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Abstract—Key predistribution has been claimed to be the only viable approach for establishing shared keys between neighboring

sensors after deployment for a typical sensor network. However, none of the proposed key predistribution schemes simultaneously

achieves good performance in terms of scalability in network size, key-sharing probability between neighboring sensors, memory

overhead for keying information storage, and resilience against node capture attacks. In this paper, we propose SBK, an in situ self-

configuring framework for bootstrapping keys in large-scale sensor networks. SBK is fundamentally different from all key

predistribution schemes. It does not require keying information1 predeployment. In SBK, sensors differentiate their roles as either

service nodes or worker nodes after deployment. Service sensors construct key spaces and distribute keying information in order for

worker sensors to bootstrap pairwise keys. An improved scheme iSBK is also proposed to speed up the bootstrapping procedure. We

conduct both theoretical analysis and simulation study to evaluate the performances of SBK and iSBK. To the best of our knowledge,

SBK and iSBK are the only in situ key establishment protocols that simultaneously achieve good performance in scalability, key-

sharing probability, storage overhead, and resilience against node capture attacks.

Index Terms—Wireless sensor networks, in situ key establishment, key predistribution.

Ç

1 INTRODUCTION

SECURE communication [27] is critical for many sensor
network applications. Due to its efficiency, symmetric

key cryptography is very attractive in sensor networks.
However, bootstrapping shared keys for neighboring sen-
sors is a challenging problem attributed to the unavailability
of topology information before deployment and the limited
storage budget within sensors2 [6]. Even though a number of
key predistribution protocols have been proposed (for
example, [7], [10], [11], [13], [14], [16], and [17]), none of
them can simultaneously achieve good performance in terms
of scalability in network size, key-sharing probability between
neighboring sensors, memory overhead for keying information
storage, and resilience against node3 capture attacks. In this
paper, we propose SBK, an in situ self-configuring frame-
work for bootstrapping keys in large-scale sensor networks.

In SBK, keys are computed dynamically and automati-
cally after deployment based on several system parameters
pertaining to network density, sensor nominal transmission
range, memory budget for security information storage, etc.
No deployment knowledge is required beforehand, and
nodes explore the particulars of the real network settings
themselves and establish pairwise keys accordingly. In SBK,
a fraction of sensors self-elect to become service nodes if need
be. These sensors are in charge of key space generation and
distribution. The majority of the sensors, namely, worker
nodes, get keying information from service sensors in their
vicinity. A piece of keying information is called a keying
share. Each service sensor generates a key space and
distributes the corresponding keying shares to at most �
worker sensors through a computationally asymmetric
channel that shifts the large amount of computation
overhead to the service node. Each worker sensor receives
at most one keying share from one key space (service
sensor). These key spaces are �-collusion resistant, which
means that a key space remains secure as long as not more
than � keying shares (worker sensors) of the key space are
released to (captured by) an attacker. Two worker sensors
can compute a common key once they obtain keying
information from the same service node. SBK regulates
that at most � worker sensors reside in the same key space,
leading to a “perfect” resilience against node capture
attacks. Furthermore, SBK has low memory overhead but
can establish secure communication for almost all pairs of
neighboring sensors. SBK is a localized procedure which
preloads no random keying information to any sensor
before deployment and thus achieves a perfect scalability in
network size.

We also propose an improved SBK (iSBK) to speed up the
bootstrapping procedure. iSBK retains all the nice features
of SBK. The simulation study indicates that iSBK achieves
even better key-sharing probability, with the trade-off of a
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1. Keying information is defined to be a piece of information drawn from
a key space for shared key computation.

2. The conflict between the large memory requirement due to the high
keying information redundancy in key predistribution and the limited
memory budget is sometimes referred to as “randomness” [12], since the
useful information is “random” before deployment.

3. Note that we use sensors, nodes, and sensor nodes interchangeably
throughout this paper.
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slight increase in storage and computation overhead. SBK
and iSBK are truly in situ schemes for bootstrapping keys in
sensor networks that place no special requirement on
regular sensors.

We conduct both theoretic analysis and simulation study
to evaluate the performance of SBK. Compared to the
majority of existing key predistribution schemes [7], [8],
[10], [13], [16], [18], [29], SBK and iSBK have the following
characteristics:

. SBK/iSBK is a localized framework that requires no a
priori knowledge. This feature is particularly attrac-
tive, since in many applications, sensors are dropped
from aircraft, and the topology is unpredictable.

. SBK/iSBK has high scalability in network size, the
key-sharing probability is high too, each sensor has
low storage overhead, and SBK/iSBK has perfect
resilience against node capture attacks. To the best of
our knowledge, SBK and iSBK are the only ones that
achieve these four objectives simultaneously.

The remainder of this paper is organized as follows:
Major key predistribution schemes are summarized in
Section 2. Preliminaries, models, and assumptions are
sketched in Section 3. SBK, the self-configuring framework
for bootstrapping keys in sensor networks, is proposed in
Section 4 and is evaluated in Section 5. An improved
version (that is, iSBK) is elaborated in Section 6. The
simulation studies for both schemes are reported in
Section 7. Finally, we conclude our paper in Section 8.

2 RELATED WORK: KEY PREDISTRIBUTION

In this section, the majority of related work on key
predistribution is summarized and compared. We refer the
readers to [5] for a more comprehensive literature survey.

The basic random-keys scheme is proposed by Eschenauer
and Gligor [13], in which a large key pool K is computed
offline, and each sensor picks m keys randomly from K
without replacement before deployment. Two sensors can
establish a shared key, as long as they have at least one key
in common. To enhance the security of the basic scheme
against small-scale attacks, Chan et al. [7] propose the
q-composite keys scheme, in which q > 1 number of
common keys are required for two nodes to establish a
shared key. This scheme performs worse in resilience when
the number of compromised sensors is large.

In these two schemes [7], [13], increasing the number of
compromised sensors increases the percentage of compro-
mised links shared by uncompromised sensors. To over-
come this problem, in the same work, Chan et al. [7]
propose boosting up a unique key for each link through
multipath enhancement. For the same purpose, Zhu et al.
[30] propose utilizing multiple logic paths. To improve the
efficiency of key discovery in [7] and [13], which is
realized by exchanging the identifiers of the stored keys or
by a challenge-response procedure, Zhu et al. [30] propose
an approach based on the pseudorandom key generator
seeded by the node ID. Each sensor computes the key
identifiers and preloads the corresponding keys based on
its unique ID. Two sensors can determine whether they
have a common key based on their IDs only. Note that
this procedure does not improve the security of the key

discovery procedure, since an attacker can still figure out
the key identifiers as long as the algorithm is available.
Furthermore, a smart attacker can easily beat the pseudo-
random key generator to compromise the network faster
[9]. Actually, for smart attackers, challenge response is an
effective way for key discovery, but it is too computation-
ally intensive. Di Pietro et al. [9] propose a pseudorandom
key predeployment scheme that supports a key discovery
procedure that is as efficient as the pseudorandom key
generator [30] and is as secure as challenge response.

To improve the resilience of the random keys scheme
against node capture attacks, random-pairwise-keys schemes
have been proposed [7], [8], in which a key is shared by two
sensors only. These schemes have good resilience against
node capture attacks, since the compromise of a sensor only
affects the links incident to that sensor. The difference
between [7] and [8] is that the sensors in [7] are paired
based on their IDs, whereas in [8], they are on virtual grid
locations. Similar to the random-keys schemes, random-
pairwise-keys schemes do not scale well to large sensor
networks. Neither do they have good key-sharing prob-
ability due to the conflict between the high keying storage
redundancy and the memory constraint.

To improve the scalability of the random-keys schemes,
two random-key-spaces schemes [10], [16] have been proposed
independently in the 10th ACM Conference on Computer and
Communications Security (CCS 2003). These two are similar
in nature, except that they apply different key space
models, which will be summarized in Section 3.1. Each
sensor preloads several keying shares, with each belonging
to one key space. Two sensors can establish a shared key if
they have keying information from the same key space. Liu
and Ning [16] also propose assigning one key space to each
row or each column of a virtual grid. A sensor residing at a
grid point receives keying information from exactly two key
spaces. This realization involves a larger number of key
spaces. Note that these random key space schemes also
improve resilience and key-sharing probability because
more key spaces are available and two sensors compute a
unique key within one key space for their shared links.

Compared to the work mentioned above, group-based
schemes [11], [18], [29] have the best performance in
scalability, key-sharing probability, storage, and resilience
due to the relatively least randomness involved in these key
predistribution schemes. Du et al.’s scheme [11] is the first
to apply the group concept, in which sensors are grouped
before deployment, and each group is dropped at one
deployment point. Correspondingly, a large key pool K is
divided into subkey spaces, each associated with one group
of sensors. Subkey spaces overlap if the corresponding
deployment points are adjacent. Such a scheme ensures that
close-by sensors have a higher chance of establishing a
pairwise key directly. However, the strong assumption on
the deployment knowledge (static deployment point)
renders it impractical for many applications. It is interesting
to observe that two similar works [18], [29] have been
proposed in the Fourth ACM Workshop on Wireless Security
(WiSe 2005) independently. In [18], sensors are equally
partitioned based on IDs into disjoint deployment groups and
disjoint cross groups. Each sensor resides in exactly one
deployment group and one cross group. Sensors within the
same group can establish shared keys based on any of the
key establishment schemes mentioned above [3], [4], [7], [8],
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[13]. In [29], the deployment groups and cross groups are
defined differently, and each sensor may reside in more
than two groups. Note that these two schemes inherit many
nice features of [11], but they release the strong topology
assumption adopted in [11]. A major drawback of these
schemes is the high communication overhead when path
keys are sought to establish shared keys between neighbor-
ing sensors.

Even with these good efforts, the shared key establish-
ment problem still has not been completely solved yet. As
claimed in [12] and [24], the performance is still constrained
by the conflict between the desired probability to construct
shared keys for communicating parties and the resilience
against node capture attacks under a given capacity for
keying information storage in each sensor. Researchers
have been actively working toward this to minimize the
randomness [17], [14] in the key predistribution schemes.
Due to space limitations, we could not cover all of them
thoroughly. Interested readers are referred to a recent
survey [5] and the references therein.

Architectures consisting of base stations for key manage-
ment have been considered in [22] and [31], which rely on
base stations to establish and update different types of keys.
In [6], Carman et al. apply various key management
schemes on different hardware platforms and evaluate
their performance in terms of energy consumption, etc.
Authentication in sensor networks has been considered in
[22], [26], [31], etc.

Our work is radically different from all those men-
tioned above in that SBK provides a pure in situ frame-
work for bootstrapping keys in sensor networks. There is
no predistribution of any keying information. Sensors
differentiate their roles as either service nodes or worker
nodes after deployment through a bootstrapping proce-
dure, and service nodes generate and distribute keying
information to facilitate the bootstrapping of pairwise keys
between neighboring worker sensors. The idea of SBK is
fundamentally different from all key predistribution
schemes. Because the randomness inherent to all predis-
tribution schemes has been completely removed, SBK
achieves high scalability in network size, high key-sharing
probability, and low storage overhead. Furthermore,
because SBK explores the �-collusion-resistant property of
the underlying key space models, it has perfect resilience
against node capture attacks.

3 PRELIMINARIES, MODELS, AND ASSUMPTIONS

3.1 Key Space Models

The two key space models for establishing pairwise
keys—one is polynomial based [4], and the other is
matrix based [3]—have been tailored for sensor networks
in [16] and [10], respectively. These two models are
similar in nature.

The polynomial-based key space utilizes a bivariate
�-degree polynomial fðx; yÞ ¼ fðy; xÞ ¼

P�
i;j¼0 aijx

jyj over a
finite field Fq, where q is a large prime number.4 By
plugging in the ID of a sensor, we obtain the keying infor-
mation (called a polynomial share) allocated to that sensor.

For example, sensor i receives fði; yÞ. Therefore, two sensors
can compute a shared key from their keying information
as fðx; yÞ ¼ fðy; xÞ. For the generation of a polynomial-
based key space fðx; yÞ, we refer the readers to [4].

The matrix-based key space utilizes a ð�þ 1Þ � ð�þ 1Þ
public matrix5Gand a ð�þ 1Þ � ð�þ 1Þprivate matrixDover

a finite fieldGF ðqÞ, where q is a prime that is large enough to

accommodate a cryptographic key. We require D to be

symmetric. Let A ¼ ðD �GÞT . If D is symmetric, A �G is

symmetric too. If we let K ¼ A �G, we have kij ¼ kji, where

kij is the element at the ith row and the jth column of K,

i; j ¼ 1; 2; � � � ; �þ 1. Therefore, if a sensor knows a row of A,

say, row i, and a column of G, say, column j, then the sensor

can compute kij. Based on this observation, we can allocate to

sensor i a keying share containing the ith row of A and the

ith column of G such that two sensors i and j can compute

their shared key kij by exchanging the columns of G in their

keying information. We call ðD;GÞ a matrix-based key space,

whose generation has been well documented in [3] and

further in [10].
Both key spaces are �-collusion resistant [3], [4]. In other

words, as long as not more than � sensors receiving keying
information from the same key space release their stored
keying shares to an attacker, the key space remains perfectly
shared. Note that it is interesting to observe that the storage
space required by a keying share from either key space at a
sensor can be very close (ð�þ 1Þ � log q for the polynomial-
based key space [4] and ð�þ 2Þ � log q for the matrix-based
key space [3]) for the same �, as long as the public matrix G
is carefully designed. For example, Du et al. [10] propose
employing a Vandermonde matrix over GF ðqÞ for G such
that a keying share contains one row of A and the seed
element of the corresponding column in G. However, the
column of G in a keying share must be restored when
needed, resulting in ð�� 1Þ modular multiplications.

Note that our SBK framework for bootstrapping keys
works with both key space models. Service sensors need to
generate a key space and then distribute to each worker
sensor a keying share. Two worker sensors can establish a
shared key, as long as they have keying information from
the same key space. Note that, for a polynomial-based key
space, two sensors need to exchange their IDs, whereas for a
matrix-based key space, they need to exchange the columns
(or the seeds of the corresponding columns) of G in their
keying shares. In this paper, we will elaborate SBK in a
higher level without specifying any of the key space models
since both work fine for us.

3.2 Rabin’s Public Cryptosystem

We need Rabin’s public cryptosystem [23] as a crypto-
graphic primitive to establish a computationally asym-
metric secure channel through which keying information
can be delivered from a service sensor to a worker sensor.
Rabin’s system requires a public key n and a private key
ðp; qÞ such that n ¼ p � q, where p and q are large primes.
The encryption of a message M, denoted by EnðMkBÞ ¼
ðMkBÞ2 mod n, involves one modular squaring operation,
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where B is a predefined pattern for ambiguity resolution in
Rabin’s decryption. However, recovering the plaintext M
by computing Dp;qðEnðMkBÞÞ takes much higher computa-
tion (comparable to that of RSA). For details on Rabin’s
public cryptosystem, we refer the readers to [21] or [23].

3.3 Network Model and Security Assumptions

We target a large-scale sensor network with homogeneous
sensors dropped over the deployment region through
vehicles such as aircraft. Therefore, no topology information
is available before deployment. Sensors are preloaded with
several system parameters and differentiate their roles as
either worker nodes or service nodes after deployment.
Worker sensors are in charge of sensing and reporting data
and thus are expected to operate for a long time. Service
sensors take care of key space generation and keying
information dissemination to assist in bootstrapping pair-
wise keys among worker sensors. They may die early due to
depleted energy resulting from high workload in the
bootstrapping procedure. In this sense, they are sacrifices.
Nevertheless, we assume that service sensors are able to
survive the bootstrapping procedure. Note that all sensors
are motelike and have limited storage for data and code. For
example, the Mica2 mote [1] has 128-Kbyte program flash
memory, 512-Kbyte measurement flash that can support
more than 100,000 measurements, and 4-Kbyte configura-
tion Eeprom. We assume that the measurement flash can be
used to hold a key space within a service node during the
configuration procedure.

Since all sensors are homogeneous, their transmission
ranges are assumed to be the same. Therefore, the induced
network topology is a disk graph. Two sensors are
neighbors if they are located within each other’s transmis-
sion range. They are called one-hop or immediate neigh-
bors. We further assume that there exists a reliable MAC
protocol such as [28] to schedule the local broadcastings in
SBK for collision avoidance.

In our consideration, sensors are not tamper resistant.
The compromise or capture of a sensor releases all its
security information to the attacker. However, as argued in
[2] and [31], a sensor deployed in a security-critical
environment must be designed to survive at least a short
interval Tsurvival when captured by an adversary;6 otherwise,
the whole network can be easily taken over by the
opponent. Therefore, we can safely assume that, during
the bootstrapping procedure, attackers can only passively
eavesdrop some of the messages. Note that a global passive
adversary that can monitor all communications everywhere
in the deployment region at all times is a too-strong security
model [2]. We employ a key k0 shared by all sensors
preloaded before deployment such that all messages ex-
changed in the node configuration procedure can be
protected by a popular symmetric cryptosystem such as
AES or Triple-DES. This key will be used by worker sensors
and service sensors to mutually authenticate each other
against sensor injection attacks.7 Note that k0 should be strong
enough such that it is almost impossible for an adversary to

recover it when obtaining a number of ciphertexts before
the bootstrapping procedure is complete. Let Tk0

be the
minimum time needed to recover k0. It is reasonable to
assume that Tb << minfTsurvival; Tk0

g, where Tb is the
maximum time needed by the bootstrapping procedure.
For example, we can choose k0 to be 128 bits when AES is
applied as the symmetric cryptosystem.

We assume that sensors are coarsely time synchronized
by adopting techniques such as those proposed in [15] and
[25] before deployment such that they can start the
bootstrapping procedure roughly simultaneously. We also
assume that all sensors are roughly deployed at the same
time. In other words, the total deployment time is much
smaller compared to Tsurvival and Tk0

. Furthermore, we
assume that routing is out of the scope of this paper. Note
that these assumptions are practical and have been adopted
by many of the related works (for example, [2] and [31]).

4 SBK: THE SELF-CONFIGURING FRAMEWORK FOR

BOOTSTRAPPING KEYS

In this section, we elaborate SBK, a self-configuring frame-
work for bootstrapping keys in large-scale sensor networks.
SBK consists of three phases. In the first phase, a
probability-based approach is applied to elect service
sensors. Each service sensor constructs a key space for later
use. In the second phase, each worker sensor associates
itself with service sensors in its neighborhood and acquires
keying information from each of them through a compu-
tationally asymmetric secure channel. In the third phase,
two worker sensors derive a shared key if they are
associated with the same key space.

Note that all messages in SBK are authenticated via k0

through a symmetric algorithm such as AES or Triple-DES.
We will not emphasize this in the following elaboration. In
addition, note that after the bootstrapping procedure for key
distribution terminates, all sensors erase their key space informa-
tion and k0 for security enhancement.

4.1 Service Node Determination and Key Space
Computation

In SBK, the selection and configuration of service sensors
are controlled automatically by the following preloaded
bootstrapping program:

Algorithm 1: Node Self-configuration.

1: function Rl ¼ NodeConfigð�;H; Ps; Ts; t; p; qÞ . Rl is

the selected role
2: eligible true

3: while eligible and ðt > 0Þ do . Election and

configuration

4: TTL Ts
5: success electServiceNodeðPsÞ . Elect itself as a

service node with probability Ps
6: if success then . Elected as a service node

7: Rl  ServiceNode

8: K  getKeySpaceðÞ . construct a key space K
9: KeyingInfoDistrð�;H;K; p; qÞ . Algorithm 2:

keying information distribution

10: eligible false

11: else
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pairwise keys shared by worker sensors in order to retrieve secure
information in the future.



12: if haveServiceNodeððH-1Þ-hopÞ then . Select to
be a worker node if having service nodes

within H-1 hops

13: Rl  WorkerNode

14: eligible false

15: end if

16: end if

17: t t� 1

18: while TTL > 0 do

19: elapseðTTLÞ
20: end while

21: end while

22: if undefinedðRlÞ then . Select to be a worker node

if failing in all elections

23: Rl  WorkerNode

24: end if

25: return Rl

26: end function

Several preconfigured system parameters, listed in
Table 1, are uploaded to each sensor before deployment.
k0, as explained in Section 3.3, is employed to secure the
bootstrapping procedure against eavesdropping attacks
and sensor injection attacks. �, which is the security
parameter, determines the maximum number of worker
nodes to be served by a service sensor. H, which is the
forwarding bound, is the maximum distance in hop count,
over which the existence of a key space can be announced.
The probability of service node self election is denoted by
Ps. The initial values of H and Ps are determined by �
according to the following criteria:

DH � �; ð1Þ
Ps ¼ 1=�; ð2Þ

where DH is the average number of neighbors within an
H hop distance in the network. Note that DH can be
estimated based on the area of the network field, the
number of sensors to be deployed, and the nominal
transmission range of a sensor node. The duration time
per round for service node election is denoted by Ts,
whereas the total time needed for key bootstrapping is Tsbk.
For simplicity, we assume that Tsbk ¼ t � Ts, where t is the
total number of rounds for service node determination.
Note that Ts should be long enough to complete one round.
In reality, Ts is a function of the sensor’s computation
power and network characteristics (sparsity, regularity,
etc.). We will study the practical setting of Ts based on real
sensor parameters in our future research.

In addition, before deployment, each sensor randomly
picks up two primes, p and q, from a pool of large primes
without replacement.8 The prime pool is precomputed by
high-performance facilities, which is out of the scope of this
paper. Primes p and q will be used to form the private key
such that Rabin’s public cryptosystem [23] can be applied to
establish a secure channel for keying information dissemi-
nation in the second phase (see Section 4.2).

Right after deployment, a sensor bootstraps and elects
itself as a service node with the probability Ps. Whenever a
node becomes a service sensor, the bootstrapping program

generates a key space consisting of � keying shares. The
service node election process is repeated every Ts time for t
rounds. At the beginning of each round, a nonservice sensor
that does not have any service node within H � 1 hops
chooses to become a service node with probability Ps. If a
sensor succeeds in the self election, it sets up a key space,
announces its status to H-hop neighbors after a random
delay, and then enters the next phase for keying informa-
tion dissemination. Otherwise, it listens to key space
advertisements. Upon receiving any new key space an-
nouncements from a service node that is at most H � 1 hops
away (to be explained in Section 4.2), the sensor becomes a
worker node, erases its primes, and enters the next phase
for service sensor association and keying information
acquisition. Note that the reception of a service node
announcement also suppresses sensors who have self-
elected as service nodes but have not broadcast their
decisions to broadcast their status. If no service node within
H � 1 hops is detected in the current round, the sensor
participates in the next round. The details of the whole node
self-configuration procedure are given in Algorithm 1.

4.2 Service Node Association and Keying
Information Acquisition

Once a service sensor finishes the key space construction,
it broadcasts a beacon message, notifying others of its
existence after a random delay. A worker node receiving the
beacon will acquire keying information from the service
sensor through a secure channel established based on
Rabin’s cryptosystem between the two nodes. As illustrated
in Fig. 1, the service node association and keying informa-
tion acquisition is composed of three steps.

4.2.1 Key Space Advertisement

A service node announces its existence through beacon

broadcasting when its key space is ready. As illustrated in

Fig. 2, the beacon message includes: 1) a unique key space

ID, 2) the public key n, where n ¼ p� q and ðp; qÞ is the

corresponding private key preloaded before deployment,

and 3) a TTL value that is initialized to be the forwarding

bound H. Nodes receiving the message first subtract 1 from

TTL and then forward it if the new TTL value is greater

than zero. Hence, any sensor receiving the beacon message

is at most H hop distance away from the source service

node. A worker node sets up a secure channel to request a

keying share after it receives the key space existence

notification (see Section 4.2.2).
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As stated in the first phase, a sensor must decide whether
it is eligible for service node election in the next round.
Actually, this can be realized easily based on the format of
the message given in Fig. 2. If a sensor receives any beacon
with TTL � 1, then at least one service node exists within a
ðH � 1Þ-hop distance. In this case, the node turns out to be a
worker sensor and terminates its role determination
procedure. Otherwise, the sensor intends to become a
service node with probability Ps in the next round.

4.2.2 Secure Channel Establishment

Any worker node requesting the keying information from a
service node needs to establish a secure channel to the
associated service node. Recall that we leverage Rabin’s
public key cryptosystem [23] for this purpose. The public
key n is announced through the beacon broadcasting at the
previous step. Therefore, a worker sensor can pick up a
random number k and compute EnðkkBÞ ¼ ðkkBÞ2 mod n.
EnðkkBÞkB is transmitted to the corresponding service
node, which computes Dp;qðEnðkkBÞÞ by applying the
decryption algorithm.9 Now, k is known to both the worker
sensor and the service sensor and can be used as the secret
key of a secure channel for the keying information
dissemination in the next step.

The security of Rabin’s cryptosystem is based on the
factorization of large numbers; thus, it is comparable to
that of RSA. Its encryption operation is extremely fast,
which is several hundreds of times faster than RSA.
However, its decryption time is comparable to RSA. Thus,
the establishment of the secure channel shifts a large
amount of the computation overhead to service nodes.
Note that worker sensors are expected to operate for years,
whereas service nodes can die after their duty is complete.
In this aspect, service nodes work as sacrifices to extend
the network lifetime.

4.2.3 Keying Information Acquisition

After a shared key k is established between a worker node
and a service sensor, the service sensor allocates to the
worker node a keying share from its key space. Note that a
service sensor can only assign keying information upon
request to at most � worker nodes. The keying information,

encrypted with k based on any popular symmetric encryp-
tion algorithm (AES, DES, etc.), is transmitted to the
requesting worker node securely. The behavior of a service
node for keying information distribution is summarized in
Algorithm 2. Any two worker nodes receiving keying
information from the same service node can compute a
shared key for secure data exchange in the future.

Algorithm 2: Keying Information Distribution Algorithm.

1: function � ¼ KeyingInfoDistrðI; �;H; Pk
r ;K; p; qÞ . I

is the service node ID, � is the set containing the

keying information that has been allocated

2: � �

3: n p � q
4: Broadcast ðI; nÞ within H-hop neighborhood . Key

space advertisement

5: while j�j < � do . Loop for qualified requests

6: if receiveðrequest; EnðkkBÞkBÞ then . Secure key

exchange

7: k Dp;qðEnðkkBÞÞ
8: KeyingInfo an unused keyshare

9: � � [ fKeyingInfog
10: sendðEkðKeyingInfoÞÞ
11: end if

12: end while

13: return �

14: end function

4.3 Shared Key Derivation

Two neighboring nodes sharing at least one key space
(having obtained keying information from at least one
common service sensor) can establish a shared key
accordingly. We refer the readers to Section 3.1 for details
on how a shared key can be computed based on the
underlying key space model. Note that this procedure
involves the exchange of either node ID if a polynomial-
based key space model is utilized [4] or columns (seeds) of
the public matrix if a matrix-based key space model is
utilized [3]. To further improve security, nonces can be
introduced against replay attacks.

5 EVALUATION OF THE SBK SCHEME: ANALYTICAL

RESULTS

We consider the following metrics when analyzing SBK: the
key-sharing probability, the memory overhead at each sensor for
keying information storage, and the resilience against node
capture attacks. We also briefly discuss the computation and
communication overheads of SBK in this section. Note that we
will consider worker sensors only. We expect that SBK
yields a low memory overhead on worker sensors while
achieving a high security against node capture attacks and a
high probability in establishing a shared key between two
neighboring nodes.
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Fig. 1. Service sensor association. A worker node associates itself to a

service sensor to obtain the keying information through a secure

channel established based on Rabin’s public cryptosystem.

Fig. 2. The message format of key space advertisement.

9. Note that B is used for ambiguity resolution in Rabin’s decryption.
Therefore, it is transmitted as a plaintext.



5.1 Key Sharing Probability

Let pk be the probability that two neighboring worker
sensors are able to establish a shared key. To study pk, we
need the probability that two neighboring sensors u and v
obtain keying information from the same service node s;
that is, u and v are both within H hops from s, where H is
the forwarding bound for key space existence notification.
Since u and v are immediate neighbors, only two possible
cases exist:

. Case 1. u is the ith-hop neighbor of s and v is
the ith-hop or ðiþ 1Þth-hop neighbor of s, where
i ¼ 1; 2; . . . ; H � 1.

. Case 2. u and v are both the Hth-hop neighbors of s.

Computing the probability of either case 1 or case 2 is a
very challenging problem. In our study, we exploit the
Effective Radius (ER) model derived in [19], which computes
an ER Rh to enclose all the t-hop ðt � hÞ neighbors within a
disk region. As validated in [19], the ER model is an
effective approximation when the network is uniformly and
densely deployed.

From the ER model, all ith-hop neighbors of s reside in
the nonoverlapping area of the two disks defined by Ri�1

and Ri, as indicated in Fig. 3. Therefore, for case 1, v is
either in the area Ai or in the neighbor area Aiþ1, as shown
in Fig. 3a. For case 2, v can only be in the area AH , as shown
in Fig. 3b.

Let pA be the probability that a node is within a given
area A. Since the nodes are uniformly distributed in the
network, pA can be estimated with the coverage area of A.
The probability p0 that neighboring nodes u and v share the
key space of the service node s can thus be estimated as

p0 ¼ Pr½u 2 Ks and v 2 Ksjdistðu; vÞ � R�

¼
XH�1

i¼1

di
N
ðpAi
þ pAiþ1

Þ þ dH
N
� pAH

;
ð3Þ

where dh is the number of nodes that are h hops away from
s, Ks is the key space provided by service node s, distðu; vÞ
denotes the distance between u and v, and R is the nominal
node transmission range. Hence, the probability pk that any

two neighboring nodes share at least one common key
space is

pk ¼ 1� ð1� p0Þ
Pt

i¼1
Ni
s ; ð4Þ

where Ni
s is the number of service nodes generated in the

ith round computed by (8) and t ¼ Tsbk=Ts is the total

number of rounds for service node determination.

5.2 Storage Overhead

For simplicity, we count the memory overhead of our
protocol as the expected number of key shares (either

polynomial shares [16] or matrix shares [10]) that each
worker sensor receives from the surrounding service
sensors. In SBK, each worker sensor can obtain at most
one piece of keying information from a service node. Aside
from that, each service node can serve at most � worker
sensors. Therefore, the upper bound of the average number
of key shares stored in each worker node can be estimated

based on the number of service nodes generated during the
bootstrap procedure.

Assume that N sensors are uniformly distributed in the

network. Each sensor is preconfigured with the following

parameters: �, H, Ps, Ts, and Tsbk, as defined in Table 1. In

the first round, the number of service nodes generated is

N1
s ¼ N � Ps: ð5Þ

Among all the remaining sensors, those having no service

node within ðH � 1Þ hops can participate in the second
round for service node election. We denote the number of
sensors within h hops in the neighborhood by Dh. Thus, the
number of service nodes generated in the second round is
given as follows:

N2
s ¼ ðN �N1

s Þ � ð1� PsÞ
DH�1 � Ps: ð6Þ

Similarly, a node can elect itself as a service node with
probability Ps in the third round if and only if all of its
neighbors within ðH � 1Þ hops fail in the first two rounds of
elections. Therefore,

N3
s ¼ ðN �N1

s �N2
s Þ � ðð1� PsÞ

2ÞDH�1 � Ps: ð7Þ

It follows that the number of service nodes generated in the

ith round election is

Ni
s ¼ N �

Xi�1

j¼1

Nj
s

 !
� ð1� PsÞði�1Þ
� �DH�1

�Ps: ð8Þ

Altogether, there are t ¼ Tsbk=Ts rounds of service node

election. Hence, the average number of keys stored within

each worker sensor can be estimated by10

� � ��
Pt

i¼1 N
i
s

N �
Pt

i¼1 N
i
s

: ð9Þ
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Fig. 3. Two neighboring nodes belong to the same key space.
(a) Case 1: v is in area Ai or Aiþ1. (b) Case 2: v is in area AH .

10. The actual average is expected to be smaller than � .



5.3 Resilience

Recall that, in our SBK scheme, a service node can distribute
keying information to at most � worker sensors in its
neighborhood and then delete all the key space information,
and our key spaces are �-collusion resistant (see Section 3.1),
so it is impossible for an attacker to compromise any key
space. Furthermore, if all key spaces are unique, all shared
keys by neighboring sensors are unique. This is almost
certainly true in SBK, since each service node constructs the
key space randomly and independently. Therefore, links
protected by a shared key based on SBK remain secure, as
long as none of the two end sensors is compromised. This is
a dramatic improvement over random-keys schemes ([7],
[13], etc.), in which a key may be shared by multiple links.

A reader may argue that the limitation on the number of
worker nodes sharing one key space may lead to a larger
number of service nodes to be generated in SBK since each
worker node should have at least one key to maintain the
desired key-sharing probability. Actually, this represents a
trade-off between security and cost. In many cases, it is
desirable to sacrifice a small fraction of low-cost (service)
sensors to achieve a higher level of security. We will further
study this by simulation in Section 7.

5.4 Computation and Communication Overheads

In SBK, the computation overhead of a worker node comes
from three sources: encrypting a shared key k between a
service node and itself in secure channel establishment,
decoding the keying information obtained from the
associated service node in keying information acquisition,
and calculating the pairwise keys shared with its neighbors
in shared key derivation. The first involves one modular
squaring, whereas the second requires a symmetric decryp-
tion operation. On the average, a worker node completes �
(see (9)) such operations.

In general, given the keying information, computing a
shared key with one neighbor takes ð�þ 1Þ modular
multiplications for both key space models. This must be
repeated d� pk times per sensor on the average, where d
is the average node degree. However, if the matrix-based
key spaces are used and only a seed, instead of the
whole column, of the public matrix G is included in the
keying information, each worker sensor needs ð�� 1Þ � �
more modular operations for recovering the complete
matrix share.

The communication overhead of the worker sensors in
SBK results from requesting keying information from
service nodes and relaying messages for others. Each
worker sensor also needs to exchange information with its
neighbors for shared key derivation. The number of
broadcastings per sensor is bounded by Oð� � � þ dÞ.
Actually, this is overestimated, since in reality, a sensor
does not need to relay messages for all the worker sensors
with which to share at least one key space.

6 ISBK: THE IMPROVED SBK SCHEME

For security purposes, we expect that the time for the key
bootstrapping will not last too long; that is, we expect that
most of the worker nodes can obtain keying information
from service nodes and establish secure communications
with their neighbors within a short time.

Given the security parameter � and the duration time Ts
per round for service node election and configuration, we
would like to achieve a high key-sharing probability
between neighboring sensors while minimizing the whole
configuration time Tsbk. According to the theoretical analysis
in Section 5, the key-sharing probability is dependent on t,
where t ¼ Tsbk=Ts, and the number of service nodes Ni

s

generated in each round i for a given network (see (3) and
(4)). As indicated by (8), we must increase Ps to decrease t. In
the basic SBK scheme, Ps is fixed to be 1=�. Since each sensor
is expected to be associated with at least one key space, 1=�
is just the lower bound to ensure the desired key-sharing
probability. Therefore, node configuration may take a
relatively long time.

To speed up this bootstrapping procedure, we propose
an improved scheme, that is, iSBK, which can achieve
higher key-sharing probability in a shorter time compared
with the basic scheme. Similar to SBK, iSBK also contains
three phases: service sensor determination and key space
construction, service sensor association and keying information
acquisition, and shared key derivation. The differences reside
only in the first phase.

6.1 Sensor Determination and Key Space
Construction

We modify the initial values for the forwarding bound of
key space advertisement H and the probability of service
node election Ps according to the following criteria:

DH � �; ð10Þ
Ps ¼ 1=DH�1; ð11Þ

where Dh is the expected number of nodes within an h-hop
neighborhood, as defined before. Furthermore, the possibi-
lity of a node being elected as a service node is doubled in
each new round until it reaches 1.

The iSBK scheme generates more service nodes than the
basic algorithm. As mentioned earlier, the motivation for
doing so is to reduce the configuration time in order to
minimize the danger of “exposing” sensors insecurely to
adversaries. However, due to the low cost of sensors, the
number of service nodes as sacrifices should be tolerable. In
the next section, we will compare the percentage of service
nodes to be generated in a network regulated with the basic
SBK and the iSBK schemes, respectively, through simula-
tion study. The results indicate that iSBK can achieve a
better performance with a small increase in the number of
service nodes involved.

7 EVALUATION ON SBK AND ISBK: SIMULATION

RESULTS

In this section, we study the performance of both the basic
SBK and the iSBK schemes through simulation in terms of
key-sharing probability and storage overhead (with only
worker sensors considered). We also consider the percen-
tage of service nodes generated, which indicates the cost of
our in situ key establishment scheme.

Note that the security of SBK has been studied in
Section 5.3. Due to the �-collusion resistant property of the
underlying key space model, SBK exhibits a perfect
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resilience against node capture attacks by allowing at most
� worker sensors within the same key space. iSBK follows
the same regulation and possesses the same nice property.
Thus, after bootstrapping keys with the proposed SBK
(iSBK) scheme, no matter how many nodes are compro-
mised, the shared keys of the remaining sensors are still
kept intact, and the network can still function well in secure
communication.11

We measure the performance with the following metrics
in our simulation study:

. Key-sharing probability pk. To study the probability
that two immediate neighbors share at least one
common key space, we count the ratio of the number
of neighboring pairs sharing at least one common
service node to the total number of neighboring
pairs as an approximation.

. Keying information storage � . We count on � (9), the
average number of keying information that a sensor
obtains, to assess the storage overhead of a worker
sensor in SBK.

. Percentage of service sensors Ns=N . Since service nodes
intend to be sacrifices, fewer of them are desired. As
a metric, we use the percentage of service nodes
generated by SBK among all the nodes deployed in
the network.

In both the basic SBK and the iSBK schemes, three
system parameters affect the performance, i.e., the node
density of the network, the maximum number of worker
nodes � to be served by one service node, and the number
of rounds for service node election ðt ¼ Tsbk=TsÞ. In the
following, we design two experiments to study the relation-
ship between these factors and the performance of our
schemes. The results are expected to provide guidelines
when our schemes are applied to real sensor network
deployment. In both experiments, we consider a sensor
network deployed over a field of 1;000� 1;000. A number of
sensors are uniformly distributed,12 and each node is
capable of a fixed transmission range of 40. The simulation
results are averaged over 50 runs. We also plot the
analytical results (from Section 5) for comparison.

In the first experiment, we deploy 2,000 sensors in the
region. Fig. 4 shows the results obtained after the first, third,
and fifth rounds of service node election. We notice that
iSBK achieves a higher key-sharing probability within a
much shorter time than the basic SBK scheme. As
illustrated in Fig. 4a, t ¼ 3 is enough for iSBK to achieve
a pk close to 1. With the same amount of time, at most 80
percent of the neighboring pairs can establish secure
communication using the basic SBK. We also notice that,
compared to the basic SBK, iSBK generates more service
nodes, and therefore, worker sensors carry more key
spaces, as indicated in Figs. 4b and 4c. Nonetheless, in
iSBK, each worker node still consumes only a small
amount of memory ð� � 2Þ to achieve high key-sharing
probability. Note that both schemes achieve a desirable
level of pk at the expense of a very small memory overhead

in worker nodes. For example, almost all worker nodes can

establish secure communication with their neighbors using

iSBK, with each worker sensor storing about two keying

shares when t ¼ 3. Even with the basic SBK, pk is above 90

percent, with each worker node carrying less than two key

spaces when t ¼ 5. In summary, both SBK and iSBK can

achieve a high key-sharing probability between neighbor-

ing sensors and conserve the resources of worker nodes

effectively by selecting some service nodes as sacrifices.

Between the two schemes, iSBK requires a shorter config-

uration time with a reasonable memory overhead in

worker nodes. The comparison results confirm that the

theoretical analysis results derived in Section 5 are the

upper bound of the simulation ones.
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Fig. 4. Test 1: performance of the basic and the iSBK schemes in the
first, third, and fifth rounds, with N ¼ 2;000. (a) pk: the key-sharing
probability. (b) � : the keying information storage. (c) Ns=N: the
percentage of service nodes.

11. Key spaces are unique with very high probability since they are
independently generated.

12. Although only the uniform distribution is studied in the simulation,
both SBK and iSBK can be applied to any network topology.



In the second experiment, we study the performance of
SBK and iSBK under different network densities, with t
fixed to 3. We deploy N ¼ 2;000 or N ¼ 3;000 nodes in the
network area. As illustrated in Fig. 5, iSBK still outperforms
the basic one, whereas both achieve similar key-sharing
probability under different node densities. We also notice
that, under a given �, a higher node density does not
necessarily result in a larger percentage of service nodes nor
a heavier memory overhead since each service sensor is
expected to serve � worker nodes in the vicinity.

In Figs. 4c and 5c, SBK exhibits a “smoother” curve,
whereas iSBK may generate a similar percentage of service
sensors for some different � values. The reason is that, for
iSBK, different values of � may result in the same H and Ps
pair under a given network density according to (10) and

(11). Specifically, in our experiments, � ¼ 75; 100 lead to the
same pair of H and Ps, and so do � ¼ 125; 150 when
N ¼ 2;000. In the case of N ¼ 3;000, � ¼ 50; 75 lead to the
same pair of H and Ps, and so do � ¼ 100; 125; 150.

Furthermore, both experiments also indicate that SBK
and iSBK achieve similar key-sharing probability and
memory overhead for different � values. This indicates
that our schemes make sensors “self-configure” according
to the environments (system parameters, node density, etc.)
and elect service nodes when necessary. According to (1),
(2), (10), and (11), a key space is set up with the probability
Ps and advertised within the H-hop neighborhood, both
defined by �. The immunity from the variation of � shows
that the selection of Ps and H is appropriate with our
schemes. Since � determines the maximum number of
worker nodes that can be served by one service sensor, we
can expect a lower cost under a larger �. This coincides with
the results in Figs. 4c and 5c, where the number of service
nodes decreases as � increases.

Note that we have also conducted extensive simulations
to compare multiple existing key predistribution schemes
[7], [10], [13], [16] with SBK and iSBK in terms of key-
sharing probability and storage overhead, and we have
achieved results very favorable to SBK and iSBK. For
example, with the same parameter settings for � and � , for
SBK, pk > 80 percent, whereas for [10], pk � 15 percent. Due
to space limitations, these results have to be reported in a
different paper.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose SBK, a self-configuring frame-
work for bootstrapping keys in sensor networks. SBK is
fundamentally different compared to all existing key
predistribution schemes. It is an in situ key establishment
framework that achieves high scalability in network size
since it is purely localized. It exhibits a perfect resilience
against node capture attacks by exploring the �-collusion
resistant property of the underlying key space model. Since
SBK does not require predistribution of random-key-space-
related information, the randomness inherent to all key
predistribution schemes has been completely removed.
Therefore, SBK achieves a high key-sharing probability
with a low storage overhead. We also propose iSBK, which
speeds up the bootstrapping procedure of SBK. To our best
knowledge, SBK and iSBK are the first that simultaneously
achieve good performance in terms of scalability, key-
sharing probability, storage overhead, and resilience.

As our future research, we will study the impact of the
settings of the initial system parameters such as Ts, Tsbk, Ps,
and H on the performance of SBK. We intend to design a
new topology-adaptive in situ key establishment scheme
whose parameter settings can be adaptively adjusted based
on the local network topology. Practical settings of Ts based
on the real sensor’s computation power will also be
explored. We also plan to quantitatively study the resource
consumption and lifetime of service sensors. This research
plays a significant role in the performance of SBK.
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