
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2006; 6:183–190
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.378

Virtual backbone construction in multihop ad hoc
wireless networks

Xiuzhen Cheng1*,y, Min Ding1, David Hongwei Du2 and Xiaohua Jia2

1Department of Computer Science, The George Washington University, Washington, DC, USA
2Department of Computer Science, City University of Hong Kong, Hong Kong

Summary

Recent research points out that the flooding mechanism for topology update or route request in existing ad hoc

routing protocols greatly degrades the network capacity. If we restrict the broadcast of control packets within a

small subset of hosts in the network, the protocol overhead can be substantially reduced. This motivates our

research of constructing a virtual backbone by computing a connected dominating set (CDS) in unit-disk graphs. In

this paper, we propose two distributed algorithms to approximate a minimum CDS. These algorithms take linear

time. Their performance is verified by a complete theoretical analysis. Copyright# 2006 John Wiley & Sons, Ltd.

KEY WORDS: multihop ad hoc wireless network; connected dominating set; unit-disk graph

1. Introduction

Ad hoc wireless networks are autonomous systems

consisting of (mobile) hosts (as routers) connected by

wireless links, and have no fixed infrastructure and no

central administration. All routing and network man-

agement functions must be performed by ordinary

nodes. Due to the features of dynamic topology,

multihop communication, and strict resource limita-

tions, ad hoc routing becomes the most challenging

problem. Almost all existing topology-based routing

protocols involve the global flooding, which suffers

from the notorious broadcast storm problem [8]. This

causes high protocol overhead and interference to

ongoing traffics. Inspired by the physical backbone

in a wired network, many researchers proposed the

concept of virtual backbone infrastructure [7], which

organizes a hierarchical structure of ordinary nodes to

achieve scalability and efficiency.

In this paper, we will study the problem of effi-

ciently constructing a virtual backbone for ad hoc

wireless networks. We assume that a given ad hoc

network instance contains n hosts in a two-dimen-

sional plane. Each host is equipped with an omni-

directional antenna that makes the transmission cover-

age a disk. Each transceiver also has the same com-

munication range R. The footprint of an ad hoc

wireless network is thus a unit-disk graph. In graph-

theoretic terminology, the network topology can be

represented as G ¼ ðV;EÞ where V contains all

nodes and E is the set of links. A link between nodes

u and v exists if and only if their distance is at most R.

Furthermore, we require the number of hosts forming

the virtual backbone to be minimized, as the virtual

*Correspondence to: Xiuzhen Cheng, Department of Computer Science, The George Washington University, Washington, USA.
yE-mail: cheng@gwu.edu

Contract/grant sponsor: NSF CAREER Award; Contract/grant number: CNS-0347674.
Contract/grant sponsor: RGC CERG Grant; Contract/grant number: CityU 1149/04E.

Copyright # 2006 John Wiley & Sons, Ltd.



backbone is used to mainly disseminate control pack-

ets. These observations motive us to study the mini-

mum connected dominating set (MCDS) problem in

unit-disk graphs, which is NP-hard [6]. In other

words, we will use the induced topology of a CDS

in unit-disk graphs to model a virtual backbone for ad

hoc networks.

In this paper, we propose two algorithms for dis-

tributed CDS construction. We further analyze their

performance when the underlying topology is a unit-

disk graph. Our first algorithm grows a tree from a

unique leader, whose election takes Oðn log nÞ mes-

sages. This algorithm achieves a comparable perfor-

mance compared to all those based on a single leader,

but takes less number of messages. The second algo-

rithm is initiated by multiple locally elected leaders.

This algorithm generates a CDS with size at most

147 � optþ 33, which is better than the best published

result (192 � optþ 48) [1] with linear message com-

plexity, where opt is the cardinality of an MCDS. Note

that in this paper, we assume each node has a unique

id, and its one-hop neighborhood information is

available. For a survey of existing CDS construction

techniques we refer the readers to Reference [3] and

the references therein.

This paper is organized as follows. We first intro-

duce the basic concepts and preliminary results

needed in our algorithm design in Section 2. Then,

we propose our algorithms together with their perfor-

mance analysis in Section 3 and 4. We conclude this

paper by a discussion in Section 5.

2. Preliminaries

Given a graph G ¼ ðV ;EÞ, two vertices are indepen-

dent if they are not neighbors. An independent set (IS)

S of G is a subset of V such that for 8 u; v 2 S,

ðu; vÞ=2E. S is maximal (denoted by MIS) if any vertex

not in S has a neighbor in S. A dominating set D ofG is

a subset of V such that each node not in D has at least

one neighbor in D. Each node in D is called a

dominator, while a node not in D is called a domina-

tee. If the induced subgraph of D is connected, then D

is a connected dominating set (CDS). Among all

CDSs of graph G, the one with minimum cardinality

is called a MCDS. Note that a maximal independent

set is also a dominating set. In this paper, we focus on

connected unit-disk graphs.

Based on the general geometric properties of an

MIS in a unit-disk graph, Alzoubi, Wan and Frieder

[1] deduce the following lemma.

Lemma 2.1. Let S be anyMIS of a unit-disk graph G.

For 8u 2 S,

1. The number of nodes in S that are at most two hops

away from u is at most 23.

2. The number of nodes in S that are at most three

hops away from u is at most 47.

By exploring local connectivity information, we

obtain the following result for two nodes that are

two hops away.

Lemma 2.2. Let S be anyMIS of a unit-disk graph G.

For 8u; v 2 S, if u and v are two hops away, then the

number of nodes in S that are at most three hops away

from either u or v is at most 64.

Proof. The idea to prove Lemma 2.1 in Reference [1]

is applied here again, as shown in Figure 1. We

consider the worst case when the distance from u to

v is exactly two. All nodes in S that are at most three

hops away from either u or v lie within the two

annuluses centered at u and v of radius 0.5 and 3.5.

The disks of radius 3.5 centered at u and v have an

overlapping area A. From Figure 1, the area of A is

2� 2� arccos 1
3:5

2�
� 3:52

� �� 2� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:52 � 1
p

� 1

2
� 24:677

Thus the number of nodes in S that are at most three

hops away from either u or v is less than

�� 3:52 � 2� �� 0:52 � 2� A

�� 0:52
� 64:58

&

Fig. 1. Illustration of the proof of Lemma 2.2.

184 X. CHENG ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



Wan, Alzoubi and Frieder [9] have proved the

following result that relates the size of any MIS of a

unit-disk graph G to that of its MCDS.

Lemma 2.3. Let S be any IS and D be anyMCDS of a

unit-disk graph G. Then jSj44 � jDj þ 1 for jDj > 1.

Now let S be any MIS. Note that for 8u 2 S, there

exists another node v 2 S such that u and v is either

two or three hops away, as long as graph G is

connected. If any pair of nodes in S is at least three

hops away, then the following lemma holds.

Lemma 2.4. Let S be anyMIS and D be anyMCDS of

a unit-disk graph G. If 8u; v 2 S are at least three

hops away from each other, then jSj4jDj.
Proof. We claim that 8u 2 D is either in S or adjacent

to at most one node in S. Otherwise, there will exist

two nodes in S that are two hops away, a contradiction.

On the other hand, because D is an MCDS, 8u 2 S is

either in D or adjacent to at least one node in D.

Therefore jSj4jDj. &

3. Algorithm I: CDS Construction Based on
a Single Leader

Algorithm I grows a spanning tree distributedly from

the leader, with all non-leaf nodes form a CDS.

3.1. Algorithm Description

To facilitate elaboration, we use colors to represent

different states during the CDS construction. Initially

each node is colored white. Algorithm I contains two

steps:

1. Apply the leader-election heuristic in Reference

[5] to compute a leader.

2. The leader first colors itself black and broadcasts

a< dominator>message specifying itself as its

dominator. The actions and broadcasted messages

for each non-leader node are stated below.

� Upon receiving a< dominator>message from u

whose dominator is v, a white or yellow node

colors itself gray and broadcasts a< dominatee>
message, specifying u as its dominator; Node v, if

it is gray, will color itself black and then broad-

cast a< dominator>message.

� Upon receiving a< dominatee>message, a

white node colors itself yellow and broadcasts

an< active>message.

� The yellow nodewhose id is the minimum among

all of its one-hop yellow neighbors colors itself

black and broadcasts a< dominator>message,

specifying the gray neighbor with the smallest id

as its dominator.

Note that Algorithm I grows a tree from the leader

in a step-by-step fashion. At any time, all the inner

nodes of the tree are colored black while most of the

leaf nodes are colored gray. In the first step, the leader

and all of its neighbors are added to the tree. In each of

the following steps, a gray node v and one of its yellow

neighbors u are colored black. All the white and

yellow neighbors of u and v are colored gray and

added to the tree as leaves. This algorithm terminates

when no white and yellow node left. All the black

nodes form a CDS.

3.2. An Example

Figure 2 demonstrates an example of the CDS con-

struction process by Algorithm I. We use the same

network topology as that in Reference [9] for conve-

nience. In this graph, the number labeling each node is

the node id. The network topology is denoted by edges

between nodes. Node 0 is selected as the leader. In

Figure 2(a) and 2(b) the leader first colors itself black

and its one-hop neighbors are marked gray. Then upon

receiving< dominatee>messages, nodes 3, 8, 5, 10,

and 7 change their colors to yellow, as shown in

Figure 2(c). Now each yellow node competes with

its yellow neighbors. Those with the minimum id

among their yellow neighbors (nodes 3, 5, and 7, as

shown in Figure 2(d)) become dominators and change

their colors to black. They specify nodes 2 and 12 as

their dominators. Finally, all white/yellow neighbors

of dominator nodes color themselves gray, indicating

their dominatee status, as shown in Figure 2(e). The

algorithm terminates when no white or yellow node

left. The black nodes 0, 12, 2, 5, 3, and 7 form a CDS.

Comparing to the approach in Reference [9], our

algorithm broadcasts less number of messages and

finishes with fewer steps.

3.3. Performance Analysis

In this subsection, we study the performance of

Algorithm I.

Theorem 3.1: Algorithm I has message complexity

Oðn log nÞ and time complexity OðnÞ, where n is the

total number of vertices.

Proof. Step 1 has message complexity Oðn log nÞ [5].
Step 2 involves the broadcasting of three different

VIRTUAL BACKBONE CONSTRUCTION IN MULTIHOP AD HOC WIRELESS NETWORKS 185

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



kinds of messages:< dominator> ,< dominatee> ,

and< active> . Each node broadcasts each message

at most once. Therefore the total number of messages

in Algorithm I is at most Oðn log nÞ.
The time complexity for Step 1 is OðnÞ [5]. In

Step 2, there are OðnÞ number of broadcastings. Each

broadcast takes unit time, thus Step 2 also takes time

OðnÞ. Therefore Algorithm I has time complexity

OðnÞ. &

Theorem 3.2. The size of the connected dominating

set generated by Algorithm I is at most 8 � opt þ 1,

where opt is the size of the minimum connected

dominating set.

Proof. We can partition all the dominators into two

sets: A and B. Set A contains all vertices with color

changing from white or yellow to black directly and B

contains all vertices with color changing from white

or yellow to gray then to black. The first step adds the

leader to A. In the following steps, while one node is

added to B, there is at least one node added to A. Thus

jAj � jBj þ 1.

Now we claim that A is an independent set. This is

obvious since each vertex u in A is colored black from

white or yellow. This means u has no black neighbors

because each neighbor of a black node has gray color.

From Lemma 2.3, jAj44 � opt þ 1. Thus jAj þ jBj �
8 � opt þ 1. &

Remark: Note that intuitively Algorithm I is not better

than the best published result in Reference [9], which

is denoted by WAF. A careful study indicates that

Algorithm I broadcasts less number of messages for

CDS construction. WAF relies on the tree constructed

by leader election procedure. In Reference [9], the

algorithm traverses the tree multiple times for com-

puting an MIS and then connecting all nodes in the

MIS. WAF assigns dominator or dominatee status

based on the level and effective degree of each node

in the tree, thus it takes larger number of messages to

report level and effective degree information. Our

algorithm grows a spanning tree from the leader. It

does not rely on any degree information, thus it is

more message-efficient.

4. Algorithm II: A Linear Message
Complexity Algorithm

The message complexity of Algorithm I is Oðn log nÞ,
which is dominated by leader election. As proved by

Fig. 2. An example to illustrate Algorithm I. Note that we use the same network topology as that in Reference [9] for
convenience.

186 X. CHENG ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



References [2,5,9], the lower bound on the message

complexity for distributed leader election is

�ðn log nÞ. Thus, the best achievable message com-

plexity for leader election based CDS construction is

Oðn log nÞ. Recently, Alzoubi, Wan and Frieder [1]

introduce an algorithm with linear time and message

complexities. This algorithm generates a CDS with

size at most 192 � opt þ 48, where opt is the size of

any MCDS. In this section, we are going to propose a

better heuristic that computes a CDS with size at most

147 � opt þ 33. Our algorithm also has linear time and

message complexities. Compared to Algorithm I, Algo-

rithm II exploits parallelism to a much higher degree.

4.1. Algorithm Description

Algorithm II contains three steps. Step 1 constructs a

forest in which each tree is rooted at a node with

minimum id among its one-hop neighbors. Step 2

collects neighboring information, which will be used

in step 3 to connect neighboring trees. Initially all

nodes are colored white. The actions and broadcasted

messages are stated below.

1. Constructing a forest F. This step constructs a

forest in which each tree is rooted at a node whose

id is the smallest among all its one-hop neighbors.

Roots are colored red; non-leaf tree nodes are

colored either black or blue. All red/black/blue

nodes are dominators while gray nodes are dom-

inatees. The procedure to construct a rooted tree is

similar to Algorithm I. A tree is identified by its

root. Each node knows the root of the tree to which

it belongs.

� Any node u that has the smallest id among all

neighbors in the closed neighbor set of u colors

itself red and broadcasts a< root>message.

� Upon receiving a< root>message from u, a

white node colors itself gray and broadcasts a

< dominatee>message, specifying u as its dom-

inator and its root.

� Upon receiving a< dominatee>message, a

white node that has the smallest id among all

white neighbors in its closed neighbor set colors

itself black and broadcasts

a< dominator>message, specifying the gray

neighbor v with the smallest id as its dominator

and v’s root as its root.

� Upon receiving a< dominator>message from u

whose dominator is v, a white node colors itself

gray and broadcasts a< dominatee>message,

specifying u as its dominator and u’s root as its

root. Meanwhile, the gray node v colors itself

blue and broadcasts a< connector>message.

� Upon receiving a< connector>message from

u, a white node colors itself gray and broadcasts

a< dominatee>message, specifying u as its

dominator and u’s root as its root.

2. Collecting information. Note that step 1 termi-

nates when there is no white node left. After the

forest is constructed, each red/black node finds out

its nearest red/black neighbors in neighboring

trees,z and compute the ‘smallest paths’§ to them.

� Upon receiving< dominator> , or<dominatee> ,

or < root> messages from all neighbors, a gray/

blue node u broadcasts a< report-one-hop> mes-

sage, reporting all its one-hop red/black neighbors

together with their roots.

� Upon receiving< report-one-hop>messages

from all gray/blue neighbors, a gray/blue node

reports its two-hop red/black neighbors together

with their roots by broadcasting message< re-

report-two-hop> .

3. Constructing a CDS. After step 2, each red/black

node knows its red/black neighbors belonging to

different trees within three-hop distance. A CDS

can be constructed by the broadcasting

of< relaying> messages, which contain the smal-

lest paths to the red/black neighbors of the red/

black node that initiates the message.

� Upon receiving< report-two-hop>messages

from all neighbors, a red/black node constructs

and broadcasts a< relaying>message, contain-

ing the one-hop intermediate relaying nodes in

the smallest paths to all the three-hop red/black

zTwo trees �1 and �2 are neighbors if at least one node in �1 is
a one-hop neighbor of some node in �2. A neighboring tree
of a node u is a tree containing a node that is at most three-
hops away from u.
§The smallest path between two nodes u and v is the shortest
path whose ordered list of node ids (including u and v) are
the smallest alphabetically. For example, if the two shortest
paths between nodes 1 and 10 are 1 ! 5 ! 6 ! 10 and
1 ! 9 ! 4 ! 10, then the smallest path is 1 ! 9 !
4 ! 10, whose ordered list of ids is ‘1 4 9 10’, which is
smaller than ‘1 5 6 10’ alphabetically. The smallest path
between two neighboring trees �1 and �2 is the smallest of all
the smallest paths between two neighboring black/red nodes
u and v, where u 2 �1 and v 2 �2. The smallest path between
a node u and a neighboring tree � is the smallest of all the
smallest paths between u and the nearest neighboring red/
black nodes in � .

VIRTUAL BACKBONE CONSTRUCTION IN MULTIHOP AD HOC WIRELESS NETWORKS 187

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



neighbors, and the unique intermediate relaying

nodes in the smallest paths to all the two-hop

red/black neighbors whose ids are higher.

� Upon receiving a< relaying>message from all

one-hop red/black black neighbors, a gray node

whose id is included in at least one< relaying>
message will color itself yellow and broadcast

a< connector>message.

Remarks. (i) The smallest path computed in step 2 for

any pair of red/black nodes that are two or three hops

away is unique, as long as node ids are unique. This

guarantees the correctness of Algorithm II. A smal-

lest path must be a shortest path first. (ii) The

computation of the smallest path requires the avail-

ability of three-hop neighborhood information for

each red/black node, which is possible through the

broadcastings of < report-one-hop> and< report-

two-hop>messages. (iii) In the third step, only

red/black nodes within three-hop distance that be-

long to different trees are connected.

4.2. An Example

Figure 3 shows an example to illustrate how

Algorithm II is applied to compute a CDS. For

convenience, we use the same network topology as

that in Algorithm I. In the first step, every node that has

the smallest id among all its one-hop neighbors begins

to construct the forest. In Figure 3(a), nodes 0, 1, 5

color themselves red and each broadcasts

a< root>message. Then all of their one-hop

neighbors, which include nodes 2, 4, 12, 3, 6,

8, 9, 10, 11 in Figure 3(b), change to gray and

broadcast< dominatee>messages. Upon receiving

a< dominatee> message, node 7 becomes a dom-

inator, specifying node 6 as its dominator and node 1

as its root. This process is illustrated in Figure 3(c)

and 3(d). Up to now, the first step terminates and there

is no white node left. There are three trees constructed

as shown in Figure 3(d). In the second step, red/black

nodes find out their nearest red/black neighbors

within three-hop distance in neighboring trees through

< report-one-hop> and< report-two-hop>messages

broadcasted by their gray/blue neighbors. In this ex-

ample, 0 ! 2 ! 3 ! 1 is found to be the smallest

path between node 0 and node 1. Furthermore, Node 0

specifies 0 ! 12 ! 5 as the smallest path to node 5,

and 0 ! 12 ! 7 as the smallest path to node 7. Note

that path 5 ! 9 ! 7 is selected as the smallest path

between node 5 and node 7 according to our definition

of the smallest path between two nodes. Similarly, path

Fig. 3. A connected dominating set (CDS) construction example by Algorithm II. We use the same network topology as that in
algorithm I.

188 X. CHENG ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



1 ! 3 ! 8 ! 5 is the smallest path between node 1

and node 5. Figure 3(e) illustrates the third step to

connect the neighboring trees. Nodes 2, 3, 12, 8, and 9

turn yellow since their ids are included in the

< relaying> messages from their one-hop red/black

neighbors. When the algorithm terminates, nodes 0, 1,

5, 7, 6, 2, 3, 12, 8, and 9 form a CDS.

4.3. Performance Analysis

The message and time complexities, together with the

performance ratio of Algorithm II are reported in this

subsection. We will first prove its correctness.

Lemma 4.1. In Algorithm II, there is no white node

left after step 1 completes.

Proof. We prove this lemma by contradiction. Assume

there is at least one white node after step 1 completes.

Let u be the white node with the smallest id. If u is

adjacent to a red or black or blue node, then it should

have been colored gray after receiving a < root> , or

a < dominator> , or a < connector> message. If u

is adjacent to a gray node, then it should have been

colored black as it has the smallest id among all of its

one-hop white neighbors. Finally if u is adjacent to

only white nodes, then it should have been colored red

at the beginning of Algorithm II. In all cases, node u

with white color can not exit. &

Lemma 4.2. After Algorithm II completes, all red/

black nodes form an MIS.

Proof. Nodes with the smallest id among all one-hop

neighbors are colored red in step 1. Thus two red nodes

are at least two hops away. A node is colored black in

step 1 only if it has the smallest id among all its white

neighbors, and it is not adjacent to any black or red

node, as all neighboring nodes of a red or a black node

are colored gray. Therefore, any pair of red/black

nodes are at least two hops away. Thus, all red/black

nodes form an independent set S. On the other hand, all

blue nodes and yellow nodes are colored gray first, and

each gray node has at least one red or one black

neighbor. Based on Lemma 4.1, S is maximum. &

Theorem 4.3. Algorithm II finds a CDS containing all

red, black, blue, and yellow nodes.

Proof. Note that the set containing all red, black, and

blue nodes are equivalent to the set containing all

dominators in the forest. Step 3 of algorithm II

connects neighboring trees with yellow nodes. There-

fore the set containing all red, black, blue, and yellow

nodes form a CDS. &

Theorem 4.4. Algorithm II has message complexity

OðnÞ and time complexity OðnÞ, where n is the total

number of vertices.

Proof. There are seven types of messages involved in

Algorithm II and each node broadcasts each type of

message at most once. Thus the message complexity

is OðnÞ.
Each broadcasting takes unit time. Based on

Lemma 2.1, any red/black node in the MIS con-

structed in step 1 has constant number of two-hop

and three-hop independent red/black neighbors. Thus

the smallest path computation in step 2 also takes

constant time. Therefore the time complexity for

algorithm II is OðnÞ. &

Theorem 4.5. The size of the connected dominating

set generated by Algorithm II is at most 147�
opt þ 33.

Proof. Let S1 be the set containing all red nodes; S2 be

the set containing all black nodes; S3 be the set

containing all blue connectors; and S4 be the set

containing all yellow connectors. There are two kinds

of red nodes in S1. S
ð1Þ
1 is the set in which each red

node has at least one red/black neighbor that is two

hops away; S
ð2Þ
1 is the set containing the red nodes at

least three hops away from any other red/black nodes.

We have S1 � S
ð1Þ
1 þ S

ð2Þ
1 .

From Lemma 4.2 and Lemma 2.3, jS1j þ jS2j4
4 opt þ 1. On the other hand, a gray node is colored

blue only because a white node is colored black in

step 1, thus jS3j4jS2j. Finally in step 3, based on

Lemma 2.1 and Lemma 2.2, each node in S
ð1Þ
1 and S2

is charged for at most 32� 2 yellow and blue con-

nectors, and each node in S
ð2Þ
1 is charged for at most

47�2 yellow connectors. Note that in this charging

analysis, each yellow/blue connector is counted twice.

Therefore jS4j4 1
2
½ðjSð1Þ1 j þ jS2jÞ � 32þ jSð2Þ1 j � 47	�

2� jS3j. Based on Lemma 2.4, jSð2Þ1 j4opt. Therefore,

jDj ¼ jS1j þ jS2j þ jS3j þ jS4j44 � opt þ 1

þ ðjSð1Þ1 þ jS2jÞ � 32þ jSð2Þ1 j
� 474147 � opt þ 33

Remarks. (i) The proof of Theorem 4.5 does not

consider the following fact: step 3 only connects

&

VIRTUAL BACKBONE CONSTRUCTION IN MULTIHOP AD HOC WIRELESS NETWORKS 189

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190



neighboring red/black nodes in different trees. Thus,

our performance analysis may not be tight. (ii) This

algorithm constructs and connects a forest, while the

one proposed in Reference [1] computes and connects

an MIS.

5. Conclusion and Discussion

In this paper, we have studied the problem of effec-

tively and efficiently constructing a virtual backbone

for ad hoc wireless networks, which is modeled by

computing a minimum connected dominating set in

unit-disk graphs. Two distributed message/time effi-

cient algorithms have been proposed. Both of them

achieve good performance compared with existing

ones in literature.

Note that we have proved in Reference [4] that

MCDS in unit-disk graphs has a PTAS, which means

that it can be approximated to any degree. However,

the best algorithm with Oðn log nÞ message complex-

ity has performance ratio of 8 and the best algorithm

with linear message complexity obtains a CDS with

size at most 147 � opt þ 33. Therefore, one of our

future research is to design better heuristics to bridge

the gap.

References

1. Alzoubi KM, Wan P-J, Frieder O. Message-optimal connected
dominating sets in mobile ad hoc networks, ACM MOBIHOC,
2002; pp. 157–164.

2. Awerbuch B. Optimal distributed algorithm for minimum
weight spanning tree, counting, leader election and related
problems. Proceedings of the 19th ACM Symposium on Theory
of Computing, ACM, 1987; pp. 230–240.

3. Blum J, Ding M, Thaeler A, Cheng X. Connected dominating
sets in sensor networks and MANETs. In Handbook of Combi-
natorial Optimization, Du D-Z, Pardalos P (eds). Kluwer
Academic Publishers, Netherlands, 2004; pp. 329–369.

4. Cheng X, Huang X, Li D, Wu W, Du D-Z. A polynomial-time
approximation scheme for the minimum connected dominating
set in ad hoc wireless networks. Networks 2003; 42(4): 202–
208.

5. Cidon I, Mokryn O. Propagation and leader election in multihop
broadcast environment, the 12th International Symposium on
Distributed Computing (DISC), 1998; pp. 104–119.

6. Clark BN, Colbourn CJ, Johnson DS. Unit disk graphs.Discrete
Mathematics 1990; 86: 165–177.

7. Das B, Bharghavan V. Routing in ad hoc networks using
minimum connected dominating sets, ICC ’97, Montreal, Ca-
nada, June 1997.

8. Ni S-Y, Tseng Y-C, Chen Y-S, Sheu J-P. The broadcast storm
problem in a mobile ad hoc network. Proceedings of MOBI-
COM, Seattle, August 1999; pp. 151–162.

9. Wan P-J, Alzoubi KM, Frieder O. Distributed construction of
connected dominating set in wireless ad hoc networks. IEEE
INFOCOM, 2002; pp. 1597–1604.

Author’s Biographies

Xiuzhen Cheng is an assistant pro-
fessor in the Department of Compu-
ter Science at the George Washington
University. She received her M.S.
degree and Ph.D. in Computer
Science from University of Minne-
sota—Twin Cities in 2000 and 2002,
respectively. Her current research
interests include localization and
fault-tolerant information processing

in sensor networks; routing in mobile ad hoc networks; and
approximation algorithm design and analysis. She received
the NSF CAREER Award in 2004.

Min Ding received her B.S. in
Computer Science and Engineering
from Tianjin University in 1995,
and the M.S. degree in Information
Science from the Institute of Scien-
tific and Technical Information of
China in 1999. During August to
December 1999, she was a visiting
student in College of Information
Studies, University of Maryland,

College Park. From 2002, she is a Ph.D. student at
Computer Science Department, the George Washington
University. Her research interests include localization
and tracking, in-network aggregation and query proces-
sing in sensor networks.

David Hongwei Du received his
B.Sc. degree in Computer Science
from the Central China Normal Uni-
versity in 2003. He is currently a
M.phil. student in the department of
Computer Science, City University of
Hong Kong. His research interests
include computer networks, and inter-
net and mobile computing.

Xiaohua Jia received his B.S. degree
in 1984 and M.Eng. in 1987 from the
University of Science and Technology
of China, and obtained his D.Sc. in
1991 in Information Science from the
University of Tokyo, Japan. He is
currently a professor in Department
of Computer Science at City Univer-
sity of Hong Kong, adjunct with
School of Computing, Wuhan Univer-

sity, China. His research interests include distributed sys-
tems, computer networks, WDM optical networks, Internet
technologies, and mobile computing.

190 X. CHENG ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2006; 6:183–190


