
A Polynomial-Time Approximation Scheme for the
Minimum-Connected Dominating Set in Ad Hoc Wireless
Networks

Xiuzhen Cheng
Department of Computer Science, George Washington University, Washington, DC 20052

Xiao Huang
3M Center, Building 0235-03-F-08, St. Paul, MN 55144

Deying Li
Department of Computer Science, City University of Hong Kong, Hong Kong, China

Weili Wu
Department of Computer Science, University of Texas at Dallas, Richardson, Texas 75083

Ding-Zhu Du
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455

A connected dominating set in a graph is a subset of
vertices such that every vertex is either in the subset or
adjacent to a vertex in the subset and the subgraph
induced by the subset is connected. A minimum-con-
nected dominating set is such a vertex subset with min-
imum cardinality. An application in ad hoc wireless net-
works requires the study of the minimum-connected
dominating set in unit-disk graphs. In this paper, we
design a (1 � 1/s)-approximation for the minimum-con-
nected dominating set in unit-disk graphs, running in
time nO((s log s)2). © 2003 Wiley Periodicals, Inc.

Keywords: connected dominating set; unit disk graph; polyno-
mial-time approximation scheme; partition

1. INTRODUCTION

Ad hoc wireless networking has attracted more and more
attention recently [2, 6, 8, 12]. It will revolutionize infor-
mation gathering and processing in both urban environ-
ments and inhospitable terrain. An ad hoc wireless network
is an autonomous system consisting of mobile hosts (or

routers) connected by wireless links. It can be quickly and
widely deployed. Example applications of ad hoc wireless
networks include emergency search-and-rescue operations,
decision making in the battlefield, data acquisition opera-
tions in inhospitable terrain, etc.

Two important features of an ad hoc wireless network
are its dynamic topology and resource limitation. In an ad
hoc wireless network, every host can move in any direction
at any time and any speed. There is no fixed infrastructure
and central administration. A temporary infrastructure can
be formed in any way. Due to multipath fading, multiple
access, background noise, and interference from other trans-
missions, an active link between two hosts may become
invalid abruptly. Thus, the communication link is unreliable
and retransmission is quite often necessary for reliable
services. The resource constraints for an ad hoc wireless net-
work include battery capacity, bandwidth, CPU speed, etc.
These two features make routing decisions very challenging.

Existing routing protocols rely on flooding for the dis-
semination of topology update packets (proactive routing
protocols [5]) or route request packets (reactive routing
protocols [9, 13]). Networkwide flooding (global flooding)
may cause the following two problems:

● Broadcast storm problem [12]. Network-wide flooding
may result in excessive redundancy, contention, and col-

Received February 2002; accepted July 2003.
Correspondence to: D.-Z. Du; e-mail: dzd@cs.umn.edu

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 42(4), 202–208 2003

lision. This causes high protocol overhead and interfer-
ence with other ongoing communication traffic.

● Flooding is unreliable [8]. “In moderately sparse graphs
the expected number of nodes in the network that will
receive a broadcast message was shown to be as low as
80%” [14].

To overcome or, at least, alleviate these problems, a
virtual backbone-based routing strategy has been intro-
duced [2, 6, 16]). The most important benefit of virtual
backbone-based routing is the dramatic reduction of proto-
col overhead; thus, it greatly improves the network through-
put. This is achieved by propagating control packets inside
the virtual backbone, not the whole network. Other benefits
include the support of broadcast/multicast traffic and the
propagation of “link quality” information for QoS routing
[15].

Based on these applications, we can summarize the es-
sential requirements for a virtual backbone as follows: (i)
The number of hosts in the backbone is minimized; (ii) all
hosts in the backbone are connected; and (iii) each of the
hosts not in the backbone has at least one neighbor in the
backbone. This is clearly the idea of a minimum-connected
dominating set. A connected dominating set on a graph is a
subset of vertices such that (a) every vertex is either in the
subset or adjacent to a vertex in the subset and (b) the
subgraph induced by the subset is connected. The problem
of a minimum-connected dominating set (MCDS) is to
compute a connected dominating set of minimum cardinal-
ity.

On the other hand, we assume that an ad hoc wireless
network contains only homogeneous mobile hosts. Each
host is supplied with an equal-power omnidirectional an-
tenna. Similar assumptions are taken by most researchers in
the field of mobile ad hoc wireless networking. Thus, the
footprint of an ad hoc wireless network is a unit-disk graph.
Indeed, in a unit-disk graph, the vertex set consists of a
finite number of points in the Euclidean plane and an edge
exists between two vertices (points) if and only if the
distance between them is at most one.

According to the above analysis, we formulate the prob-
lem of constructing a virtual backbone as the problem of an
MCDS in unit-disk graphs.

The MCDS in general graphs was studied in [7], which
proposed a reduction from the set-cover problem. This
implies that, for any fixed 0 � � � 1, no polynomial time
algorithm with performance ratio (1 � �) H(�) exists
unless NP � DTIME[nO(log log n)] [10], where � is the
maximum degree and H is the harmonic function. The
MCDS in unit-disk graphs is still NP-hard [4]. The best-
known performance ratio of previous polynomial-time ap-
proximations is a constant � 7 [1, 3, 11]. In this paper, we
will propose a Polynomial Time Approximation Scheme
(PTAS) for the MCDS in unit-disk graphs.

An algorithm A is a PTAS for a minimization problem
with optimal cost OPT if the following is true: Given an
instance I of the problem and a small positive error param-

eter �, (i) the algorithm outputs a solution with cost at most
(1 � �)OPT, and (ii) when � is fixed, the running time is
bounded by a polynomial in the size of the instance I. If
there exists a PTAS for an optimization problem, the prob-
lem’s instance can be approximated to any required degree.

2. PRELIMINARIES

A dominating set in a graph is a subset of vertices such
that every vertex is either in the subset or adjacent to at least
one vertex in the subset. If, in addition, the subgraph in-
duced by a dominating set is connected, then the dominating
set is called a connected dominating set. The following is a
well-known fact about dominating sets and connected dom-
inating sets:

Lemma 2.1. For any dominating set D in a connected
graph, we can find at most 2(�D� � 1) vertices to connect D.
Moreover, if D*1 and D*2 are, respectively, a minimum dom-
inating set and an MCDS, then �D*2� � 3�D*1� � 2.

We are interested in the minimum-connected dominating
set in unit-disk graphs. The unit-disk graph has the follow-
ing property:

Lemma 2.2. Suppose that a unit-disk graph G lies in an m
� m square such that every vertex is away from the bound-
ary with distance at least 1/2. Then, G has at most 4m2/�
connected components.

Proof. Let x denote the number of connected compo-
nents of such a unit-disk graph. From each connected com-
ponent, we choose a vertex and identify it with the center of
a unit-disk. (A unit-disk has diameter one.) Such unit-disks
are disjoint and all lie in the cell. Therefore, we have

x � ��1/ 2�2 � m2.

Hence, x � 4m2/�. ■

It has been known that the MCDS has some polynomial-
time approximation with a constant performance ratio [1, 3,
11]. Here, we quote a result from [3]:

Lemma 2.3. There exists a polynomial-time approxima-
tion for the MCDS in unit-disk graphs, with performance
ratio eight.

In design of a PTAS for the MCDS, we sometimes
consider the following generalization of the concept of
dominating set and connected dominating set:

Consider a graph G 	 (V, E). Suppose that H is a
subgraph of G. A subset D of vertices in G is said to be a
connected dominating set in G for H if every vertex in H is
either in D or adjacent to a vertex in D and, in addition, the
subgraph of G induced by D is connected.

NETWORKS—2003 203

3. MAIN RESULTS

In this section, we will construct a PTAS for the MCDS
in unit-disk graphs. The general picture of this construction
is as follows: First, we divide a space, containing all vertices
of the input unit-disk graphs, into a grid of small cells. For
each small cell, take the points h distance away from the
boundary (the central area of the cell). Then, we optimally
compute a minimum union of connected dominating sets in
each cell for connected components of the central area of
the cell. The key lemma is to prove that the union of all such
minimum unions is no more than the MCDS for the whole
graph. Then, for vertices not in central areas, just use the
part of an 8-approximation lying in boundary areas (within
distance h � 1 away from the boundary, with some overlap
with the central areas) to dominate them. This part, together
with the above union, forms a connected dominating set for
the whole input unit-disk graph. Finally, using the shifting
argument (i.e., shift the grid around to get partitions at
different coordinates) to make sure there are at least half
good partitions having good approximations overall.

Next, we work out details along the above lines:
For the input connected unit-disk graph G 	 (V, E), we

initially find a minimal square Q containing all vertices in
V. Without loss of generality, assume that Q 	 {(x, y)�0
� x � q, 0 � y � q}. Let m be a large integer that we will
determine later. Let p 	 q/m � 1. Consider the square
Q� 	 {(x, y)� �m � x � mp, �m � y � mp}. Partition
Q� into a (p � 1) � (p � 1) grid so that each cell is an m
� m square excluding the top and the right boundaries and,
hence, no two cells are overlapping each other. This parti-
tion of Q� is denoted by P(0, 0) (Fig. 1). In general, the
partition P(a, b) is obtained from P(0, 0) by shifting the
bottom-left corner of Q� from (�m, �m) to (�m � a, �m
� b).

For each cell e as an m � m square, we denote by Ce(d)
the set of points in e away from the boundary by distance at
least d, for example, Ce(0) is the cell e itself. Fix a positive
integer h whose value will be determined later. We will call
Ce(h) the central area of e and Ce(0) � Ce(h � 1) the

boundary area of e (Fig. 2). For simplicity of notation, we
denote Be(d) 	 Ce(0) � Ce(d). Note that, for each cell, its
boundary area and central area are overlapping with the
width one. For each partition P(a, a), denote by Ca(d)
(Ba(d)) the union of Ce(d)(Be(d)) for e over all cells in
P(a, a). Ca(h) and Ba(h � 1) are called the central area
and the boundary area of P(a, a).

For a graph G, denote by Ge(d)(G̃e(d)) the subgraph of
G induced by all vertices lying in Ce(d)(Be(d)) and by
Ga(d)(G̃a(d)) the subgraph of G induced by all vertices
lying in Ca(d)(Ba(d)).

Let G 	 (V, E) be an input connected unit-disk graph.
Consider a subgraph Ge(h). This subgraph may consist of
several connected components. Let Ke be a dominating set
in Ge(0) for Ge(h) with minimum cardinality such that, for
each connected component H of Ge(h), Ke contains a
connected component dominating H. In other words, Ke is
a minimum union of connected dominating sets in Ge(0) for
connected components of Ge(h). Now, we denote by Ka the
union of Ke for e over all cells in partition P(a, a).

By Lemma 2.3, we can compute, in polynomial time, a
connected dominating set F for an input connected graph G
within a factor of 8 from optimal. Set Aa 	 Ka � F̃a(h
� 1). [Note that we consider F as a graph without edges.
According to the above definition, F̃a(h � 1) 	 F � Ba(h
� 1).]

Lemma 3.1. For 0 � a � m � 1, Aa is a connected
dominating set for input graph G. Moreover, Aa can be
computed in time nO(m2).

Proof. Aa is clearly a dominating set for input graph G.
We next show its connectivity. Note that for any connected
component H of the subgraph Ge(h) for some cell e in
partition P(a, a), if a connected component E of F̃a(h � 1)
has a vertex in H, then E must connect to the connected
dominating set DH for H. This means that DH has been
making up the connections of F lost from cutting a part in
H. Therefore, the connectivity of Aa follows from the
connectivity of F.

To establish the time for computing Aa, we note the fact
that, for a square with edge length
2/2, all vertices lying
inside the square induce a complete subgraph in which any
vertex must dominate all other vertices. It follows from this

FIG. 1. Squares Q and Q� .

FIG. 2. Central area and boundary area.

204 NETWORKS—2003

fact that the minimum dominating set for the subset Ve of
vertices lying in cell e has size � (
2m)2. Hence, the
MCDS for Ve has size at most 3(
2m)2 by Lemma 2.1.
Therefore, �Ke� � 3(
2m)2. Suppose that cell e contains
ne vertices of the input unit-disk graph. Then, the number of
candidates for each dominator in Ke is at most

�
k	0

3��2m�2 �ne

k � � ne
O�m2�.

Hence, computing Aa can be done in time

�
e

ne
O�m2� � � �

e

ne�O�m2�

� nO�m2�.

■

By Lemma 3.1, we may take Aa to approximate the
MCDS. The next lemma will help us estimate the approx-
imation performance of Aa:

Lemma 3.2. Suppose that h 	 7 � 3log2(4m2/�). Let
D* be an MCDS for input graph G. Then, �Ka� � �D*� for 0
� a � m � 1.

Proof. Recall that Ga(h) is the subgraph of input graph
G 	 (V, E) induced by its vertices lying in the central area
Ca(h) of the partition P(a, a). Let D be an MCDS in G for
Ga(h). Then, we must have �D� � �D*�.

Now, let G[D] denote the subgraph of G induced by D.
We first claim that G[D] has a spanning tree T without
crossing edges in the plane. In fact, suppose that T is a
spanning tree of G[D] with the minimum total edge length.
Suppose that T contains two edges (u, v) and (x, y)
crossing at a point w in the plane. Without loss of general-
ity, assume that segment (v, w) is the shortest one among
the four segments (u, w), (v, w), (x, w), and (y, w) (Fig.
3). Removal of (x, y) from T would break T into two
connected components containing vertices x and y, respec-
tively. One of them contains edge (u, v). Note that d(x, v)
� d(x, w) � d(v, w) � d(x, w) � d(w, y) � 1 and d(y,
v) � d(y, w) � d(v, w) � d(y, w) � d(w, x) � 1.
Therefore, we can add either (x, v) or (y, v) to connect the
two connected components of T � (x, y) into one. [In Fig.
3, the right side shows a case where (u, v) is in the

connected component containing y and, hence, (v, x) is
added to connect the two components into one.] This oper-
ation reduces the total edge length of the tree, contradicting
the assumption on T.

Assume that T is a spanning tree of G[D] without any
crosspoint. Let Tb be the subforest of T induced by those
vertices not dominating any vertex in Ga(h). We next
modify T to a forest with three operations:

Operation 1: If, after deleting a vertex u of Tb, T still
keeps the following property (B1), then delete u.

(B1) For any connected component H of Ga(h), T con-
nects every two vertices in H � T, that is, T has a connected
component dominating H.

Operation 2: If, after deleting an edge of T, T still keeps
the property (B1), then delete the edge (Fig. 4).

Through Operations 1 and 2, T becomes a forest with the
property that deleting any vertex or edge would destroy
property (B1). Now, we apply the third operation to T.

Operation 3: If Tb has two adjacent vertices u and v both
with degree two, then delete them and restore the property
(B1) as follows: Note that deleting u and v breaks a con-
nected component of T into two parts, say C1 and C2. Since
T already passed Operation 1, there must exist a connected
component H of Ge(h) such that T � H exists in both C1

and C2. Since T � C1 and T � C2 dominate H, there must
exist either one vertex x in H such that x is dominated by
both T � C1 and T � C2 or two adjacent vertices x and y
in H such that x is dominated by T � C1 and y is dominated
by T � C2. Therefore, adding either x or x and y to T would
restore the property (B1).

After Operation 3 is employed once, it may be possible
to apply Operations 1 and 2 again. At any time, if Operation
1 or 2 can be applied, then we use it; if Operations 1 and 2
cannot be applied but Operation 3 can be, then we employ
Operation 3. Since both Operations 1 and 3 reduce the
number of vertices in Tb and Operation 2 reduces the

FIG. 3. Two edges (u, v) and (x, y) have crosspoint w.

FIG. 4. Operation 2.

NETWORKS—2003 205

number of edges of T without increasing the number of
vertices of Tb, this process has to end in finitely many steps.
At the end, forest T would still have property (B1) and in
addition have the following properties:

(B2) Tb has no adjacent two vertices both with degree
two.

(B3) T has at most �D*� vertices. (Note that initially T is
a spanning tree for G[D] and �D� � �D*�. Since Operations
1, 2, and 3 do not increase the number of vertices in T, the
final T has at most �D*� vertices.)

Next, we move some edges of T to the inside of Ca(h
� 1) by the following operation:

Operation 4: If T has two vertices u and v lying in Ca(h
� 1) such that d(u, v) � 1 and T has a path between u and
v which contains an edge not lying in Ca(h � 1), then
delete the edge and add edge (u, v).

After Operation 4 is employed once, it may be possible
to apply Operations 1, 2, and 3 again. At any time, if
Operation 1, 2, or 3 can be applied, then we use it; if
Operations 1, 2, and 3 cannot be applied but Operation 4 can
be, then we employ Operation 4. Since Operation 4 reduces
the number of edges of T not lying in Ca(h � 1) and
Operations 1, 2, and 3 do not increase the number of edges
of T not lying in Ca(h � 1), this process has to end in
finitely many steps. At the end, forest T would still have
properties (B1), (B2), and (B3) and, in addition, have the
following property:

(B4) Operation 4 cannot be applied.
Since any vertex dominating some vertex in the central

area of a cell e must lie in Ce(h � 1), every vertex of T
lying in Be(h � 1) must belong to Tb.

Now, we consider a maximal subtree T� of T such that
(C) T� has all leaves in Ce(h � 1) and all other vertices

not in Ce(h � 1) (Fig. 5).
For simplicity, we call such a maximal subtree satisfying

(C) an ear of the central area of cell e. We claim that T� lies
in cell e. To show our claim, suppose that T� has k leaves.
Since h � 7, every edge of T� incident to a leaf does not lie
in Ca(h � 1). Thus, every path in T� connecting two leaves
must contain an edge not lying in Ca(h � 1). By (B4),
every two leaves of T� have distance more than one. By
Lemma 2.2, k � 4m2/�. Please recall the notation that
Te(h � 1) is the subgraph of T induced by its vertices lying
in the area Ce(h � 1) and T is a forest obtained in the above
proof. Note that T�e(h � 1) consists of k leaves of T� and,
hence, has k connected components. The outer path p of T�
is a path between two leaves such that T� lies in the area
between the path p and the boundary of Ce(h). Since T has
no crosspoint and T� is a maximal subtree satisfying (C),
only vertices in path p may meet an edge in T but not in T�.

For contradiction, suppose that T� has a vertex r lying
outside of cell e. Without loss of generality, we may assume
that r is on the path p. We consider r as a root for T� and
study the k paths from leaves to r. The path p is broken at
r into two such paths. Note that any path passing through
area Ce(h � 4) � Ce(h � 1) must meet an edge not on the
path. (Otherwise, the path would contain two vertices in Tb

both with degree two.) It follows that, except for the two
paths obtained from path p, every path has to be merged
into another one in area Ce(h � 4) � Ce(h � 1). This
means that these k paths become at most 2 � k/ 2 paths
when they go out from Ce(h � 4), namely, T�e(h � 4)
contains at most 2 � (k � 2)/ 2 connected components.
Similarly, T�e(h � 1 � 3(log2(k � 2)))(� T�e(6))
contains at most three connected components and T�e(3)
contains at most two connected components, that is, all k
paths in Ce(3) have merged into two paths. Note that these
two paths will merge into one at r lying outside cell e.
Therefore, each of them has a vertex u in area Ce(0)
� Ce(3) incident to an edge in T � T�. This means that
there must exist another cell e� whose central area has an
ear T� touching T� at a point in cell e. (Note that after
Operations 1, 2, and 3 Tb is contained in the union of ears
of all central areas of cells.) So, T� cannot lie in cell e�.

Similarly, this implies the existence of another cell e�
whose central area has an ear T touching T� at a point in
cell e�. Since T contains no cycle, this process may go on
indefinitely, so that a path of infinite length is found in T, a
contradiction. This contraction completes the proof of our
claim that T� lies in cell e.

By (B1) and our claim, Te(0) is a union of connected
dominating sets for connected components of Ge(h). It
follows that the number of vertices in Te(0) is at least �Ke�
since Ke is a minimum one. Thus,

�Ka� � �
e

�Ke� � �
e

�Te�0�� � �T� � �D*�,

where �T� denotes the number of vertices in T. ■

We are ready to present the following main theorem:

FIG. 5. Tree T�.

206 NETWORKS—2003

Theorem 3.3. Suppose that h 	 7 � 3log2(4m2/�) and
m/(h � 1) � 32s. Then, there is at least half of i 	 0,
1, . . . , m/(h � 1) � 1 such that Ai(h�1) is a (1 � 1/s)-
approximation for the minimum connected dominating set.

Proof. By Lemma 3.2, for every i 	 0, 1, . . . , m/(h
� 1) � 1, �Ki(h�1)� � �D*�, where D* is an MCDS for
G. Recall that F is a connected dominating set for G such
that �F� � 8�D*� and F̃a(h � 1) 	 F � Ba(h � 1).
Moreover, let FH

a (FV
a) denote the subset of vertices in F̃a(h

� 1) each with distance � h � 1 from the horizontal
(vertical) boundary of some cell in P(a, a). Then, F̃a(h
� 1) 	 FH

a � FV
a . Moreover, all FH

i(h�1) for i 	 0, 1, . . . ,
m/(h � 1) � 1 are disjoint. Hence,

�
i	0

m/�h�1��1

�FH
i�h � 1�� � �F� � 8�D*�.

Similarly, all FV
i(h�1) for i 	 0, 1, . . . , m/(h � 1) � 1

are disjoint and

�
i	0

m/�h�1��1

�FV
i�h � 1�� � �F� � 8�D*�.

Thus,

�
i	0

m/�h�1��1

�F̃i�h�1��h � 1�� � �
i	0

m/�h�1��1

��FH
i�h�1�� � �FV

i�h�1���

� 16�D*�.

Therefore,

�
i	0

m/�h�1��1

�Ai�h�1�� � �
i	0

m/�h�1��1

��Ki�h�1�� � �F̃i�h�1��h � 1���

� �m/�h � 1� � 16��D*�,

that is,

1

m/�h � 1� �
i	0

m/�h�1��1

�Ai�h�1�� � �1 � 1/�2s���D*�.

This means that there are at least half of Ai(h�1) for i 	 0,
1, m/(h � 1) � 1 satisfying

�Ai�h�1�� � �1 � 1/s��D*�.

The following corollary follows immediately from the
theorem:

Corollary 3.4. There is a (1 � 1/s)-approximation for an
MCDS in connected unit-disk graphs, running in time
nO((s log s)2).

Proof. Note that computing each Aa needs time nO(m2).
By Theorem 3.3, a (1 � 1)/s)-approximation can be ob-
tained by computing all m/(h � 1) Aa’s and choosing the
best one. Thus, the total running time is mnO(m2) 	 nO(m2).
Choose m to be the least integer satisfying m/(h � 1) �
32s, where h 	 7 � 3log2(4m2/�). Then, m 	 O(s log
s). This completes the proof. ■

4. CONCLUSIONS

We have designed a PTAS for the MCDS in unit-disk
graphs. There is evidence to show that currently existing
implemented approximations have a large space for im-
provement.

Acknowledgments

The authors wish to thank Dr. Penjun Wan for his helpful
suggestions and corrections and also wish to thank a referee
for insightful comments.

REFERENCES

[1] K.M. Alzoubi, P.-J. Wan, and O. Frieder, New distributed
algorithm for connected dominating set in wireless ad hoc
networks, Proc HICSS, Hawaii, 2002, pp. 3881–3887.

[2] A.D. Amis and R. Prakash, Load-balancing clusters in wire-
less ad hoc networks, Proc 3rd IEEE Symp on Application-
Specific Systems and Software Engineering Technology,
2000, pp. 25–32.

[3] X. Cheng and D.-Z. Du, Virtual backbone-based routing in
ad hoc wireless networks, Technical report 02-002, Depart-
ment of Computer Science and Engineering, University of
Minnesota.

[4] B.N. Clark, C.J. Colbourn, and D.S. Johnson, Unit disk
graphs, Discr Math 86 (1990), 165–177.

[5] T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler,
and L. Viennot, Optimized link state routing protocol, IETF
Internet Draft, draft-ietf-manet-olsr-05.txt, October 2001.

[6] B. Das and V. Bharghavan, Routing in ad hoc networks
using minimum connected dominating sets, ICC ’97, Mon-
treal, Canada, June 1997, pp. 376–380.

[7] S. Guha and S. Khuller, Approximation algorithms for
connected dominating sets, Algorithmica 20 (1998), 374–
387.

[8] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and
M. Degermark, Scenario-based performance analysis of
routing protocols for mobile ad hoc networks, Proc IEEE
MOBICOM, Seattle, August 1999, pp. 195–206.

[9] D.B. Johnson and D.A. Maltz, “Dynamic source routing in
ad hoc wireless networks,” Mobile computing, Tomasz Imi-

NETWORKS—2003 207

elinski and Hank Korth (Editors), Kluwer, Boston, 1996, pp.
153–181.

[10] C. Lund and M. Yannakakis, On the hardness of approximat-
ing minimization problems, J ACM 41 (1994), 960–981.

[11] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J.
Rosenkrantz, Simple heuristics for unit-disk graphs, Net-
works 25 (1995), 59–68.

[12] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, The
broadcast storm problem in a mobile ad hoc network, Proc
MOBICOM, Seattle, 1999, pp. 151–162.

[13] C.E. Perkins and E.M. Royer, Ad hoc on-demand distance
vector routing, Proc 2nd IEEE Workshop on Mobile Com-

puting Systems and Applications, New Orleans, LA, Feb-
ruary 1999, pp. 90–100.

[14] P. Sinha, R. Sivakumar, and V. Bharghavan, Enhancing ad
hoc routing with dynamic virtual infrastructures, INFO-
COM 3 (2001), 1763–1772.

[15] R. Sivakumar, P. Sinha, and V. Bharghavan, CEDAR: A
core-extraction distributed ad hoc routing algorithm, IEEE J
Sel Areas Commun 17 (1999), 1454–1465.

[16] J. Wu and H. Li, On calculating connected dominating set
for efficient routing in ad hoc wireless networks, Proc 3rd
Int Workshop on Discrete Algorithms and Methods for
MOBILE Computing and Communications, Seattle, WA,
1999, pp. 7–14.

208 NETWORKS—2003

