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Abstract This paper addresses the following relay sensor

placement problem: given the set of duty sensors in the plane

and the upper bound of the transmission range, compute

the minimum number of relay sensors such that the induced

topology by all sensors is globally connected. This problem

is motivated by practically considering the tradeoff among

performance, lifetime, and cost when designing sensor net-

works. In our study, this problem is modelled by a NP-hard

network optimization problem named Steiner Minimum Tree
with Minimum number of Steiner Points and bounded edge
length (SMT-MSP). In this paper, we propose two approxi-

mate algorithms, and conduct detailed performance analysis.

The first algorithm has a performance ratio of 3 and the sec-

ond has a performance ratio of 2.5.
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1 Introduction

Wireless Sensor Networks (WSNs) are ad hoc multihop sys-

tems containing sensors connected by wireless links. The

flourishing research on WSNs is driven by the advances in

MEMS technology, CMOS logic, and wireless networking

[5, 11]. WSNs have many possible applications, ranging from

habitat monitoring to environment control [19]. WSN is used

to produce macro-scale effects from micro-devices through

coordinated activities of many sensors, thus connectivity is a

very important issue in WSN architecture design.

Wireless links are mainly determined by transmit powers

of sensors, and higher transmit power produces richer con-

nectivity. However, “in the context of untethered nodes, the

finite energy budget is a primary design constraint. Commu-

nications is a key energy consumer as the radio signal power

in sensor networks drops off with r4 [12] due to ground reflec-

tions from short antenna heights.” (quoted from [4].) Here in

this quote, r is the distance from the transmitter. This means

to reach a slightly longer distance, the sensor needs to dis-

patch much higher transmit power. The second reason for

the prohibitiveness of higher transmit power is the higher in-

terference to on-going traffic. The higher the power a sensor

transmits, the more the number of direct neighbors the sensor

has, and the higher the negative influence the sensor has on

the network throughput. The third reason is the lifetime of the

network [14], which is determined by the lifetime of sensors

as a whole. Wireless sensors are battery powered [10]. Either

battery renewal is prohibited by economic considerations or

it is impossible to recharge or replace a battery in a WSN.

The forth reason, but not the last, is that the heat dissipated by

higher-power transmission may meddle the sensing function

(i.e. temperature sensors).

However, these observations do not mean that the lower

the transmit power, the better. Very low transmit power may
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cause disconnected topology, and thus network malfunction.

It may cause rocketing hop count for message dissemina-

tion, thus ascending error rate and falling throughput. Eco-

nomically deploying a sensor network with very low trans-

mit power may be prohibitive, since the number of sensors

needed may be doubled or tripled. Therefore a sensor network

designer has to seek a tradeoff among performance, lifetime,

and cost. A number of problems have been formulated to

study this tradeoff. Many of them focus on topology con-

trol by minimizing the maximum transmit power [9, 15] or

minimizing total transmit power [3, 18] to maintain global

topology. Our research focus is different. We consider the

placement of relay sensors to connect all sensors on duty,

called duty sensors, with fixed transmit powers.

Our study is motivated by an important class of wire-

less sensor networks, in which the locations (i.e. monitored

sites) of the sensors are fixed and their placements are pre-

determined. Further, we assume all sensors are placed in a

2-dimensional plane. For example, in desertification moni-

toring, a set of sites in the desert are preselected and different

kinds of environmental sensors are placed in each site. The

sensor transmit power is pre-computed by comprehensively

considering factors on network lifetime, performance, cost,

etc. Since no sensor can reach the main office directly, indi-

vidual observations at each site need to be directed through

multihop relaying for further processing. Based on this con-

sideration, we study the following problem: given a set of
duty sensors (required sensors) in the plane, place minimum
number of relay sensors to maintain global connectivity such
that the transmission range of each sensor is at most R,
where R is a constant. This statement is modelled by the

network optimization problem named Steiner Minimum Tree
with Minimum number of Steiner Points and bounded edge
length (SMT-MSP) [8]:� Given a set of terminals (denoted by V ) in the plane and a

constant R, find a Steiner tree τ spanning V with minimum

number of Steiner points such that every edge in τ has

length at most R.

In this description, “terminals” refer to “duty sensors” while

“Steiner points” refer to “relay sensors.” SMT-MSP is a gen-

eralized Steiner Minimum Tree (SMT) problem. A Steiner

tree for terminal set V is a spanning tree over V ∪ S, where

S contains all points not in V , which are called Steiner points.

A SMT is a Steiner tree with minimum total edge length.

The main reason for minimizing the number of Steiner

points is to decrease system cost, as these relay sensors may

have higher capability, thus higher cost. For example, in the

desertification monitoring WSN, the relay sensors can be

simple base stations with higher processing and relaying abil-

ity, compared with those environmental sensors. SMT-MSP

is NP-hard [8]. Lin and Xue [8] have proved that steiner-
ized minimum spanning tree (adding minimum number of

Steiner points on the edges of a minimum spanning tree to

upper-bound the edge length to R) has performance ratio 5.

The performance ratio of an approximate algorithm A to a

minimization problem P is defined to be supI
AI

OPT I
, where

I is an instance of problem P , AI is the output from A for

instance I , and OPT I is the optimal solution for instance I .

In [2], Chen et al. show that steinerized Spanning tree actu-

ally has performance ratio exactly 4. They also present a new

O(n4)-time approximate algorithm with performance ratio at

most 3, where n is the number of given terminals. The first

algorithm proposed in this paper also has a performance ratio

of 3 but its time complexity is O(n3). The second algorithm

proposed in this paper is a randomized one with performance

ratio at most 5
2
.

In the following two sections we are going to propose

two approximate algorithms1 for SMT-MSP, together with

their theoretical performance analysis. We will briefly sum-

marize the related work in Section 4 and conclude our paper

in Section 5.

2 A ratio 3 algorithm for STP-MSP

For a given set P of terminals, a minimum spanning tree is

a tree interconnecting the terminals in P with edge between

terminals. For a given constant R, a steinerized minimum
spanning tree is a tree obtained from a minimum spanning

tree by inserting � |ab|
R � − 1 Steiner points to break each edge

ab into multiple pieces of length at most R. Edge ab is a

steinerized edge. A full component of a Steiner tree is a sub-

tree in which each terminal is a leaf and each internal node

is a Steiner point.

Given a set P of n terminals in the Euclidean plane, and

a positive constant R, we want to find a Steiner tree with

minimum number of Steiner points such that each edge in

the tree has length at most R. In [2], Chen et al. present an

O(n4)-time approximation with performance ratio at most 3.

With a slight modification, we may reduce the running time

to O(n3).

Our algorithm is given in Fig. 1. Since we construct 3-stars

in Step 2, the algorithm runs in O(n3) time. Now we analyze

this algorithm theoretically.

Let T be a Steiner tree and e be a line segment. C(T )

and C(e) denote the numbers of Steiner points in T and e,

respectively. |e| denotes the length of e.

Lemma 2.1. [2] Every steinerized minimum spanning tree
has the minimum number of Steiner points among all steiner-
ized spanning trees.

1 We use terminals and Steiner points to refer to the duty sensors and

relay sensors respectively.
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Fig. 1 The ratio-3 algorithm

Lemma 2.2. [8] There exists a shortest optimal Steiner tree
T ∗ for STP-MSP such that every vertex in T ∗ has degree at
most five.

Lemma 2.3. [2] Let T ∗ be a shortest optimal tree for STP-
MSP such that every Steiner point has degree at most five.
Let Tj be a full component of T ∗. Then the following hold:

(1) The steinerized minimum spanning tree on terminals
in Tj has at most 3 · C(Tj ) + 1 Steiner points.

(2) If Tj contains a Steiner point of degree at most four,
then the steinerized minimum spanning tree on terminals in
Tj has at most 3 · C(Tj ) Steiner points.

(3) If the steinerized minimum spanning tree on terminals
in Tj has an edge (of length at most R) between two terminals,
then it contains at most 3 · C(Tj ) Steiner points.

From (3) of Lemma 2.3, we know that if the number of

Steiner points contained in a steinerized spanning tree on

terminals in a full component Tj reaches the upper bound

3 · C(Tj ) + 1, then any two terminals can not be connected

directly by a single edge of length at most R, i.e., there must

be a Steiner point between them.

Theorem 2.4. Let T ∗ be an optimal tree for STP-MSP
and TA an approximation produced by Algorithm A. Then
C(TA) ≤ 3C(T ∗).

Proof: Let T S be a steinerized minimum spanning tree on

all terminals, and let k be the number of 3-stars produced by

Step 2 of Algorithm A. Then

C(TA) ≤ C(T S) − k.

By Lemma 2.2, we assume that each Steiner point of T ∗

has degree at most five. Assume that T ∗ has h full components

T1, T2, . . . , Th . For i = 1, 2, let T (i) be the components pro-

duced by Step i of Algorithm A. We construct a steinerized

spanning tree T as follows: Initially, set T := T (1), then for

each full component Tj (1 ≤ j ≤ h), add to T the steiner-

ized minimum spanning tree Hj on terminals of Tj . If the

resulted tree has a cycle, then destroy the cycle by deleting

some edges of Hj . Without loss of generality, suppose that

T1, T2, . . . , Tg (g ≤ h) are the full components in T ∗ such

that every Steiner point has degree five and T (1) ∪ Tj has

no cycle. Combining Lemma 2.1 and Lemma 2.3 with the

fact that for destroying a cycle from T ∪ Hj , a Steiner point

must be removed unless Hj contains an edge between two

terminals, we have

C(T S) ≤ C(T ) ≤ 3C(T ∗) + g,

i.e.,

C(TA) ≤ 3C(T ∗) + g − k.

Suppose that T (1) has p components. Then, T (2) has

p − 2k components C1, C2, . . . , C p−2k . Now we construct

another graph H on all terminals as follows: Initially put all

edges of T (1) into H , then consider every Tj (1 ≤ j ≤ g). If

Tj has a unique Steiner point (this Steiner point connects five

terminals which must lie in at most two C ′
i s), then among the

five terminals there are three pairs (edges) of terminals, each

pair (edge) lies in the same Ci . We add the three edges into

H . If Tj has at least two Steiner points, then there are two

Steiner points each connecting four terminals, and we can

also find three pairs (edges) of terminals such that each pair
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(edge) lies in the same Ci . Thus, we can add the three edges

into H . It is clear that H has at most p − 3g components.

Since each component of H is contained by a Ci , we have

p − 2k ≤ p − 3g, then g − k ≤ 3g
2

− k ≤ 0. This ends the

proof. �

3 A 2.5-approximate algorithm of STP-MSP

In this section, we give a randomized algorithm of ratio- 5
2

for the STP-MSP problem. The following are some useful

terminologies and Lemmas.

A Steiner tree for n terminals is a k-restricted Steiner tree
if each full component spans at most k terminals. A path

q1q2 . . . , qm in a tree T is called a convex path if for every

i = 1, 2, . . . , m − 3, qi qi+2 intersects qi+1qi+3. An angle of

degree more than 120◦ is called a big angle. An angle of

degree less than or equal to 120◦ is called a small angle.

Lemma 3.1. [2] Let q1q2 . . . , qm be a convex path.
Suppose there are b big angles among m − 2 an-
gles ∠q1q2q3, ∠q2q3q4, . . . , ∠qm−2qm−1qm. Then, |q1qm | ≤
(b + 2)R.

Note that if there is no small angle, |q1qm | ≤ (b + 1)R.

Thus this lemma is useful only when there are many small

angles in the convex path.

Lemma 3.2. [2] In a shortest optimal tree T for STP-MSP,
there are at most two big angles at a point of degree three,
there is at most one big angle at a point of degree four, and
there is no big angle at a point of degree five.

Let T ∗ be a full Steiner tree that is a shortest optimal tree

for STP-MSP on n terminals. Let si denote the number of

Steiner points of degree i in T ∗.

Lemma 3.3. [2] 3s5 + 2s4 + s3 = n − 2.

Theorem 3.4. [13] There exists a randomized algorithm for
the minimum spanning tree problem in 3-hypergraphs run-
ning in poly(n, wmax ) time with probability at least 0.5,
where n is the number of nodes in the hypergraph and wmax

is the largest weight of edges in the hypergraph.

Lemma 3.5. Consider a clockwise tour F of T ∗ that visits
the n terminals in the order of t1, t2, . . . , tn, t1 (see Fig. 2).
Then,

(i) the tour F has exactly n convex paths P1, P2, . . . , Pn

such that Pi connects two terminals ti and ti+1

(tn+1 = t1);

Fig. 2 The tour F that visits all the terminals

(ii) each angle at a Steiner point appears in these n convex
paths exactly once.

(iii) connect the two ends of Pi by an edge ei and then steiner-
ize ei , i = 1, 2, . . . , n. The total number of Steiner
points in any n − 1 ei ’s C̄ = ∑n−1

i=1 C(ei ), is upper
bounded as follows:

C̄ ≤ s4 + 2s3 + 2s2 + n − C(en)

= 3(s5 + s4 + s3) + 2s2 + 2 − C(en) (1)

We denote by TF the tree consisting of n terminals and
(n − 1) edges e1, e2, . . . , en−1.

Proof: (i) and (ii) are very easy to see from the structure of

T ∗. Now, we prove (iii). Consider the tour F . By Lemma 3.1,

if there are ai big angles in Pi , then there are at most ai + 1

Steiner points on ei , and so the total number of Steiner points

in F is at most n plus the number of big angles in T ∗. By

Lemma 3.2, there are at most 2s2 + 2s3 + s4 big angles in

T ∗. From Lemma 3.3, we know that (iii) is valid. �

As defined previously, T ∗ is a full Steiner tree that is a

shortest optimal tree for STP-MSP on n terminals. Without

loss of generality, we assume that T ∗ has Steiner points of

degree at least three. Selecting an arbitrary Steiner point of

degree at least three as the root of T ∗, we get a rooted tree. A

good point t in T ∗ is a Steiner point that is adjacent to some

terminals and satisfies one of the following:

(i) (type (1)) t has three or more terminals as children;

(ii) (type (2)) t has two terminals as children and the degree

of t is 4;

(iii) (type (3)) t is a point of degree 3.

Note that a good point is of degree at least 3. A bad point

is a Steiner point of degree at least 3 in T ∗ that is not a good

point.

Theorem 3.6. There is a 3-restricted Steiner tree such that
each edge has length at most R and the number of Steiner
points is at most 5

2
times the optimum.
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Fig. 3 Four possible cases of

type (1) good point

Fig. 4 Two cases of type (2)

good point. (a) Case 1. (b) Case

2

Proof: Let F and TF be defined as in Lemma 3.5. From

Lemma 3.5, we know that in TF , (1) each degree 2 Steiner

point is used at most twice, and (2) each Steiner point of

degree at least 3 is used at most three times.

We modify TF to get a 3-restricted tree T such that each

of the good points of type (1) or type (3) in T ∗ is used at

most twice, at least half of the type (2) good points are used

at most twice, and each of the rest of the Steiner points of

degree at least 3 in T ∗ is used at most three times.

Our modification is sketched below:

(i) Let t be a type (1) good point of degree d . We have to

consider the four cases as shown in Fig. 3.

There are d convex paths in F that go through t . We can

use a 3-star connecting the three terminals to replace two of

the d convex paths in the tour F . It is easy to verify that the

number of times that t is used in the new 3-restricted T is

reduced by 1, i.e., t is used at most twice (instead of three

times).

(ii) Let t be a type (2) good point. Thus, t is of degree four.

If there is no big angle at t , by Lemmas 3.1 and 3.2, the total

number of big angles in T ∗ is reduced by 1, and t is used at

most twice. So, we can assume that there is a big angle at t .
Let P1 be the convex path in the tour F having the big

angle at t . Let t1 and t2 be the two terminals adjacent to t .
Two cases arise.

Case 1. t1 or t2, say, t1, is in the convex path P1 connect-

ing t1 and another terminal t3 (see Fig. 4(a)). If t3 = t2, then

the convex path in TF connecting t1 and t2 has no small an-

gle. Thus, the length |t1t2| ≤ (b + 1)R, i.e., the upper bound

(b + 2)R in Lemma 3.1 is not tight. Therefore, the number

of times that t is used in TF is at most 2 (not 3). In this case,

we do not have to modify the tree. If t3 
= t2, we connect t2

to the convex path P1 at point t . This forms a 3-star with t as

the center connecting three terminals t1, t2 and t3. We then

use the three line segments t t1, t t2 and t t3 (not the 3 convex

paths) to form the three edges of the 3-star. Let ti and t j be

two points. We use ti t j to represent the line segment con-

necting ti and t j . From Lemma 3.1, the big angle at t ensures

that

C(t t1) + C(t t3) = C(t t3).

Moreover, C(t t2) = b (t is not counted and there is no small

angle in t t2), where b is the number of big angles in edge

t t2 in TF . Note that C(t1t2) is estimated as at least b + 1 in

Lemma 3.5. Thus, the number of times that t is used in T is

reduced from at most 3 to at most 2.

Case 2. Neither t1 nor t2 is in the convex path that has the big

angle. Let t3 be the child of t other than t1 and t2. See Fig. 4(b).

In this case, t3 is either the leftmost child or the rightmost

child of t . Without loss of generality, we assume that t3 is

the leftmost child, and let P1 be the convex path in F which

connects two terminals t4 and t5 and contains the big angle

at t (see Fig. 4(b)). Note that all the descendent terminals of

t (in the dashed circle in Fig. 4(b)) are connected with paths

P1, P2, P3 and P4. Thus, we can shorten P1 to obtain P ′
1 by

cutting off the part from t to t5. By doing this, we get a 3-star

with t as the center connecting t1, t2 and t4. Since P1 has a

big angle at t , from Lemma 3.1, we know that the number of

times that t is used in T is at most 2 (not 3).

In above discussion, we just consider the case where there

is only one type (2) good point in the convex path P1. Now,

consider the case where there is more than one type (2) good
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Fig. 5 (a) The original T ∗. The dashed line stands for P1. (b) After

deleting P1, we have two components in the dashed boxes. We use an

edge connecting t1 and t2 to form a tree again

point in P1. See Fig. 5(a). Note that TF is a tree having n −
1 edges (corresponding to convex paths) connecting the n
terminals. Let e be the edge in TF which corresponds to P1.

Deleting the edge e forms two components (inside a dashed

box), with each containing an end of e (t3 or t4). See Fig. 5(b).

The terminals in each of the two components are connected

by the rest of the (n − 2) edges (possibly replaced by some

3-stars in the modification process).

Let t1 and t2 be the two type (2) good points in P1 that are

the leftmost and rightmost in the two components, respec-

tively. See Fig. 5(b).

We replace e by a segment (see the line in Fig. 5(b) con-

necting the two boxes) connecting t1 and t2 directly. Thus,

we get a tree again. This makes all type (2) good points in

P1 other than t1 and t2 appear in T at most twice (not three

times). Moreover, we can form a 3-star with t1 as the center

connecting t5, t6 and t7, or with t2 as the center connecting

t5, t7 and t8. By doing this, one of t1 and t2 appears in T at

most twice instead of three times.

Thus we can conclude that at least half of the type (2) good

points are used in T at most twice instead of three times.

(iii) t has at least one child, say, t1, and the degree of t is

3 (see Fig. 6). If there is at most one big angle at t , then in

Lemma 3.5, t is overestimated, i.e., T is used in the tour F
at most twice (not three times). So, we assume that there are

two big angles at t . Thus, at least one of the two convex paths

P2 and P3, say, P3, (See Fig. 6) has a big angle at t . We then

can shorten the edge e corresponding to P3 in TF by cutting

off the part from t to t1 and form a 3-star with t as center

connecting t1, t2 and t3 (the other end of P3). By doing this,

we save at least one Steiner point, and thus the number of

times that t is used in T is at most 2 (not 3).

Note that in the above modification, we merge P2 and

P3 into a 3-star and save one Steiner point by taking the

advantage of a big angle at t . Each convex path can only be

Fig. 6 The type (3) Steiner

point

used to form a 3-star once. Otherwise, we get an i-star for

i > 3. Thus, we have to make sure that each type (3) good

point t can match a unique convex path that has a big angle at

t . This can be done since each type (3) good point has degree

3 and there would be two big angles at t . (If there is only one

or zero big angle at t , then t is used only once or twice in TF .

Thus we do not have to do any modification.)

Consider the case that in the convex path P1 there are

many type (2) good points and type (3) good points. Using

the same argument as in (ii) demonstrated in Fig. 5, we can

replace the edge corresponding to P1 in TF by the segment

connecting t1 and t2 as in Fig. 5. Thus, every type (2) and

type (3) good point other than t1 and t2 is used at most twice

(not three times). In this case, t1 and t2 compete the edge

t1t2 to form a 3-star. We assign t1t2 to either t1 or t2 using

the following strategy: If a type (2) good point competes t1t2
with a type (3) good point, say, t , we always let the type (2)

good point have t1t2 since the type (3) good point has another

big angle at it, but the type (2) good point does not. If next

time t competes with another type (2) good point or type (3)

good point, we let t win. Thus, every type (3) good point

appears at most twice in T and at least half of the type (2)

good points appear in T at most twice.

Now, we can make sure that in T each good point of type

(1) and (3) appears at most twice, and at least half of the type

(2) good points appear twice. From Lemma 3.5, we have

C(T ) ≤ 2g1 + 2.5g2 + 3b + 2s2 + 2 − C(en),

where g1 is the number of good points of type (1) and (3), g2

is the number of type (2) good points, and b is the number of

bad points.

We can delete a convex path Pn from tour F to form TF .

We always delete the convex path such that the corresponding

edge en is the longest.

In the following, we show that b < g1. Let T ′ be the tree

obtained from T ∗ by deleting all terminals. Obviously, each

leave in T ′ is a good point. Therefore, the number of bad

points is the number of points of degree at least 3 in T ′.
Thus, b < g1.

If C(en) ≥ 2, we have

C(T ) ≤ 2g1 + 2.5g2 + 3b + 2s2. (2)
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Therefore,

C(T ) ≤ 2g1 + 2.5g2 + 2.5b + 0.5b + 2s2 ≤ 2.5g1 + 2.5g2

+ 2.5b + 2s2 ≤ 2.5C(T ∗).

If C(en) = 1, there is no big angle in T ∗. Thus, there is no

degree-3 point in T ∗. Suppose that there are degree-4 points

in T ∗. Since there is no big angle in T ∗, the number of times

of degree-4 Steiner points is overestimated. Thus (2) still

holds.

Now, we only have to consider the case where each Steiner

point in T ∗ has degree 5. In this case, each point in T ′ is either

of degree 1 or degree at least 3. Thus, the root of T ′ is either

of degree 1 or degree at least 3. In this case, it is easy to

see that the number of leaves of T ′ is at least two more than

the number of points of degree at least 3, i.e., g1 ≥ b + 2.

Therefore,

C(T ) ≤ 2g1 + 2.5g2 + 2.5b + 0.5b + 2s2 + 1 ≤ 2.5g1

+ 2.5g2 + 2.5b + 2s2 ≤ 2.5C(T ∗).

�

Now, we focus on the computation of an optimal 3-

restricted tree.

Let H3(V, F, W ) be a weighted 3-hypergraph, where V =
P , F = {(a, b)|a ∈ V and b ∈ V } ∪ {(a, b, c)|a ∈ V, b ∈
V and c ∈ V }, and for each edge e ∈ F , w(e) is the smallest

number of Steiner points to form an optimal solution of the

STP-MSP problem on the terminals in e.

Given three points a, b and c on the Euclidean plane, let s
be the Steiner point that minimizes (|sa| + |sb| + |sc|), and

let k be the number of Steiner points in an optimum solution

T of STP-MSP on {a, b, c} with constant R.

Lemma 3.7.⌈ |sa|
R

⌉
+

⌈ |sb|
R

⌉
+

⌈ |sc|
R

⌉
− 2 ≥ k ≥

⌊ |sa|
R

⌋
+

⌊ |sb|
R

⌋
+

⌊ |sc|
R

⌋
− 2. (3)

Proof: By Steinerizing the optimum Steiner tree, we get

a solution of STP-MSP on {a, b, c} with exactly � |sa|
R � +

� |sb|
R � + � |sc|

R � − 2 Steiner points.

Let |T | be the total length of T , which is the sum of the

length of edges of T . Then

(k − 1) · R + 3R ≥ |T | ≥ |sa| + |sb| + |sc|,

i.e.,

k + 2 ≥ |sa| + |sb| + |sc|
R

≥
⌊ |sa| + |sb| + |sc|

R

⌋
≥

⌊ |sa|
R

⌋
+

⌊ |sb|
R

⌋
+

⌊ |sc|
R

⌋
.

Therefore, (3) holds. �

Lemma 3.7 gives an upper bound on the cost of (a, b, c).

Lemma 3.8. [7] Testing whether three circles has a point in
common can be done in constant time.

For given points a, b and c on the Euclidean plane, one

can find the minimum Steiner tree on {a, b, c} in constant

time. Let qa,b,c be the number of Steiner points used to

steinerize the optimum Steiner tree on {a, b, c}, and qP =
max{qa,b,c|{a, b, c} ⊂ P}. Then, by Lemma 3.7 and Lemma

3.8, the weight W of H3(V, F, W ) can be calculated in

O(n3q2
P ) time. By Theorem 3.4 and Theorem 3.6, we have

Theorem 3.9. Given a set P of n terminals and a positive
constant R, there exists a randomized algorithm that com-
putes a solution of STP-MSP on P such that the number of
Steiner points is at most 5

2
times of the optimum running in

poly(n, qP ) time with probability at least 0.5.

The complete algorithm is given in Fig. 7.

4 Related work

Note that our starting point on topology control is very dif-

ferent than those in the literature. We maintain global con-

nectivity by introducing relay sensors to keep transmission

range moderate while most related research works focus on

algorithm design to control the transmit power dissipated by

each sensor [6, 9, 15, 16, 18]. For example, Ramanathan

and Rosales-Hain [15] show that one can efficiently mini-

mize the maximum per node transmit power and maintain

global connectivity and biconnectivity. Rodoplu and Meng

[16], and Wattenhofer et al. [18], propose heuristics inde-

pendently with different assumptions to minimize the total

power from every sensor to a master site. Hu [6] first deter-

mines a topology according to Delaunay triangulation. Then

the degree of each node is adjusted through neighbor nego-

tiation such that each node has similar number of neighbors.

Computing a minimum energy topology for a WSN is NP-

hard [3]. Even though our starting point is different than the

works mentioned above, we claim that these techniques and

our work can be combined coherently. For example, when
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Fig. 7 The complete

2.5-approximate algorithm

designing a WSN, one can first apply any of the two algo-

rithms proposed in this paper to compute all relay sensors

based on restrictions on power dissipation or transmission

range, then apply any of these techniques in literature based

on given resources and optimization objectives to compute

the global topology for further transmit power reduction.

An interesting work that also considers relay sensor place-

ment is reported in [17]. This work computes the minimum

set of relay nodes such that each sensor can connect to 1 or

2 relay nodes and all relay nodes are either connected or 2-

connected. In other words, the algorithms in [17] consider a

hierarchical topology while our work sticks to the flat topol-

ogy. Sensor placement that induces regular topologies such

as circular, star, and hexagonal are presented and analyzed

in [1].

Acknowledgments The research of Dr. Xiuzhen Cheng is supported
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5 Conclusion and future work

This paper tackles the problem of computing relay sensors

to maintain global connectivity in WSNs when transmission

range of all sensors are restricted. Our objective is to mini-

mize the number of relay sensors needed, as they contribute

to the overall cost of a WSN. We model this problem by a

network optimization problem named SMT-MSP – Steiner

Minimum Tree with Minimum number of Steiner Points and

bounded edge length. SMT-MSP is NP-Complete. We pro-

pose two approximate algorithms for SMT-MSP and give

detailed theoretical performance analysis.

Note that our algorithms in this paper compute relay sen-

sors to globally network all duty sensors. As a future work

we will consider the optimal relay sensor placement for k-

connectivity, where k > 1, to improve fault tolerance in sen-

sor networks. We also will consider the design tradeoff be-

tween transmit power per sensor and the number of sensors

in the network for topology control.
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