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We propose a knowledge-based ubiquitous and persistent

sensor network (KUPS) for threat assessment, in which

“sensor” is a broad characterization. It refers to diverse data

or information from ubiquitous and persistent sensor sources

such as organic sensors and human intelligence sensors. Our

KUPS for threat assessment consists of two major steps: situation

awareness using fuzzy logic systems (FLSs) and threat parameter

estimation using radar sensor networks (RSNs). Our FLSs

combine the linguistic knowledge from different intelligent

sensors, and our proposed maximum-likelihood (ML) estimation

algorithm performs target radar cross section (RCS) parameter

estimation. We also show that our ML estimator is unbiased and

the variance of parameter estimation matches the Cramer-Rao

lower bound (CRLB) if the radar pulses follow the Swerling II

model. Simulations further validate our theoretical results.
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I. INTRODUCTION AND MOTIVATION

In current and future military operational
environments, such as global war on terrorism
(GWOT) and maritime domain awareness (MDA),
warfighters require technologies evolved to support
information needs regardless of location and
consistent with the user’s level of command or
responsibility and operational situation. To support
this need, the U.S. Department of Defense (DoD)
has developed the concept of network centric warfare
(NCW), defined as “military operations that exploit
state-of-the-art information and networking technology
to integrate widely dispersed human decision makers,
situational and targeting sensors, and forces and
weapons into a highly adaptive, comprehensive system
to achieve unprecedented mission effectiveness” [1].
The DoD has defined three levels of data fusion

for NCW. the level 1 data fusion combines data from
single or multiple sensors and sources to provide the
best estimate of objects and events in the battlespace
in terms of their position, kinematics (e.g. tracks),
identity, or identification features. In [14], decision
fusion rules were studied in multi-hop wireless
sensor networks. In [10], a fuzzy logic approach for
postdetection signal integration and detection was
proposed, and a functional paradigm for fuzzy data
fusion was presented in [25]. However, too often
in level 1 data fusion, the characteristics of objects
that are not of interest will be similar to those of
threat objects. The conventional approach to false
alarm control is to reduce sensitivity of the radar in
areas of clutter, using sensitivity time control (STC)
[26]. In [11], we proposed a maximum-likelihood
(ML) automatic target recognition (ATR) algorithm
using constant frequency (CF) waveform design
and diversity, assuming perfect delay and Doppler.
In [12], we applied linear frequency modulation
(LFM) waveform design and diversity to ATR with
delay-Doppler uncertainty. Level 2 data fusion focuses
on situation assessment. This requires recognition of
objects/entities in the regions of interest, as well as
recognizing activities of these objects, and inferring
their relationships. Level 3 data fusion is threat
assessment, which requires inferring the intent of
objects/entities, or groups of objects, in the regions
of interest. Higher level data fusion also needs lower
level data fusion results. In level 2/3 data fusion,
some works have been reported. A situation/threat
assessment fusion system was proposed in [3].
Other approaches include multiple attribute decision
making [4], Bayesian networks [21], etc. In [6], an
intelligent threat assessment processor using genetic
algorithms and fuzzy logic was proposed. In [20],
threat assessment was studied in tactical airborne
environments. In [9], neural network was applied to
threat assessment for automated visual surveillance.
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In [5], an intelligent assistant to provide automatic
situation and threat advice in the Air Defence Ground
Environment was proposed. In [2], a situation and
threat assessment model based on group analysis was
studied.
Despite these above advances, current shortfalls

in warfighting functionality result from limitations
in technology. For example, accurate and timely
information about battlespace objects and events
is not available to support warfighter decision
making (including reliable location, tracking, combat
identification, and targeting information). While
massive amounts of data will be generated by
penetrating persistent sensors, warfighters require
technologies that not only integrate information
from diverse sources but also provide indications
of information significance in ways that support
the user’s tactical decision needs regardless of
location and are consistent with the user’s level of
command or responsibility and operational situation.
Assuming the availability of object track and identity
information, automated decision tools that transform
this information into actionable knowledge for
the decision maker are required. The tools and
technologies to resolve these shortfalls must address
data fusion, particularly at levels 2/3 [1]. In this
paper, we propose a knowledge-based ubiquitous
and persistent sensor network (KUPS) for threat
assessment.
The rest of this paper is organized as follows. In

Section II, we introduce the new concept of KUPS,
and in Section III, we propose knowledge-based
situation awareness using intelligence (INT) sensors.
In Section IV, we propose a fine target recognition
and threat assessment scheme that employs an ML
estimation algorithm for threat target radar cross
section (RCS) parameter estimation using radar sensor
networks (RSNs). Finally, we conclude this paper and
discuss future research directions in Section V.

II. INTRODUCTION TO KNOWLEDGE-BASED
UBIQUITOUS AND PERSISTENT SENSOR
NETWORKS: A NEW CONCEPT

In this paper, we propose an NCW model entitled
knowledge-based ubiquitous and persistent sensor
network (KUPS), in which “sensor” is a broad
characterization concept. It means ubiquitous and
persistent sensors sources such as the following.

1) Organic sensors (e.g., radar, electro-optic and
infrared, acoustic, and nonacoustic) deployed on air,
ground, surface, or unattended platforms.
2) Signal intelligence (SIGINT) including

electronic intelligence (ELINT) and communication
intelligence (COMINT). For example, it can assign
meaningful metadata to each collection, and the
metadata is the standardized characterization of data

providing descriptors (such as stability, activity,
membership, or structure).
3) Human intelligence (HUMINT), e.g., to identify

specific people/cells/groups and relationships.
4) Measurement and signatures intelligence

(MASINT), e.g., to provide specific weapon system
identifications, chemical compositions and material
content.
5) Imagery intelligence (IMINT), e.g., to track

vehicles through urban area.
6) Open source intelligence (OSINT), e.g., to

provide text data collection.

All these sources of information need to be integrated
via “sensor networking” to accomplish a mission. In
this paper, we apply KUPS to threat assessment, and
the organic sensors we use are pulse Doppler radars.
Our KUPS for threat assessment is a hierarchical

and recursive architecture which consists of two major
steps.

Step 1, Situation Awareness: Performing
knowledge-based situation awareness using INT
sensors (e.g. SIGINT, HUMINT sensors). Fuzzy
rules are used to represent the linguistic knowledge
uncertainties from HUMINT sensors, and fuzzy logic
systems (FLSs) are used to perform knowledge-based
decision making on situation awareness (e.g., threat or
nonthreat). If it is assessed as a nonthreat, stops; if it
is assessed as a potential threat to issue an indication
& warning (I&W), then go to Step 2 for further target
recognition and threat assessment.
Step 2, Fine Target Recognition and Threat

Assessment: Performing target RCS value estimation
using RSNs. We propose an ML estimation algorithm
to estimate target RCS parameter value using RSNs.
Based on the estimated RCS parameter, the KUPS
will advise what kind of target this threat is. The ML
estimation algorithm can help to estimate the RCS
parameter μ (parameter in a Rayleigh distribution
for fluctuating target). However, the same RCS
parameters may mean different targets, threats or
nonthreats. For example, for μ = 2, the target can
be a small flighter aircraft, a small pleasure boat, a
bicycle [26], or any other similar size target. This
example illustrates that RCS-based level 1 data fusion
(e.g., [11, 12]) without considering other context
such as geographical information (from OSINT) has
very clear disadvantages. So we have to use Step 1
to make the decision first, and only an I&W requires
further classification for further action. Sometimes it
may be a false alarm based on fine target recongition,
therefore Step 2 will make final threat assessment.

Step 2 results can be feedback to Step 1 recursively
to further tune the parameters in FLS design. Fig. 1
depicts the relationship between Steps 1 and 2. We
discuss these two steps in the following sections.
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Fig. 1. Relations of Steps 1 and 2.

III. KNOWLEDGE-BASED SITUATION AWARENESS
USING INT SENSORS

In knowledge-based situation assessment using
INT sensors, fuzzy rules are used to represent the
linguistic and numerical knowledge uncertainties
from INT sensors, and FLSs are used to perform
knowledge-based decision making on threat
assessment. We give a brief introduction on FLSs first.

A. Overview of Fuzzy Logic Systems

In general, an FLS is a nonlinear mapping of an
input data (feature) vector to a scalar output [16].
Fig. 2 shows the structure of an FLS [16]. When an
input is provided to an FLS, the inference engine
computes the output set corresponding to each rule.
The defuzzifier then computes a crisp output from
these rule output sets. Consider a p-input 1-output
FLS, using singleton fuzzification, center-of-sets
defuzzification [18, 16], and “IF-THEN” rules of the
form

Rl : IF x1 is F
l
1 and x2 is F

l
2 and ¢ ¢ ¢

and xp is F
l
p, THEN y is G

l:

Assuming singleton fuzzification, when an input
x0 = fx01, : : : ,x0pg is applied, the degree of firing
corresponding to the lth rule is computed as

¹Fl1
(x01) ?¹Fl2 (x

0
2) ? ¢ ¢ ¢ ?¹Flp(x

0
p) = T

p
i=1¹Fli

(x0i) (1)

where ? and T both indicate the chosen t-norm
(minimum or product operation) [16], and ¹Fli (x

0
i) is

Fig. 2. Structure of FLS.

the membership grade of fuzzy set Fli for input x
0
i.

There are many kinds of defuzzifiers [16, 18]. In
this paper, we focus, for illustrative purpose, on the
center-of-sets defuzzifier [18]. It computes a crisp
output for the FLS by first computing the centroid
cGl of every consequent set G

l, and then computing
a weighted average of these centroids. The weight
corresponding to the lth rule consequent centroid is
the degree of firing (firing strength) associated with
the lth rule, T pi=1¹Fli (x

0
i), so that

ycos(x
0) =

PM
l=1 cGlT

p
i=1¹Fli

(x0i)PM
l=1T

p
i=1¹Fli

(x0i)
(2)

where M is the number of rules in the FLS. Readers
can refer to [16, 18] for details on FLS. Reference
[16] provides a very good tutorial on FLS, and
[18] gives an introduction to and directions on FLS
development [18].

B. Knowledge-Based Situation Awareness using FLSs

In our FLS design for situation awareness, we
consider the following knowledge-based antecedents.

1) The first antecedent is the number of switches
from the nonmaneuvering set (constant behavior
in speed, acceleration, and direction, etc.) to the
maneuvering set (varying behavior in speed,
acceleration, and direction, etc). When a target is
beginning a maneuver from a nonmaneuvering class,
the tracking system can switch the algorithms applied
to the problem from a nonmaneuvering set to the
maneuvering set. The errors in distance from where
the tracker estimates the position of a target between
the actual position can be very large when the
incorrect motion models are applied to the problem.
Additionally, when the tracker does finally catch up
to the target after the maneuver, the track will “jump”
across the operator’s scope giving a very unrealistic
and unreliable picture of what that target is actually
doing. So a threat target will quite often switch from
a nonmaneuvering set to the maneuvering set, and
vice versa, to avoid being tracked all the time. This
knowledge can be used as an antecedent for situation
awareness.
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TABLE I
Fuzzy Rules used in KUPS

Rule # Ante 1 Ante 2 Ante 3 Consequent

1 low low low weak
2 low low moderate medium
3 low low high strong
4 low moderate low very weak
5 low moderate moderate weak
6 low moderate high medium
7 low high low very weak
8 low high moderate weak
9 low high high medium
10 moderate low low medium
11 moderate low moderate strong
12 moderate low high very strong
13 moderate moderate low weak
14 moderate moderate moderate medium
15 moderate moderate high strong
16 moderate high low very weak
17 moderate high moderate weak
18 moderate high high medium
19 high low low medium
20 high low moderate strong
21 high low high very strong
22 high moderate low weak
23 high moderate moderate medium
24 high moderate high strong
25 high high low very weak
26 high high moderate weak
27 high high high Moderate

Note: Ante 1 is number of switches from nonmaneuvering set to
maneuvering set or vice versa. Ante 2 is frequency of appearance
of such type of target. Ante 3 is importance of geolocation of
target. Consequent is the possibility that target is a threat.

2) The second antecedent is the frequency of
appearance of such type of target based on some
a priori knowledge such as archival radar data.
Generally threat targets are new compared to archival
radar data.
3) The third antecedent is the importance of

geolocation of this target based on the geographical
information systems (GISs). Examples of important
geolocations include large metroplexes, landmarks,
military bases, airports, etc. Threats happen quite
often in such areas.

The above three antecedents are all knowledge
based and it can be collected from the INT sensors.
A typical rule using the above three antecedents can
be:

IF the number of switches from nonmaneuvering
set to the maneuvering set is high, and the
frequency of appearance of such target is low,
and the importance of geolocation of such type
of target is high, THEN the possibility that an
I&W needs to be issued is very strong.

The linguistic variables used to represent each
antecedent are divided into three levels: low, moderate,

Fig. 3. MFs used to represent linguistic labels. (a) MFs for
antecedents. (b) MFs for consequent.

and high. The consequent–the possibility that an
I&W needs to be issued–is divided into 5 levels,
very strong, strong, medium, weak, very weak. So
we need to set up 33 = 27 (because every antecedent
has 3 fuzzy subsets, and there are 3 antecedents) rules
for this FLS. Table I summarizes the fuzzy rules we
use in this paper. We use trapezoidal membership
functions (MFs) to represent low, and high, and
triangle MFs to represent moderate. We show these
MFs in Fig. 3.
For input (x1,x2,x3), the output is computed using

y(x1,x2,x3) =

P27
l=1¹F1l

(x1)¹F2l (x2)¹F3l (x3)c
l
avgP27

l=1¹F1l
(x1)¹F2l (x2)¹F3l (x3)

(3)

where ¹Fil (xi) (i= 1,2,3) represents the antecedent i
membership degree (in the lth rule) when the input is
xi and the membership functions are plotted in Fig. 3.
By repeating these calculations for 8xi 2 [0,10], we
obtain a hypersurface y(x1,x2,x3). This equation
represents the nonlinear mapping between three
inputs and one output of the FLS. Since it’s a 4-D
surface (x1,x2,x3,y), it’s impossible to be plotted
visually.
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Fig. 4. Threat assessment surface for fixed importance
of geolocation of this target (x3). (a) When x3 = 1.

(b) When x3 = 9.

If we have x3 = 1, and two other antecedents
x1 and x2 are variables, the output is computed
using

y(x1,x2,1) =

P27
l=1¹F1l

(x1)¹F2l (x2)¹F3l (1)c
l
cosP27

l=1¹F1l
(x1)¹F2l (x2)¹F3l (1)

: (4)

This equation represents the nonlinear mapping
between three inputs (one of which is fixed) and one
output of the FLS. By repeating these calculations
for 8x1 2 [0,10] and 8x2 2 [0,10], we obtain a
hypersurface y(x1,x2,1), as plotted in Fig. 4(a). In
contrast, if we have x3 = 9, and two other antecedents
x1 and x2 are variables, we obtain another surface
y(x1,x2,9), as plotted in Fig. 4(b). Observe that from
Fig. 4, the importance of geolocation of a target (x3)
makes a big difference in situation awareness, and
the number of switches from nonmaneuvering set
to the maneuvering set or vice versa (x1) and the
frequency of appearance of such target (x2) also play
a very important role even when the importance of
geolocation (x3) is the same.

IV. FINE TARGET RECOGNITION AND THREAT
ASSESSMENT

A. Target RCS Value Estimation using RSNs

1) RCS and RCS Voltage for Fluctuating Target:
Most radar analysis and measurement programs
emphasize RCS measurements, which are proportional
to received power. RCS is the fictional area over
which the transmitter power density must be
intercepted to collect a total power that would account
for the received power density. Typical values of
RCS for targets of interest range from 0:01 m2 to
hundreds of square meters [26]. Fluctuating target
modeling is more realistic in which the target RCS
is drawn from either the Rayleigh/exponential or
chi-square of degree four probability density function
(pdf). The Rayleigh/exponential model describes
the behavior of a complex target consisting of many
scatters, none of which is dominant. The fourth-degree
chi-square model targets have many scatters of similar
strength with one dominant scatter. Based on different
combinations of pdf and decorrelation characteristics
(scan-to-scan or pulse-to-pulse decorrelation), four
Swerling models are used [24]. In this paper, we
focus on “Swerling II” model which is an exponential
distribution with pulse-to-pulse decorrelation.
The pulse-to-pulse decorrelation implies that each
individual pulse results in an independent value for
RCS. Sometimes the RCS voltage value (square
root of RCS) is of interest, particularly for use in
simulations to model the composite echo from a
multiple-scatter target. The RCS voltage value is
the square root of RCS, so the pdf of RCS voltage
follows a Rayleigh distribution [24]. In this paper,
we apply radar sensor networks to estimate the RCS
value.
2) Introduction to Radar Sensor Networks: In

[11], we performed the following theoretical studies
on CF pulse waveform design and diversity in
RSNs: 1) the conditions for waveform coexistence,
2) interferences among waveforms in RSN, and 3)
waveform diversity combining in RSN.
For RSNs, the waveforms from different radars

interfere with each other. We choose the waveform for
radar i as

xi(t) =

r
1
T
exp[j2¼(¯+ ±i)t], ¡T=2· t· T=2

(5)

where ¯ is the RF carrier frequency in radians per
second, and ±i is a frequency shift for radar i. To
minimize the interference from one waveform to the
other, optimal values for ±i should be determined
to have the waveforms orthogonal to each other,
i.e., let the cross-correlation between xi(t) and xn(t)
be 0. We showed that choosing ±i = i=T in (5) can
have orthogonal waveforms, i.e., the waveforms can
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Fig. 5. Waveform diversity combining by clusterhead in RSN.

coexist if the carrier spacing is 1=T between two radar
waveforms.
In RSN, the radar sensors are networked

together in an ad hoc fashion. They do not rely
on a preexisting fixed infrastructure, such as a
wireline backbone network or a base station. They are
self-organizing entities that are deployed on demand
in support of various event surveillance, battlefield,
disaster relief, search and rescue, etc. Scalability
concern suggests a hierarchical organization of
RSNs with the lowest level in the hierarchy being
a cluster. As argued in [15], [8], [7], [22], in
addition to helping with scalability and robustness,
aggregating sensor nodes into clusters has additional
benefits:

1) conserving radio resources such as bandwidth,
2) promoting spatial code reuse and frequency

reuse,
3) simplifying the topology, e.g., when a mobile

radar changes its location, it is sufficient for the
nodes in attended clusters to update their topology
information,
4) reducing the generation and propagation of

routing information,
5) concealing the details of global network

topology from individual nodes.

In RSN, each radar can provide its waveform
parameters such as ±i to its clusterhead radar, and the
clusterhead radar can combine the waveforms from its
cluster members.
In RSN with M radars, the received signal for

clusterhead (assume it’s radar 1) is

r1(u, t) =
MX
i=1

®(u)xi(t¡ ti)exp(j2¼FDi t)+ n(u, t)

(6)

where xi(t) is the transmitted CF waveform, ®(u)
stands for voltage of RCS, FDi is the Doppler shift
of target relative to waveform i, ti is the delay of
waveform i, and n(u, t) is the additive white Gaussian
noise (AWGN). In [11], we proposed a RAKE
structure for waveform diversity combining, as
illustrated by Fig. 5.
According to this structure, the received r1(u, t)

is processed by a bank of matched filters, then the
output of branch 1 (after integration and before taking

the envelope) is [11]

Z1(u; t1, : : : , tM ,FD1 , : : : ,FDM )

=

Z T=2

¡T=2
r1(u, t)x

¤
1(t¡ t1)dt (7)

=

Z T=2

¡T=2

"
MX
i=1

®(u)xi(t¡ ti)exp(j2¼FDi t) + n(u, t)

#
x¤1(t¡ t1)dt

(8)

where
R T=2
¡T=2 n(u, t)x

¤
1(t¡ t1)dt can easily be proved to

be AWGN. Let

n(u, t1)
¢
=
Z T=2

¡T=2
n(u, t)x¤1(t¡ t1)dt: (9)

Assuming t1 = t2 = ¢ ¢ ¢= tM = ¿ , then according to
interference analysis in [11],

Z1(u;¿ ,FD1 , : : : ,FDM )¼
MX
i=2

®(u)sinc[¼(i¡ 1+FDiT)]

+
®(u) sin[¼FD1 (T¡ j¿ j)]

T¼FD1
+ n(u,¿ ):

(10)

Similarly, we can get the output for any branch m
(m= 1,2, : : : ,M),

Zm(u;¿ ,FD1 , : : : ,FDM )¼
MX

i=1,i 6=m

®(u)sinc[¼(i¡m+FDiT)]

+
®(u) sin[¼FDm (T¡ j¿ j)]

T¼FDm
+ n(u,¿ ):

(11)

Therefore Zm(u;¿ ,FD1 , : : : ,FDM ) consists of three parts,
signal (reflected signal from radar m waveform):
®(u)E sin[¼FDm(T¡ j¿ j)]=T¼FDm , interferences from
other waveforms:

PM
i=1,i 6=m®(u)Esinc[¼(i¡m+FDiT)],

and noise: n(u,¿).
We can have three special cases for

Zm(u;¿ ,FD1 , : : : ,FDM ).

1) When FD1 = ¢ ¢ ¢= FDM = 0,

Zm(u;¿ ,0,0, : : : ,0)¼
®(u)(T¡ j¿ j)

T
+ n(u,¿) (12)

which means if there is no Doppler mismatch, there
will be no interference from other waveforms.
2) If ¿ = 0, then (11) becomes

Zm(u;0,FD1 , : : : ,FDM )¼
MX

i=1,i 6=m
®(u)sinc[¼(i¡m+FDiT)]

+®(u)sinc[¼FDmT] + n(u): (13)

3) If ¿ = 0, and FD1 = ¢ ¢ ¢= FDM = 0, then (11)
becomes

Zm(u;0,0,0, : : : ,0)¼ ®(u)+ n(u): (14)
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Doppler mismatch happens quite often in target search
where target velocity is not known yet. However,
in target recognition, generally high-resolution
measurements of targets in range (¿ = 0) and Doppler
are available, so (14) will be used for RCS value
estimation.

How to combine all the Zms (m= 1,2, : : : ,M)
is very similar to the diversity combining in
communations to combat channel fading, and the
combination schemes may be different for different
applications. In this paper, we are interested in
applying RSN waveform diversity to estimate the RCS
parameter °2, and we propose an ML algorithm for
RCS parameter estimation.
3) Maximum Likelihood Algorithm for RCS

Parameter Estimation: For the Swerling II model,
the RCS voltage j®(u)j follows a Rayleigh distribution
and the I and Q subchannels of ®(u) follow zero-mean
Gaussian distributions with a variance °2 (the RCS
average power value). Assume

®(u) = ®I(u) + j®Q(u) (15)

and n(u) = nI(u)+ jnQ(u) follows a zero-mean
complex Gaussian distribution with a variance ¾2 for
the I and Q subchannels.
According to (14),

jZm(u;0,0,0, : : : ,0)j ¼ j®(u) + n(u)j: (16)

Since ®(u) and n(u) are zero-mean complex Gaussian
random variables, ®(u) + n(u) is a zero-mean Gaussian
random variable with a variance °2 +¾2 for the I and

Q subchannels, which means ym
¢
= jZm(u;0,0, : : : ,0)j

follows a Rayleigh distribution with parameterp
°2 +¾2,

f(ym) =
ym

°2 +¾2
exp

·
¡ y2m
2(°2 +¾2)

¸
: (17)

The mean value of ym is
p
¼(°2 +¾2)=2, and its

variance is (4¡¼)(°2 +¾2)=2. The variance of
signal is (4¡¼)°2=2 and the variance of noise is
(4¡¼)¾2=2.
Let y

¢
=[y1,y2, : : : ,yM], then the pdf of y is

f(y) =
MY
m=1

f(ym) (18)

=
MY
m=1

ym
°2 +¾2

exp
·
¡ y2m
2(°2 +¾2)

¸
(19)

let
μ
¢
=°2 (20)

then (19) can be expressed as

f(y) =
MY
m=1

ym
μ+¾2

exp
·
¡ y2m
2(μ+¾2)

¸
: (21)

Therefore the ML algorithm to estimate the RCS
average value (μ) can be represented as

μ̂ML(y) = arg sup
μ2R+

f(y)

= arg sup
μ2R+

MY
m=1

ym
μ+¾2

exp
·
¡ y2m
2(μ+¾2)

¸
:

(22)

Maximizing f(y) is equivalent to maximizing logf(y)
(natural logarithm),

logf(y) =
MX
m=1

·
log
³ ym
μ+¾2

´
¡ y2m
2(μ+¾2)

¸
: (23)

Since it is a continuous function for ym > 0 and μ > 0,
a necessary condition for the ML estimation is

@

@μ
logf(y)j

μ=μ̂ML(y)
=
PM

m=1 y
2
m¡ 2M(μ+¾2)
2(μ+¾2)2

= 0

(24)
which has the unique solution

μ̂ML(y) =
PM
m=1 y

2
m

2M
¡¾2: (25)

Considering μ ¸ 0,

μ̂ML(y) = max

"PM
m=1 y

2
m

2M
¡¾2,0

#
: (26)

Since

@2

@μ2
logf(y)j

μ=μ̂ML(y)
=¡ 4M3

(
PM
m=1 y

2
m)2

< 0 (27)

this solution gives the unique maximum of logf(y).
The expectation of μ̂ML(y) is

Eμ[μ̂ML(y)] =
Z 1

0

PM

m=1 y
2
m

2M
f(ym)dym¡¾

2 (28)

=

Z 1

0

PM

m=1 y
2
m

2M
ym

μ+¾2
exp

·
¡ y2m
2(μ+¾2)

¸
dym¡¾2

= μ: (29)

Therefore it’s an unbiased estimator.
Fisher’s information for this case can be computed

via

Iμ =¡Eμ

·
@2

@μ2
logf(y)

¸

=¡Eμ

"
M(μ+¾2)¡

PM
m=1 y

2
m

(μ+¾2)3

#
: (30)

The mean value of ym is
p
¼(μ+¾2)=2, and its

variance is (4¡¼)(μ+¾2)=2. So the Cramer-Rao
lower bound (CRLB) is

Varμ[μ̂(y)]¸
1
Iμ
=
(μ+¾2)2

M
: (31)
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Fig. 6. Variance of RCS ML estimator with different number of
radars in RSN.

Since (@=@μ) logf(y) in (24) is of the form
k(μ)[μ̂ML(y)¡Eμ[μ̂(y)] for

k(μ) =
M

(μ+¾2)2
(32)

we conclude that μ̂ML(y) can achieve the CRLB
theoretically [17]. From (31), it’s clear that CRLB
is inversely proportional to the number of radars M
in RSN, which means RSN with larger M will have
much lower CRLB. This conclusion is drawn based on
the assumption that the radar pulses are independent
(in time and space) and follow a Rayleigh distribution,
which is the Swerling II model [24].
4) Simulations: For fluctuating target with an

RCS parameter μ = 2 (Rayleigh distribution), we
ran Monte Carlo simulations for 106 realizations at
each SNR value, and we applied the ML estimation
algorithm to estimate the parameter μ̂ for each
realization. In Fig. 6, we plotted the variance of the
RCS ML estimator with different number of radars in
RSN. Observe the following.

1) The actual variance of μ̂ matches exactly
with the CRLB for different numbers of radars in
RSN, which validates our theoretical results: our
ML estimator on the RCS parameter is an unbiased
estimator and the variance of the parameter estimation
matches CRLB.
2) The actual variance of μ̂ reduces as M

increases, and numerically it is reversely proportional
to M as we have shown in Section IVA.

B. Threat Assessment

Based on the estimated RCS value (for fine target
recognition) and situation awareness-related I&W,
threat can be assessed. For example, if an I&W
was issued in Step 1 (situation awareness) on an
unidentified flying object, we proceed with Step 2.
In Step 2, based on Step 2 RCS value estimation,

the target, for example, could be recognized as
a bird, a missile, or other because a bird has an
average RCS value of 0:01 m2 and a conventional
unmanned winged missle has an average RCS
value of 0:5 m2 [24]. A bird means the I&W is
a false alarm, and a missile means the I&W is a
threat and immediate actions need to be taken. The
threat assessment results can be feedback to Step 1
to tune the design parameters of the FLS using
training methods (for example, the steepest descent
algorithm [13]).

V. CONCLUSIONS AND FUTURE WORKS

We have proposed a KUPS for threat assessment,
of which “sensor” is a broad characterization concept,
and it can be organic sensors, HUMINT sensors,
SIGINT sensors, etc. Our KUPS for threat assessment
consists of two major steps: situation awareness
based on FLSs, fine target recognition (using RSNs),
and threat assessment. Our FLSs can combine the
linguistic knowledge from different intelligent sensors
which contains lots of uncertainties. We propose an
ML estimation algorithm for target RCS parameter
estimation. Theoretically we show that our ML
estimator is unbiased and the variance of parameter
estimation matches the CRLB. Simulations further
validate these theoretical results.
The proposed techniques will increase the

sensitivity and performance of existing and future
NCW, enhancing ship self-defense modes against
stealthy, sea skimming, and antiship cruise missiles.
In future works, we will also infer intent of
objects/entities, or groups of objects, in the regions of
interest. We will also study methods for constructing
and learning a wide variety of models of threat
behavior and methods for reasoning with uncertain
and incomplete information for assessing threats from
object activities.
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