined at most n times. There are at most Oðn2Þ
number of edges in a network with n nodes, thus the
incremental power heuristic takes time Oðn3Þ. tu

3.3 Simulation Results

We compare MST and the incremental power heuristic by
simulation. The minimum spanning tree is computed by
Kruskal’s algorithm. Assume N sensors are randomly

distributed in a 1; 000� 1; 000 square. The power function
used in the simulation study is fðdÞ ¼ t � d�, where � is a
constant between 2 and 4. Here, we assume threshold t is
the same for every sensor, thus it is set to be 1 in the
simulation. For each network size N (in our simulation,
10 � N � 100), we ran the two heuristics 100 times with
different seeds for random number generator. The averaged
results for � ¼ 2 is reported in Fig. 9, which shows that the
incremental power heuristic consumes 3.5 percent less
energy in average than MST.

Fig. 9 shows that when the network becomes larger, the
averaged total energy consumption decreases slowly. This
phenomenon is mainly due to two contradicting factors that
contribute to energy consumption: network sizeN and edge
length. For denser networks, the edge length is relatively
shorter and the averaged energy consumption becomes
smaller.

The variance and the maximum of the energy consump-
tion for � ¼ 2 are plotted in Figs. 10 and 11 to show how
stable these two heuristics are. Again, all results are averaged
based on 100 runs. In both Figs. 10 and 11, incremental power
heuristic is a little bit better than MST. To be specific, the
maximum transmit power produced by incremental power
heuristic is about 3.3 percent less than that by MST; and the
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Fig. 8. An example to demonstrate the incremental power heuristic in a step-by-step way.

Fig. 9. Simulation results (� ¼ 2) on average total energy consumption

for MST and the incremental power heuristic.



variance from MST is about 8.5 percent more than that from
incremental power.

Wealso notice that both curves for variance andmaximum
transmit power decrease as the network size increases. This
can be explained as follows: If we putN sensors in a 1; 000�
1; 000 square, then whenN becomes smaller, the edge length
is larger, thus themaximumtransmit power is bigger.Also, in
sparser networks, the total energy consumption depends
more on the deployment of the nodes (the locations or edge
lengths of the nodes), thus the variance of the total energy
consumption is larger.

For � ¼ 4, we obtain very similar results for average,
maximum, and variance of the total power consumption,
except that the two curves tend to be more closer. This is
because when � becomes larger, the incremental power
heuristic tends to select edges with shorter length,
approaching MST.

4 RELATED WORK

As we are dealing with the NP-Completeness and heuristics
of SMET in this paper, closely related works in literature, to
the best of our knowledge, are [6] and [9]. These articles
prove (with different Turing reduction scheme) the NP-
Completeness of gSMET and show that MST has a
performance ratio of 2 for gSMET. However, their proofs
are not suitable for SMET, as they are using the “directed
graph model” [17], while we need the “undirected graph
model” [17].

There exist other works in literature [13], [24], [27], [30]
that tackle the topology control problem in wireless sensor
networks, but the proposed heuristics have different
objectives compared with ours. For example, the heuristics
in [24] minimize the maximum transmit power to maintain
a globally connected topology; [27] and [30] try to minimize
the total power from every sensor to a master site.
Algorithms in [24], [27], [30] provide optimal solution with
respect to their optimization objectives. The work in [13]
tries to balance the node degree in the resultant topology.
Our heuristics, MST and incremental power, seek to
minimize the total transmit power to maintain a bidirec-
tionally strongly connected topology. These two heuristics
can provide approximate solutions to SMET. Now, we

briefly review those related works in the following
paragraphs.

Ramanathan and Rosales-Hain [24] show that one can
minimize the maximum per node transmit power and
maintain global connectivity and biconnectivity. The basic
idea is stated below. To guarantee connectivity, a sensor’s
transmit power only needs to be strong enough to reach all
its immediate neighbors in a minimum edge-length span-
ning tree. With this transmit power, in many cases, the
induced graph is a mesh, not a tree, due to the broadcast
nature of a wireless sender. Thus, we can adjust each
transmit power such that it only reaches a subset of the
previous neighbor set, as long as the topology is still
connected. This paper [24] also proposes two distributed
heuristics for topology control. The first one controls node
degree by adjusting transmit power. This heuristic does not
guarantee global connectivity. The second one takes
advantage of the global information such as node positions
collected by network layer routing protocols. This heuristic
guarantees a connected network only if the underlying
protocol provides up-to-date global information.

The following works try to minimize the total power
from every sensor to a master site. Rodoplu and meng [27]
assume that each network node knows the position of itself
and all its neighbors that can be reached with maximum
transmit power. (This neighbor set is denoted by N .) Their
proposed heuristic is distributed, and contains two phases:
First, each node computes the relay set R such that the
transmit power is minimized when reaching all nodes in
N �R through R. This phase determines the transmit
power for each node. Next, a directed path with minimum
cost (the sum of both transmit and receive powers) to a
designated master site from each node is computed by
applying the distributed Bellman-Ford algorithm [18].
Wattenhofer et al. [30] proposes a cone-based distributed
topology control algorithm, which assumes that nodes can
detect each other’s direction through message exchange.
This algorithm also contains two phases: First, each node
increases its transmit power until at least one node is
detected in each direction. A direction is defined by a cone
with angle �. These detected nodes form the neighbor set.
In the second phase, each node removes those neighbors
from its neighbor set that can be reached by relaying
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Fig. 10. Simulation results (� ¼ 2) on maximum total energy consump-

tion for MST and the incremental power heuristic.

Fig. 11. Simulation results (� ¼ 2) on variance of total energy

consumption for MST and the incremental power heuristic.



through other neighbors. To bound the degree, nodes are
removed from the neighbor set even though higher power
are needed to reach them by relaying, provided the power
increase is not too high. This heuristic guarantees a
connected topology if � � 2�

3 . Li et al. [16] further analyzes
this heuristic and concludes that � � 5�

6 is a necessary and
sufficient condition for global connectivity. Borbash and
Jennings [4] gives another algorithm for topology control
with the help of local and directional information, which is
similar to [30]. In the first phase, each node u grows its
transmit power until a not-yet-covered node vj is reached. In
the second phase, u computes a cone which spans the area
covered by vj. Repeat these two phases until the 2�
surrounding area of u is jointly spanned by cones. This
algorithm actually computes a Relative Nearest Graph. The
topology maintained has good overall performance in terms
of interference, reliability, and power usage.

All the above works conduct topology control by
adjusting transmit powers. There exist other strategies/
ideas for topology control. For example, Hu [13] first
determines a topology according to Delaunay triangulation.
Then, the degree of each node is adjusted through neighbor
negotiation such that each node has a similar number of
neighbors. This work actually applies heuristics to select
logical data links to form a degree-balanced topology.
Cheng et al. [8] studies by simulation the effectiveness of
decreasing total consumed power to maintain global
topology when a very few number of relay sensors are
introduced. The objective of their work is to introduce relay
sensors to decrease total power. The authors also propose a
2-approximate heuristic to the following network optimiza-
tion problem: Given a sensor network with fixed transmit
power, compute the minimum number of relay sensors
needed to maintain the global connectivity.

5 CONCLUSION AND FUTURE WORK

In this paper, we study the SMET problem, which asks for
the minimum power assignment to each sensor in a
wireless sensor network to maintain global connectivity.
SMET considers only bidirectional links, which makes it
different from other works in the literature [6], [9], [17]. We
show how to formulate our SMET problem and prove its
NP-Completeness. We also propose two heuristics, the
incremental power and MST, to approximate SMET. Their
performances are compared by simulation.

We believe that there are many topology control related
works worthy of investigating. It is anticipated that works
in [13], [24], [27], [30] may lead to the design of some sound
heuristics for SMET. We plan to further explore along this
direction and design and evaluate applicable heuristics
with better performances for SMET.

We also plan to study various extended SMET problems
in the future. We are especially interested in seeking
efficient (both distributed and centralized) heuristics for
the following problems:

1. Assign minimum power to each sensor in a wireless
sensor network such that there are at least k � 2
disjoint paths between any pair of sensors.

2. Assign minimum power to each sensor in a wireless
sensor network such that there are at least k � 1
disjoint paths between any pair of sensors and the
number of neighbors of each sensor is upper
bounded by some constant dmax.

These problems are harder than SMET. We believe that both
of them are significant in helping to design long-lived and
survivable sensor networks.
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