
Wireless Networks 11, 619–635, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Performance Evaluation of a Novel Energy-Aware Data-Centric
Routing Algorithm in Wireless Sensor Networks∗

AZZEDINE BOUKERCHE†

SITE, University of Ottawa, Canada

XUZHEN CHENG
The George Washington University, USA

JOSEPH LINUS
University of North Texas, USA

Abstract. In this paper, we present a novel Energy-Aware Data-Centric Routing algorithm for wireless sensor networks, which we refer to
as EAD. We discuss the algorithm and its implementation, and report on the performance results of several workloads using the network
simulator ns-2. EAD represents an efficient energy-aware distributed protocol to build a rooted broadcast tree with many leaves, and facilitate
the data-centric routing in wireless micro sensor networks. The idea is to turn off the radios of all leaf nodes and let the non-leaf nodes be
in charge of data aggregation and relaying tasks. The main contribution of this protocol is the introduction of a novel approach based on
a low cost backbone provisioning within a wireless sensor network in order to turn off the non backbone nodes and save energy without
compromising the connectivity of the network, and thereby extending the network lifetime. EAD makes no assumption on the network
topology, and it is based on a residual power. We present an extensive simulation experiments to evaluate the performance of our EAD
forwarding-to-parent routing scheme over a tree created by a single EAD execution, and compare it with the routing scheme over a regular
Ad hoc On-Demand Distance Vector (AODV) Protocol. Last but not least, we evaluate the performance of our proposed EAD algorithm and
compare it to the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, a cluster-based, energy-aware routing protocol specifically
designed for sensor networks. Our results indicate clearly that EAD outperforms AODV and LEACH in energy conservation, throughput,
and network lifetime extension.

Keywords: wireless sensor network, spanning tree with maximum leaves, data-centric routing, in-network processing

1. Introduction

Recent advances in wireless communication, micro sensor
technology, on-board processing, radio and actuators have
been a driving force to expand our ability to remotely moni-
tor and interact with the physical world. Wireless sensor net-
works provide a global view of the monitored area based on
local observations measured by each sensor. These sensor net-
works [16] usually contains thousands or millions of sensors,
which are randomly and densely deployed (10 to 20 sensors
per m2). A network with tens of neighbors per sensor have
been studied in [5,6,16]. Sensor networks have short trans-
mission range (up to 10 meters) and low data rate (several
bytes). Each sensor has a light weight and a low cost (pro-
jected to be < U S$1 by the year 2004), and they may not have
a globally unique Id. Sensors are powered by battery, which is
impossible to get recharged after deployment. Note that sensor
networks are designed to have long operation time (i.e., sev-

∗Dr. A. Boukerche was partially supported by NSERC, Canada Re-
search Program, Canada Foundation for Innovation, and Ontario Innovation
Funds/Ontario Distinguished Research Award.
†Corresponding author.
E-mail: boukerch@site.uottawa.ca

eral years). However, sensors do not have unlimited resource
supplies, e.g., power, CPU, memory, etc. Consequently, they
are prone to failure. Thereby making routing schemes based
on unique addresses that are originated and applied in IP net-
works a challenging problem for the design of reliable wireless
sensor networks.

There are two kinds of dominant message traffic in a sensor
network: queries from the user to the network and the actual
data collected from the sensor node back to the user. Each sen-
sor acts as a power aware sensor to sense the environment and
as a router to relay traffic to other sensors. In this study, the
sensor nodes are assumed to be using µAMPS sensors. The ra-
dio characteristics and power utilization of these sensors were
simulated in experiments using the µAMPS extensions [10] to
the Network Simulator ns-2 [19,24]. The amount of data gen-
erated by one sensor can be large enough to block the whole
network, and a large part of these data may be useless to the
end user. Thus, data is pre-processed before they are transmit-
ted. This is referred to as in-network processing [13,15] during
which redundant, useless and spurious data are deleted, and
partial observations from different sensors are combined and
aggregated. In-network data processing is a must to decrease
the large volume of raw observations per sensor and to reduce

620 BOUKERCHE, CHENG AND LINUS

the number of broadcasts. This can conserve the sensors’ bat-
tery power, which to a great degree, determines the network
lifetime.

Within a sensor, the dominant energy consumer is the radio
transceiver [7]. For a sensor network with a short transmission
range, the radio consumes almost the same amount of energy
in transmit, receive and idle mode [1]. Therefore, the only way
to save energy is to completely turn off the radio. However,
a sleeping sensor can’t function as a relay even though it can
continue sensing and it can wake up when some events are
detected. Thus, we can’t turn off all sensors at the same time
in a sensor network. Some sensors, indeed, must be active for
traffic relaying purpose.

In this paper, we propose to construct a virtual backbone,
which contains all active sensors, to assist the energy-aware
routing scheme. All sensors not in the virtual backbone turn off
their radios in order to conserve their power supply. Backbone
sensors are in charge of in-network data processing and traf-
fic relaying. This virtual backbone can be easily reconfigured
when its topology changes.

Our work is motivated by SPAN [4], GAF [25] and LEACH
[10]. SPAN and GAF are elaborated in the context of MANET
(multihop ad hoc wireless networks), where traffic-flow may
originate from any node to any other nodes. SPAN, a topology-
based protocol, assumes that each node knows its 2-hop neigh-
bors. GAF, a location-based protocol, requires that each node
to be aware of its own position and the grid where it re-
sides. LEACH, a clustering based hierarchical protocol used to
save battery life, features the concept of rounds to counter the
cluster-head’s fatigue. Both SPAN and GAF models propose
algorithms to compute a subset of nodes whose radios can be
turned off with little influence on data dissemination while
network lifetime can be greatly extended. Even though both
SPAN and GAF are promising methods, they may not be suit-
able for dense micro sensor networks, due to their assumptions
and the unique features of sensor networks presented above.
A sensor with tens neighbors may not afford to store its 2-hop
neighborhoods’ information as is done in the SPAN model,
and it may not have information such as the position of the
nodes as in the GAF model.

In this paper, we propose an algorithm to compute a broad-
cast tree rooted at the gateway, and introduce a novel approach
based on a low cost backbone provisioning within a sensor net-
work in order to turn off the remaining nodes and save energy
without compromising the connectivity. This broadcast tree
spans all sensors and it has large number of leaves. All the
leaf sensors turn off their radios to save power while all active
sensors stay alert for traffic relaying. We map our problem to
the construction of the spanning tree with maximum number of
leaves, which is known as a NP-hard problem, since it is equiv-
alent to minimum connected dominating set [8]. The reduced
topology by all non-leaf nodes forms the virtual backbone.

We propose a novel Energy-Aware Data-centric routing
heuristic, which we refer to as EAD, that exhibits a low mes-
sage overhead, and computes a broadcast tree approximating
the optimal spanning tree with a maximum number of leaves.
The novel concepts involved in EAD include the neighboring

broadcast scheduling and the distributed competition among
neighbors, based on residual energy. These two characteris-
tics ensure that the resultant tree has many leaves, and sensors
with a higher residual power have higher chance to be non-leaf
nodes. EAD follows this energy-aware paradigm and results
in a special rooted broadcast tree, which is designed intention-
ally for data-centric routing. Each sensor needs to broadcast
messages at most twice, which will result in a large message
overhead in a large-scale sensor network containing thousands
or millions of sensors. To address this problem, we propose
to let a subset of sensors turn off their radios before the exe-
cution of EAD. We present a heuristic, which we refer to as a
topology-based scheme, in order to determine which sensors
need to sleep ahead of time.

The remainder of the paper is organized as follows. In
Section 2, we present the network model. Section 3 outlines
the basic idea of our data-centric routing scheme. In Section 4,
we present our Energy-Aware Data-centric routing heuristic in
full details. Section 5 reports on the simulation experiments we
have carried out to evaluate the performance of EAD. Section 6
concludes the paper.

2. Network model

In this paper, we consider wireless micro sensor networks for
monitoring abnormal events. Example applications include the
habitat monitoring [13,15], the contamination transport mon-
itoring [7], and the forest fire pre-warning [26], just to mention
a few. We assume that the network contains hundreds or thou-
sands of smart sensors deployed randomly in the target area.
There exists one gateway that connects the micro sensor net-
work to the outside distributed system such as the Internet.
The gateway is located at the boundary of the monitored area,
where it is reachable by at least some sensors. We refer to each
micro sensor as a data source or an event source since data in
a sensor network are generated by sensors, and the gateway as
a data sink or an event sink.

The architecture of a micro sensor [16] contains four com-
ponents: sensing circuitry, digital processing, power supply,
and radio transceiver. Among these four components, radio
transceiver is the dominant power consumer [1,6,16,21,23].
The energy spent for sensing and data processing is negligi-
ble. For example, the power consumed by a Berkeley mote [15]
to transmit 1 bit data is equivalent to 800 instructions [11,12].
For sensors with short transmission range like mote, the en-
ergy consumed for different mode (transmit, receive and idle)
are comparable [22], while a sleeping sensor (radio is off) con-
sumes little energy. Thus, in order to save energy the sensor
needs to completely turn off its radio. Figure 1 provides a good
illustration on the energy consumption in a typical sensor.

3. Data-centric routing in micro sensor networks

In this section, we highlight the basic ideas of the data-
centric routing in a micro sensor network. First, let us recall
that the in-network processing can significantly improve the

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 621

Figure 1. Energy consumption for a typical sensor reported in [7].

2

2

5

4

4(5)

6(6)

7

3(7)
4(7)

(7)

4(5)

source

sink

Figure 2. An example to demonstrate data-centric routing. Label x(y) at each
node means the local temperature measurement is x while the aggregated value
so far is y. The aggregation function is max .

scalability and the lifetime of micro sensor networks. Thus,
at each sensor, the local raw data is, first, combined with par-
tially processed data delivered from sensors that are farther
away from the sink. Then, the aggregated result is transmitted
to the sensor that is closer to the sink or the sink itself for further
processing. Intuitively, data is routed along a reversed multi-
cast tree with the sink as the root. Data aggregation happens
at each non-leaf node, which summarizes the output based on
the aggregation functions (e.g., SUM, AVG, MEAN, MAX,
etc.) used by the sensor nodes in the subtree rooted at itself and
transmits the aggregated data to its parent. This process is re-
ferred to as adata-centric routing [9,13–15]. Figure 2 gives an
example of data-centric routing where the highest temperature
needs to be reported to the user.

Traditional network-wide routing is referred as address-
centric routing [14]. A packet is routed based on the unique IP
destination address and its data payload remains unchanged
during the delivery from the source to its destination. This
routing scheme does not work with micro sensor networks,
mainly due to the lack of a globally unique address, and the
sensor node’s energy constraints. In a micro sensor network,
the data are processed before their transmission. Redundant
and useless data are discarded. Local data are aggregated to
provide globally-effective result. It is possible that an informa-
tion packet contains different values from hop to hop during
the course of its transmission from a leaf to the intermediate
sensors then to the sink in the tree, because each intermediate
sensor may aggregate multiple packets. In this aspect, micro
sensor network is similar to a pure peer-to-peer network.

The reversed multicast tree construction for data-centric
routing is determined based upon the applications of the mi-
cro sensor networks. Data traffic can take several forms: pe-

riodic, event-driven and query-based. A sensor network may
support all of these three kinds of data traffic. For periodic
traffic, all of the sensors report their measurements back to
the user once every time interval, which is fixed and could
be preprogrammed before the sensors’ deployment. This kind
of networks require that all of the sensors to be synchronized
(i.e., when to turn on their radio at the same time) such that the
in-network processing can be done at each intermediate sensor
in order to guarantee one broadcast per sensor and per time
interval. For this kind of applications, all of the broadcast trees
have the same effects with respect to radio transceiver energy
consumption since each sensor broadcasts exactly once in a
designated time interval. But latency and power consumption
for data processing may be significantly different. In an event-
driven model, no traffic flows within the network unless some
special events are detected. These events must be reported to
the user immediately after the detection. The multicast tree for
data aggregation and dissemination is identical to a Steiner
tree containing the sink and all of the sensors detecting the
events, plus the relay sensors used to forward the data traffic
to their destination. The number of relay sensors needs to be
minimized to decrease the total power consumption.1 In the
query model, routes need to be computed for the query and
data transmissions between sink and the queried sensor node.
The problem related to this model is identical to that of the
event-driven model, with the exception that the query model
includes the query message which propagates from the sink to
the source.

Among all of these applications, sensors remain in sleep
mode most of the time in order to save their energy. If all of
these sensors need to report their readings periodically, then
they must turn on their radios at roughly the same time. In
a large embedded sensor network, synchronization is do-able
but quite expensive. If only part of the network is involved
at a time, as in event-driven and query models, the sensors
have no idea when an event will happen and when a query
will be ever submitted through the network. Simply turning
on all of the sensors is a waste of resources while turning off
all of them put the network down or malfunctioning since a
sleep sensor can not receive any message. An intuitive idea
to overcome these problems is to activate a small subset of
sensors at any instant of time such that they can collaborate and
quickly respond to spontaneous events and queries. But one
may raise the following question: how many sensors need to be
on? Too few active sensors causes network partition and packet
loss while too many causes unnecessary energy expenditure
and higher interference. We propose to use a spanning tree
with maximum number of leaves rooted at the sink as a virtual
backbone to facilitate the data-centric routing task.

Each sensor is either a leaf or an inner node in the tree.
All leaf nodes turn off their radios to save their energy. They
periodically wake up to replace neighboring sensors with de-
pleted power. Building a spanning tree with maximum num-
ber of leaves is equivalent to constructing a minimum con-
nected dominating set, which is an NP-Complete problem [8].

1 This problem is NP-hard.

622 BOUKERCHE, CHENG AND LINUS

Thus, there has been a continued interest in developing effi-
cient heuristic solutions to solve this problem. In this paper,
we propose an message-efficient distributed heuristic to build
an energy-aware rooted spanning tree with many leaves which
will be described later in detail.

Let us review briefly, some of the existing data dissemina-
tion schemes based upon the spanning tree rooted at the sink
model that have appeared in literature. In [13], the authors
proposed a directed diffusion scheme, where a sink broadcast
an interest, and each intermediate sensor receiving the interest
must broadcast it at least once to setup the reverse path to the
sink. The target sensor (specified by the interest) sends back the
data along several paths. The sink may reinforce the preferred
path after the initial exploratory stage. Without the location
information, the interest must be broadcasted globally. This
consumes energy and wireless bandwidth. If all of the active
sensors form a spanning tree rooted at the sink, then the dis-
semination of the interest can be restricted to the non-leaf tree
node. If the queried sensor is sleeping, an active neighbor node
can either activate it directly, or store the query until the tar-
geted sensor wakes up. Another interesting attempt for data-
centric routing in event-driven sensor networks is described
in [14]. All of the sensors sensing the same event (within the
event radius) first aggregate the data, then transmit the result
to the sink. The computation of the transmission path problem
can be mapped to the network Steiner tree problem, which is
known to be an NP-hard problem. It is obvious that our vir-
tual backbone can be used to relay the aggregated result to the
sink. For applications with frequent occurrence of queries and
events, our proposed approach is extremely helpful. Actually
for a dense sensor network in which each sensor has a large
number of neighbors, only a few number of sensors need to
be active at any time. These sensors form a virtual backbone
rooted at the sink, and they are ready for a query and/or an
event dissemination. In this paper, we propose a heuristic pro-
tocol to build a rooted broadcast tree with many leaves, which
we refer to as EAD, and will be described in the next section.

4. EAD: A heuristic algorithm to construct a rooted
broadcast tree with many leaves

In this section, we discuss the details of EAD, the heuristic
algorithm we use to construct a rooted broadcast tree with
many leaves, as well as the broadcast tree maintenance scheme
we are proposing to use within the EAD protocol.

4.1. EAD description

We assume that each sensor has its own radio transceiver on
and is sensing the common channel when the network is ini-
tially deployed. We also assume that all of the sensors have
the same transmission range. In other words, we only consider
symmetric links. The control message contains four fields:
type, level, parent, power. Let v be the sender of the message,
and t ypev its status (0: undefined; 1: leaf node; 2: non-leaf
node). levelv refers to the number of hops from v to the sink;

Receive from leaf node

Receive from non−leaf node

Receive from non−leaf node

Status: 0
Sensing Channel is busy

Channel is idle
T1

T2

Channel is idle

v has no children

Status: 0

Status: 1
Waiting

Status: 1
Sensing Channel is busy

Channel is idle

Status: 0
Waiting

Status: 2

Status: 1

Sensing

Receive from non−leaf node
indicating I am the parent

Figure 3. State diagram for the proposed heuristic run by a node v other than
a sink.

parentv is the next hop of v in the path to the sink; powerv

is the residual power Ev . If Ev is unavailable, we can use the
difference between the expected lifetime of the battery and
the total time with the radio transceiver already on. The basic
outline of the heuristic is portrayed in figure 3.

Initially each sensor v has status 0. The sink first broadcasts
msg(2, 0, NU L L , ∞), where ∞ indicates that the sender is
the sink. When a node v receives msg(2, levelu, parentu, Eu)
from node u, it becomes a leaf node, senses the channel un-
til it is idle, then waits for T v

2 time. If the channel is still
idle, v broadcasts msg(1, levelu + 1, u, Ev). If v receives
msg(1, levelu, parentu, Eu) from u, it senses the channel un-
til it is idle, waits for time T v

1 . If the channel is still idle, v

broadcasts msg(2, levelu + 1, u, Ev). In other words, it be-
comes a non-leaf node. Note that a waiting sensor goes back
to sensing (see figure 3) if the common channel is occupied
by other sensors before it times out. If a node v with status 1
receives msg(2, levelu, v, Ew) from w indicating that v is its
parent, v broadcasts msg(2, levelv, parentv, Ev) immediately
after the channel is idle (No waiting!). This process continues
until every sensor is either a leaf node, or a non-leaf node. A
sensor with status 2 will become a leaf node if it detects that
it has no children.

Note that we use T v
1 and T v

2 to ensure that no two neigh-
boring broadcasts are scheduled at the same time. T v

1 and T v
2

can be computed locally. Let Nv be the set of 1-hop neighbors
of v. We require T v

1 > maxu∈Nv
{T u

2 } to ensure that a sensor
becomes a non-leaf node in the tree only when necessary. We
also require that T v

1 and T v
2 to be monotonically decreasing

functions of Ev , the residual power of v. The basic idea is to
force the neighboring sensors with a higher energy to broad-
cast earlier than those nodes with a lower residual power. For
example, we can choose T v

1 = 2 · t0 + c
Ev

and T v
2 = t0 + c

Ev
,

where t0 is the upper bound of the propagation time between
any pair of neighboring sensors, and c > 0 is an adjusting
constant. Note that with properly selected functions for T v

1
and T v

2 , local broadcasting among neighboring sensors can be
scheduled without conflict.

The main features of EAD include the scheduling of lo-
cal broadcasts by T1 and T2, and the distributed competition
among neighboring nodes in order to become a non-leaf tree

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 623

5

6 896

8
6

7

8

6

9

85

8

9

Sink

8

(iv)(iii)

(ii)

Sink Sink

Sink

(i)

6

9

5
8

6

9

5

9 5

9

Figure 4. An illustrative example.

node by T1. The intuition behind the algorithm is stated as
follows: once a sensor u announces its status 2 (i.e., non-leaf
node) through a broadcast, all of its 1-hop neighbors with
status 0 become leaf nodes. They announce their status in
the reverse order of their residual power, with higher energy
node in the neighborhood broadcasts earlier (for example,
T v

2 = t0 + c
Ev

). When the 2—hop neighbors of u with sta-
tus 0 hear these broadcasting messages, they start to compete
with each other. The winners are those with a highest residual
energy among all of its neighboring competitors (thus, with a
smallest T1 among all of its neighboring competitors). Figure 4
gives an illustrative example. In figure 4(i) the original sen-
sor network topology is given. Each sensor is labelled with its
residual power. The islands indicate the competing neighbor-
ing groups in (ii) and (iii). In figure 4(ii), sink broadcasts to its
4 neighbors. The 2-hop neighbors form 3 neighboring groups.
The sensors with highest energy in each group (replaced by
triangles) win the local competition. In figure 4(iii), winners
become non-leaf nodes. Each node specifies its own parent,
the neighbor with the highest energy in the partial tree. Each
designated parent becomes a non-leaf node, with its neighbors
not in the tree joining the tree immediately after the parent an-
nounces its new status. Later, the neighbors of the winners
(not in the tree) join the tree as children of its corresponding
winner. The winners’s 2hop neighbors (not in the tree) form
four neighboring competing groups. Figure 4(iv) repeats (iii)
to get the final broadcast tree with many leaves. Note that the
two winners (triangles) in (iii) become leaf nodes in the final
tree even though they were the winners, since they have no
children.

Note that EAD grows a broadcast tree from the sink. Once
the algorithm terminates, all the leaf nodes can turn off their
radios to save energy. These nodes may switch to “power-
on” periodically, or when some abnormal events are detected.
Using this simple scheme, each node will broadcasts at most
twice. The induced graph by all of the non-leaf nodes forms
the virtual backbone. Due to the broadcasting nature in a wire-
less network setting, the virtual backbone may have a mesh
structure. But each sensor records its parent leading to the sink.
The sink can restrict the broadcast of queries to nodes within
the virtual backbone and the sources can send back data to the
sink along the backbone.

EAD makes use of the following efficient broadcasting
scheme. The sink first broadcasts a message containing level 0.
After receiving a message with level k the first time, v senses
the channel until it is idle, waits for time T v

2 . If the channel is
still idle, v broadcasts a message with level k + 1. If the chan-
nel is occupied by other sensors before v times out, v senses
the channel again. This process continues until v’s broadcast
succeeds. Each node only broadcasts once.

In figure 5, we present the pseudo-code of the EAD
protocol.

4.2. Maintaining the broadcast tree

Our strategy extensively explores the dense connectivity of
sensor networks. The maintenance of the tree is done by a
strategy similar to the one described in [10]. The maintenance
of the tree becomes important for two reasons. First, the non-
leaf nodes may die, thus, orphaning all of the child nodes

624 BOUKERCHE, CHENG AND LINUS

Figure 5. Pseudo-code of the EAD algorithm.

which are transmitting data to the non-leaf nodes. Secondly,
the non-leaf nodes that form the backbone tree have to stay
awake all the time. This approach induces a huge energy drain
on them when compared to the leaf nodes that are awake only
occasionally. This leads to the so-called fatigue of the non-
leaf nodes. To ensure a fairly similar energy demand from
all sensor nodes and maintain the workload balance among
them, the algorithm is run in rounds. This approach has been
used in [10] and has been proven to be able to efficiently
deal with the fatigue and orphaned node problem. Interested
readers may wish to consult [10] for further details. In the

initial phase of the algorithm, also known as the “initialization”
phase, sensor nodes execute the EAD with the objective to
identify the non-leaf nodes and set up the backbone. Once that
is over, the nodes proceed to the “data-transmit” phase, where
the nodes transmit the data to the sink. The initialization and
the data-transmit phases constitute a single round. When one
round terminates, the initialization phase for the next round
begins, and dead nodes and orphaned nodes are identified.
As outlined in [10], the initialization phase is smaller when
compared to the data-transmission phase. As soon as the data-
transmit state for current round expires, the sink will initiate

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 625

a new round initialization by re-constructing the broadcast
tree. This process helps identifying the non-leaf nodes’ fatigue
problem [10].

4.3. Topology-based scheme

When applied to large-scale sensor networks, EAD may take
too much time since the execution process is propagated from
the sink to the whole network. In our implementation, we
have chosen to “pre-process the network topology” using a
topology-based scheme. The idea is to turn off the radio of
some sensors such that only a subset of sensors participate
to run EAD. Our topology-based scheme guarantees a rooted
broadcast tree spanning all sensors even though only a subset
of them are participating in the execution of EAD.

Let us now describe how to determine which sensors should
be active if no position information is available. Let’s consider
the number of active neighboring nodes in each direction. As-
sume that each sensor has k directions. Note that if α = 120◦,
then k = 3. Let n be the number of active neighbors. Suppose
that ni neighbors are in direction i . Then n1, n2, . . . , nk follow
the multinomial distribution:

pn1,n2,...,nk = n!

n1! · n2! · · · nk!
· pn1

1 · pn2
2 . . . pnk

k (1)

where pn1,n2,...,nk is the probability that ni neighbors are in
directions i , pi is the probability that a neighbor is in direction
i , and n1 + n2 + · · · + nk = n. If all neighbors have the same
probability to be in any direction i , that is, p1 = p2 = · · · =
pk = 1

k , then

pn1,n2,...,nk = n!

n1! · n2! · · · nk!
. . .

1

kn
(2)

The probability P that at least one neighbor appears in each
direction is

∑
n1≥1,n2≥1,...,nk≥1 pn1,n2,...,nk . Typical values of P

are listed in Table 1.
Note that if each sensor has 4 or 5 active neighboring sensor

nodes, then with a probability around 50%, it has one neigh-
bor in each direction if k = 3. Based on this observation and
assuming that initially all sensors have their power supplies
off, we propose the following algorithm.

A sensor u randomly (once every T0 time units) wakes up
and broadcasts a hello message. An active neighbor v replies a
message with a binary INVI bit. If v has less than 4 neighbors,
then INIT = 1; Otherwise, INIT = 0. If u receives a message
with INIT bit on, or u detects that it has less than 4 active
neighbors, it will remain wake-up; otherwise, it goes back to
sleep. After T0 time, apply EAD to build a broadcast tree rooted

Table 1
The probability that at least one neighbor appears in each direction.

k\n 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0.22 0.44 0.62 0.74 0.83 0.88 0.92 0.95 0.97 0.98 0.98 0.99 0.99
4 0.09 0.23 0.38 0.51 0.62 0.71 0.78 0.83 0.87 0.91 0.93 0.95
5 0.04 0.12 0.22 0.32 0.43 0.52 0.61 0.68 0.74 0.79 0.83
6 0.01 0.05 0.11 0.19 0.27 0.36 0.44 0.51 0.58 0.64

at the sink. Note that with this approach, we can not guarantee
a tree spanning all of the active sensors. But since sleeping
sensors wake up periodically in order to determine its parent
in the tree, they can be invited to join the tree as non-leaf nodes
by active neighbors who need help to connect to the tree.

5. Simulation environment

We have implemented our proposed protocol EAD and the op-
timized topology based scheme. The experiments were con-
ducted using the Network Simulator ns-2 [24], a discrete event
simulator widely used by the research community for wireless
and wired network simulations. Currently ns does not have
an adequate framework required to conduct sensor network
experiments such as EAD. Furthermore, it doesn’t have any
support for the radio electronics for advanced power aware
sensors such as the µ Adaptive Multi-domain Power Aware
Sensors (µAMPS [10]) developed at MIT. As a result we have
used the µAMPS extensions developed by MIT for ns2.1b5.
The µAMPS extensions were developed for the simulation and
performance evaluation of wireless sensor networks based on
the µAMPS sensors. The simulation reported in this section
includes a comparative study of the EAD forwarding-to-parent
routing scheme over a tree created by a single (initial) EAD
execution to a regular Ad hoc On-Demand Distance Vector
(AODV) routing protocol [20], and a comparative study of
EAD and LEACH (Low Energy Adaptive Clustering Hierar-
chy) as described in [10].

Our simulation experiments were carried out assuming
µAMPS sensor nodes and implemented under the µAMPS
framework. The statistics collection used by µAMPS was
modified to suit the metrics we have used in our experiments.
All of the experimental results presented in this paper were ob-
tained by averaging multiple trial runs with a 95% confidence
interval.

5.1. Performance metrics

In this section, we discuss the performance metrics we have
selected to evaluate the performance of the EAD algorithm.
The metrics were chosen to make an effective evaluation of the
performance characteristics of EAD as an efficient and scal-
able routing algorithm for sensor networks. The parameters
used in the simulation are reported in Table 2.

Table 2
Simulation parameters.

Simulation time 4500 seconds
Starting Energy for each node 2 J
Threshold for Error-free packet, RXThresh 6e−9 W
Threshold for detection, CSThresh 1e−9 W
Radio Electronics Energy, Excvr 0e−9 J/Bit
Transmit Amplifier energy, εfriss amp 9.6741659015025702e−12 J/m2

Amplifier energy, εtworay amp 1.303703703703703e−15 J/m4

Beam forming energy, εbf 5e−9 J/bit/Signal
Energy dissipation during sleep, PSleep 0

626 BOUKERCHE, CHENG AND LINUS

� Total number of active nodes: indicates the number of
alive nodes and thus the failed nodes due to low energy
during the execution of our simulation models. The failure
of a node may be characterized by its inability to gener-
ate packets that meet or exceed a certain threshold value
(CSThresh). It is very important for any efficient routing
algorithm to have enough alive nodes throughout its exe-
cution in order to be able to send data to/through the base
station.

� UDP Packets Throughput: is the total number UDP data
packets delivered to the sink. The primary task of the algo-
rithm is to deliver data to the sink from the leaf nodes as
efficiently as possible. This metric is used to evaluate the
packet delivery achieved by EAD.

� Energy expended: measures the total energy expended by
the network. This metric is an important parameter in eval-
uating the effectiveness of the EAD algorithm and its power
saving capability.

5.2. Simulation results

In this section, we report on the experiments which were car-
ried out to assess EAD’s performance on the ns-2. In our EAD’s
implementation, we have used the topology-based approach
as described in Section 4. We have conducted an extensive
set of simulation experiments to evaluate the performance of
EAD protocol. We divide our discussions of the experimental
results into three parts. In the first part, we assess the effect
of the EAD refresh interval and the value of the time inter-
val used to wake up the sensor nodes, which we refer to as
T0, as discussed earlier in Section 4. Then, we investigate its
optimal value and evaluate the overhead of the EAD proto-
col. In the course of our discussions, we point out significant
factors affecting EAD’s performance. In the second part, we
compare the performance of the EAD forwarding-to-parent
routing scheme over a tree created by a single (initial) EAD
execution with a regular Ad hoc On-Demand Distance Vector
(AODV) routing protocol [20]. In the third part, we compare
the performance of our EAD scheme to LEACH protocol [10].

5.2.1. Performance evaluation of EAD protocol
To evaluate the performance of EAD protocol, we used 100 and
200 sensor nodes in a 500 × 500 m2 area with a grid topology
(figure 6), where the nodes are either 50 or 50

√
2 meters away

from their neighbors. We assume that at the physical layer
a broadcast (either EAD backbone formation, or UDP data
packet) can only reach the one hop neighboring nodes. There
are two physical layer channels: Channel-1 is used for data
transmission while channel-2 is used for phenomena spread
(phenomenon channel).

In our model, there are three different nodes. The sink node
(black node) has infinite power. It is placed at an extreme
edge of the grid to test the effects of hop count and bottleneck
nodes more clearly. Sensor nodes are assigned energy of 2
Joules initially, and they are stationary. Non-leaf sensor nodes
are colored with brown while leafs are gray. Sensor nodes

Figure 6. Simulation layout.

use channel-1. Event generators (blue nodes) are specifically
designed to emanate phenomenon packets at variable rate. In
the simulation, we used 10 medium rate (10 packets/sec) event
creators in which two of them were mobile (to simulate a
moving cloud). Phenomenon nodes use channel-2.

Sensor nodes have an interface at channel-2. Therefore, if
these nodes detect a packet in that channel, they create a UDP
data packet and send it to sink. A UDP packet was selected
mainly due to its connectionless nature which eases the ac-
knowledgment burden in the network. Each UDP packet has
the same length of 100 bytes, in which 28 bytes form the
header and the rest is data. Each EAD control packet is 48
bytes long. However, in our total packets throughput measure-
ment, we use packets instead of bytes. The aggregation logic
is our choice. For the correlated data assumption, a non-leaf
node waits until it gets a certain number of packets (number
of leafs), and then sends a single packet as an aggregated data.
The data coming from a non-leaf node (already aggregated)
is sent as it is, without any aggregation. If the assumption is
uncorrelated data, then all nodes send whatever they got to
the next node in the hierarchy, without waiting for a certain
number of packets.

Let us now turn to our results. In what follows, we wish to
evaluate the performance of our EAD protocol under different
settings of EAD refresh interval and different time interval T0

used to wake up the sensors node. We also used the topology
based approach as described in Section 5.

In order to observe the system performance for different
values of T0, we have used a network with a 100 nodes layout,
and fixed the value of the EAD refresh interval to 20 seconds.
Figures 7 and 8 display both the total number of UDP packet
reaching (or UDP packet throughput) the sink and the number
of alive nodes during the execution of the simulation. Our
results show that a small value of T0’s induces a slightly high
UDP packets throughput and a high energy consumption. We

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 627

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

2 s
4 s
6 s
8 s
10 s

To (seconds)

Figure 7. Total throughput with different T0’s, 100 Nodes, Energy Settings 2.

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

100

time [s]

to
ta

l n
um

be
r

of
 n

od
es

 a
liv

e

2 s
4 s
6 s
8 s
10 s

To (seconds)

Figure 8. Number of nodes alive with different T0’s, 100 Nodes, Energy
Settings 2.

have also investigated the case where we have network size
of 400 sensor nodes and the EAD refresh interval is fixed
at 40 seconds. Figures 9 and 10 portray the results we have
obtained while varying the values of T0. Our results indicate
that with smaller T0 values the system achieves lower packet
throughput but operates longer when compared to a 100 nodes
population. These results suggest that the size of the network
and the choice of the value of T0 has a great impact in the
performance of EAD.

In our next set of experiments, we wish to investigate the
effect of the choice of EAD refresh interval (or round time) on
the EAD performance. Recall that the best features of EAD
can be summarized as follows: the sleeping nodes are at most
one hop away from a backbone node. An event occurring at
close proximity of a sleeping node has a high likelihood of
being detected by a backbone node. Therefore, this tree-like
coverage area has inherent power saving advantages if the
sleeping and awake nodes are carefully chosen, which is the

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

10 s
20 s
30 s

To (seconds)

Figure 9. Total throughput with different T0’s, 400 Nodes, Energy Settings 1.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

time [s]

to
ta

l n
um

be
r

of
 n

od
es

 a
liv

e
10 s
20 s
30 s

To (seconds)

Figure 10. Number of nodes alive with different T0’s, 400 Nodes, Energy
Settings 1.

case in EAD. This coverage area also decreases the probabil-
ity of an event going undetected for a long period of time, and
the optimum value of EAD refresh interval depends on three
main factors: (i) The event characteristics: traffic generated in
the network; (ii) Initial node energy; and (iii) Energy spent
by packet transmission and their receptions (data/event pack-
ets). Furthermore, in order to determine the optimal value of
the EAD refresh interval, the following three energy settings
must be defined: (i) series initial node energy: represents the
initial energy assigned to a node; (ii) series txPower: repre-
sents the energy spent for a single packet transmission; (iii)
series xPower: represents the energy spent for a single packet
reception; and (iv) series sensePower: represents the energy
spent for a single event packet reception.

Table 3 presents the first set of energy settings used in our
experiments to study the effect of varying the EAD refresh
interval.

628 BOUKERCHE, CHENG AND LINUS

Table 3
Energy Settings 1.

Initial node energy txPower rxPower sensePower

2 Joules 0.02 mW 0.02 mW 0.000002 mW

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

4

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

5 s
10 s
20 s
40 s
80 s

EAD periods (seconds)

Figure 11. Total throughput with different EAD refresh intervals, Energy
Settings 1.

Figure 11 portrays the values of the total UDP through-
put, i.e., total number of packets delivered to the sink we have
obtained in our simulation experiments, as we vary the EAD
refresh interval. Our results indicate that shorter EAD refresh
interval increases the system throughput, while longer EAD
refresh interval increases the system lifetime. In the course of
our simulation experiments, we first created a power limited
subnet to test the burden imposed by EAD. Using an initial
energy of 2 Joules. When the energy spent for each packet
transmission and reception is selected as 0.02 mW, our results
have shown that a higher number of EAD executions decreases
the system lifetime. For this setting (Setting 1), we have ob-
served, see figure 11, that EAD with an EAD refresh interval
of 20 seconds performs best as far as the throughput perfor-
mance metric is concerned. We also observe that with an EAD
refresh interval of 60 seconds, the system operates quite well
with a lower throughput, though making a better use of node’s
available energy. Hence, we believe that the selection of EAD
refresh interval has a great effect on the performance of EAD,
and may be closely tied to the type of applications that is used
for. Sensing jobs, requiring a high throughput, can use small
refresh interval as long as the energy supplies are robust.

Figure 12 shows the number of alive sensor nodes with dif-
ferent EAD refresh intervals. Here again, we see that with high
refresh frequencies more nodes die sooner when compared to
other nodes. We also observe a sharp end in total throughput.
This is mainly due to the fact that, in general, the nodes at one
hop neighborhood of the sink are mostly non-leaf nodes which
are awake most of the time, and when they die, no packets can
reach the sink. This kind of sharp end of the simulation is a

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

100

time [s]

to
ta

l n
um

be
r

of
 n

od
es

 a
liv

e

5 s
10 s
20 s
40 s
80 s

EAD periods (seconds)

Figure 12. Number of nodes alive with different EAD refresh intervals, En-
ergy Settings 1.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

5 s
10 s
20 s
40 s
80 s

EAD periods (seconds)

Figure 13. Total throughput with different EAD refresh intervals, Energy
Settings 2.

general behavior where the destination (sink in our case) can
only be reachable through a limited number of highly utilized
but energy limited nodes which constitute a bottleneck.

Let us now, consider a more relaxed model where en-
ergy consumption for transmission and reception routines are
halved. Using the parameters, as described in Table 4, the
throughput of different EAD intervals is displayed in figure 13.
With these settings (Energy Setting 2), a refresh interval of 10
seconds achieves slightly higher throughput when compared
to a situation when we use a refresh interval of 20 seconds.

Table 4
Energy settings 2.

Initial node energy txPower rxPower sensePower

2 Joules 0.01 mW 0.01 mW 0.000001 mW

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 629

0 50 100 150 200 250 300 350 400
20

30

40

50

60

70

80

90

100

time [s]

to
ta

l n
um

be
r

of
 n

od
es

 a
liv

e

5 s
10 s
20 s
40 s
80 s

EAD periods (seconds)

Figure 14. Number of nodes alive with different EAD refresh intervals, En-
ergy Settings 2.

However, with a 20 seconds interval, the system continues
to deliver packets to the sink for significantly a longer time.
Figure 14 illustrates the number of alive nodes throughout the
execution of the simulation. Since the nodes spend less en-
ergy for transmission and reception, they live longer. In our
simulation experiments, we have observed that no node dies
during the entire simulation for at least the refresh interval of
40 seconds.

Let us now, evaluate the overhead incurred by the EAD
protocol. Since EAD operates at the same channel with the
data packets, we tested the contention effects of EAD flooding
over the data flow toward the sink. Figure 15 shows the average
delay of data packets with and without EAD flooding without
constraining the energy of the nodes. We conclude that EAD
overhead does not cause contention. Figure 16 gives the packet
drop rates of the cases.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

time [s]

av
er

ag
e

U
D

P
 d

el
ay

 [s
]

no EAD flooding
EAD flooding with 20 secs period

Figure 15. Average UDP delay with and without EAD flooding.

0 50 100 150 200 250 300 350 400
2

3

4

5

6

7

8

time [s]

U
D

P
 p

ac
ke

t d
ro

p
ra

te

no EAD flooding
EAD flooding with 20 secs period

Figure 16. UDP packet drop rate and without EAD flooding.

Last, but not least, during the course of our simulation
experiments, we have investigated the trade-off between the
duration of the “initialization” phase and the “data transmit”
phase during the maintenance of the tree, that is, how the per-
formance of the network varies with different values of the
update frequency. While it is very hard to control the dura-
tion of the execution phase, we have designed a state machine
and provided its rules. We believe that the execution length
of the EAD protocol is closely dependent on the network
diameter. Our simulation experiments with 500 × 500 and
100 nodes have revealed that the execution of EAD protocol
lasts less than 0.05 seconds. We have also noticed that there
were no tradeoff between the initialization and data transmit
phases.

5.2.2. EAD vs. a simplified-AODV routing protocol:
A comparison

While designing sensor networks, it is important that the com-
munication protocol used is energy-efficient with a minimum
communication overhead and a minimum memory usage. Af-
ter the backbone formation phase, EAD uses a single rule for
packets’ transfer which is identified as a forward-to-parent
scheme. This scheme shall help decrease the communication
overhead while keep a small amount of memory space usage.
In this section, we wish to evaluate the efficiency of the EAD
forwarding-to-parent routing protocol over a tree created by a
single (initial) EAD execution without being concerned about
EAD roles and its power on-offs in energy saving mode.

A basic comparison then would be to compare EAD
forwarding-to-parent routing protocol with a modified ad hoc
routing algorithm, a scheme that does not consider mobility
and therefore minimizes the routing overhead by curtailing the
number of control packets to a minimum. In our simulation
experiments, we have chosen AODV and modified it to its bare
bones [20].

Let us now turn to our results. Figure 17 portrays the results
we have obtained to compare the total UDP packet throughput

630 BOUKERCHE, CHENG AND LINUS

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

AODV
EAD with period 40 secs

Figure 17. Total throughput with EAD and simplified-AODV, pulse-rate of
1 packets/sec.

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

100

time [s]

to
ta

l n
um

be
r

of
 n

od
es

 a
liv

e AODV
EAD with period 40 secs

Figure 18. Number of nodes alive with EAD and simplified-AODV, pulse-
rate of 1 packets/sec.

(i.e., the total number of packets delivered to the sink) achieved
by the EAD forwarding-to-parent scheme and a simplified-
AODV protocol while figure 18 displays the number of nodes
alive during the execution of the simulation. As we can see, the
throughput of EAD is significantly higher when compared to
a simplified-AODV. Our belief is that once a spanning tree us-
ing the EAD protocol is constructed, each node knows where
to send its packets since there is no mobility in the network.
The dead nodes are eliminated from the backbone formation
phase in the next round, therefore a dead node can only cause
link to break at most for the duration of EAD refresh inter-
val. As stated earlier, EAD is especially powerful in an event
driven sensor network model. At first, it seems that the energy
efficiency (in terms of alive nodes) is better when one uses a
simplified-AODV protocol. However, due to its control mes-
sage overhead and its energy-unaware paths, key nodes around

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

time [s]

to
ta

l U
D

P
 th

ro
ug

hp
ut

 [p
ac

ke
ts

]

AODV
EAD with period 40 sec

Figure 19. Total throughput with EAD and simplified-AODV, pulse-rate of
0.1 packets/sec.

the base station die much earlier than expected, thereby cutting
off the base stations from the rest of the network. Figure 19
displays the throughput results for a reduced event creation
rate of 0.1 packets/sec.

5.2.3. Performance evaluation of EAD vs LEACH:
A comparison

In this section, we wish to evaluate EAD protocol when
compared to a Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol [10]. Before we proceed further, we shall
describe briefly the LEACH scheme.

(a) LEACH: A low-energy adaptive clustering hierarchy
protocol

LEACH is a cluster-based, energy-aware routing protocol
specifically designed for sensor networks [10]. This proto-
col makes use of inherent properties of sensor networks. It
assumes that the data to be transmitted in a sensor network
is locally correlated. Therefore, if the data is processed and
aggregated at local centers, or cluster heads, before being
sent to the base station (BS), the energy spent in the whole
network will be reduced, and, thereby increasing the sys-
tem lifetime. The identification and the maintenance of the
cluster head is an energy-consuming task, since data com-
ing from other clusters are first aggregated (i.e., data pro-
cessing), and then sent to the base stations via the clus-
ter heads. At each round, the cluster head randomly rotates
between the cluster members which guarantee the close-to-
uniform distribution of energy. Cluster head selection and
cluster formation can be done in a distributed or centralized
manner.

In both the centralized (LEACH-C) and the decentralized
LEACH model, the cluster heads remain cluster heads within
the interval which is identified as round. The operation of
LEACH is designed within these rounds. The main steps in a
LEACH round can be summarized as follows:

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 631

� Set-up phase (also known as a cluster head selection): At
the current round, each node generates a random number
between 0 and 1, and compares it with a threshold that is a
function of the expected percentage of cluster heads for the
network and the total number of times the node has been a
cluster head so far. If the random number is less than the
threshold, the node becomes a cluster head.

� Set-up phase: cluster formation: Each cluster head broad-
casts a message announcing itself as the cluster head for
this round. A non-cluster node receiving multiple cluster
head announcements chooses the cluster head that requires
less energy to communicate with. Then, non-cluster nodes
inform their cluster heads about their selection. The cluster
head node then sets up a TDMA schedule and broadcasts
this schedule to its members. After each node learns the
TDMA schedule of their cluster, set-up phase ends.

� Steady-state phase: At the steady-state phase, each node
transmits data to the cluster head during its allocated slot.
At the end of each frame when the cluster head has received
data from all associated sensor nodes, it aggregates the data
and sends it to the base station. The cluster heads send this
data to base station using CSMA. To save energy, non-
cluster nodes can turn off their power until their allocated
time slot in the TDMA cycle.

(b) EAD vs. LEACH: A comparison

In this section, we will report on the results we have ob-
tained to evaluate the performance of EAD protocol when
compared to the LEACH protocol. Both LEACH and EAD
offer methods for selecting higher energy nodes for intense
use, and methods of changing the overly used node when its
energy level is lower than that of its neighbors. LEACH-like
algorithms make use of the correlated nature of data (or a max-
min kind of selection) and send less packets to the sink using,
cooperatively chosen, higher-energy cluster-head nodes. If the
data is correlated, it is obvious that, this scheme is advanta-
geous over no aggregation algorithms in which nodes send,
whatever they get, to the data collection node. EAD has an
advantage, when compared to LEACH, independently from
the correlated nature of data. If the data is correlated, then
less data will be sent over the backbone nodes. LEACH offers
a star-like subnet creation inside a cluster and introduces a
power on and off scheme during a TDMA cycle. Basically, a
non-cluster head node is allowed to go to sleep until it reaches
its turn in the TDMA cycle. Implementing very short on-off
cycles (in the scale of TDMA duration) may not be feasible.
EAD uses longer (in the scale of EAD interval) on-off cycles
to save energy. EAD implements a tree-like coverage structure
and multihop transmission of aggregated data over this tree. In
LEACH, aggregated data is transferred to the base station in a
single-hop transmission which assumes that each node in the
subnet is able to reach the base station. Furthermore, LEACH
is suitable for continuous sensing jobs where every node has
data to send at regular intervals. It is not suitable for event-
driven models, since a node has to wake up and transmit in
short intervals, therefore spend energy regardless of whether

or not it has detected an event. EAD is more suitable in event
driven environments. During an EAD round, EAD puts a large
number of nodes into sleep, as long as they do not detect any-
thing while maintaining connectivity with the non-leaf nodes.
In EAD, nodes do not have to wake up and send if there is no
detection. Therefore, if EAD is used in an event driven model,
a contention based channel access (like CSMA) is likely to
be more efficient because of the light traffic an event driven
model produces. In this implementation, we have used 802.11
CSMA/CA MAC for data transfer as a result of sensing events.

Traffic characterization is an important issue. In order to
create a realistic phenomena cloud, we used mobile and sta-
tionary event creating nodes that emanate phenomenon pack-
ets at a different channel. Sensor nodes have interface at both
data and phenomenon channels. One can always raise objec-
tions to the way event sources are created. We decided that this
kind of event creation logic are closer to the real life events for
which sensor networks designed. Basically we are creating an
event cloud instead of using only stationary event sources.

Let us now turn to our results. Figures 20–24 show the
number of nodes alive plotted against simulation time and a
network size of 50, 75, 100, 150 and 200 nodes respectively.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350

T
ot

al
 n

od
es

 a
liv

e

time (seconds)

LEACH
EAD

Figure 20. LEACH vs. EAD (50 Nodes).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

T
ot

al
 n

od
es

 a
liv

e

time (seconds)

LEACH
EAD

Figure 21. LEACH vs. EAD (75 Nodes).

632 BOUKERCHE, CHENG AND LINUS

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

T
ot

al
 n

od
es

 a
liv

e

time (seconds)

LEACH
EAD

Figure 22. LEACH vs. EAD (100 Nodes).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900

T
ot

al
 n

od
es

 a
liv

e

time (seconds)

LEACH
EAD

Figure 23. LEACH vs. EAD (150 Nodes).

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200

T
ot

al
 n

od
es

 a
liv

e

time (seconds)

LEACH
EAD

Figure 24. LEACH vs. EAD (200 Nodes).

The amount of energy per node is 2 Joules at the beginning.
As we can see from the figures, the number of nodes alive
decreases after some simulation time. As non-leaf nodes fail,
the loads on the remaining nodes increase and more nodes
are woken up and recruited in the tree. The failures increase
rapidly after a critical point in simulation. In figure 24 the node

failures increase rapidly for the EAD curve after 200 seconds.
Similarly for the rest of the curves the node failures increase
rapidly towards the end of the simulations. Both EAD and
LEACH behave in a similar way in this respect. It can be seen
that EAD performs better than LEACH in the figures in terms
of the node failure rate. EAD routes the data packets to the sink
by multihop routing as opposed to LEACH where the cluster-
heads have to transmit the data directly to the base station.
The energy dissipated is lower in the case of EAD because the
backbone node transmits only to a neighboring node one level
up from it.

Figures 25–29 portray the total energy dissipated vs sim-
ulation time for the same set of network topologies. There is
a limited energy supply and the amount of energy per node
is 2 Joules. For this particular simulation the sleep energy
have been set to zero. In actual sensor networks PSleep is a
negligible quantity which can be safely ignored in a simulated
environment like this. Energy dissipated is a measure of the
power awareness of our algorithm, which attempts to extend
network lifetime by forming a routing tree rooted at the sink,
and recruiting only a minimum number of non-leaf nodes.
The non leaf nodes are the only nodes that have to stay awake

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300 350

T
ot

al
 E

ne
rg

y
(J

)

time (seconds)

LEACH
EAD

Figure 25. LEACH vs. EAD (50 Nodes).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

T
ot

al
 E

ne
rg

y
(J

)

time (seconds)

LEACH
EAD

Figure 26. LEACH vs. EAD (75 Nodes).

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 633

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 100 200 300 400 500 600

T
ot

al
 E

ne
rg

y
(J

)

time (seconds)

LEACH
EAD

Figure 27. LEACH vs. EAD (100 Nodes).

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

T
ot

al
 E

ne
rg

y
(J

)

time (seconds)

LEACH
EAD

Figure 28. LEACH vs. EAD (150 Nodes).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

T
ot

al
 E

ne
rg

y
(J

)

time (seconds)

LEACH
EAD

Figure 29. LEACH vs. EAD (200 Nodes).

throughout a single round to be able to receive from the leaf
nodes and transmit to the base station. This is the reason why
EAD performs better compared to LEACH. The amount of
work involved in setting up the virtual back bone in the case
of EAD makes it slightly costlier than LEACH during the set-

up phase but this is not a disadvantage when looking at the
overall performance. The energy savings in the steady or data-
transmit phase of EAD make it more efficient than LEACH
overall.

Figures 30–34 illustrate data throughput to base station
plotted against simulation time. Here again, we consider net-
works with different node populations, i.e., 50, 75, 100, 150
and 200 number of nodes respectively, and the amount of en-
ergy per node fixed at 2 Joules. Our results indicate that the
total number of packets delivered to the sink is cumulative
and steadily increases as we increase the simulation time. The
gradual flattening of the curve towards the end of simulation
is due to the fact that the nodes are failing as the simulation
progresses in time. Our results also indicate that the packet
throughput increase slows down after 300 seconds. A Similar
behavior is seen in the other figures as well. This is mainly
due to fact that the number of alive nodes is significantly low,
thereby lowering the packet throughput delivered to the sink.
Our results show that the total number of packets increases
from 30,000 to 35,000 and data signals are significantly slow
for this reason.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t

time (seconds)

LEACH
EAD

Figure 30. LEACH vs. EAD (50 Nodes).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t

time (seconds)

LEACH
EAD

Figure 31. LEACH vs. EAD (75 Nodes).

634 BOUKERCHE, CHENG AND LINUS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t

time (seconds)

LEACH
EAD

Figure 32. LEACH vs. EAD (100 Nodes).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t

time (seconds)

LEACH
EAD

Figure 33. LEACH vs. EAD (150 Nodes).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t

time (seconds)

LEACH
EAD

Figure 34. LEACH vs. EAD (200 Nodes).

As outlined in our set of simulation experiments, our results
indicate some gain of EAD over LEACH, due to the effective
coverage area and structure introduced in EAD with the in-
novative idea of creating a broadcast tree rooted at the sink.
Though, not specific to EAD, this kind of coverage paradigm

is more effective if there are overlapping sensor coverage ar-
eas. This means that with a selection algorithm, if we could
decrease the number of powered-on nodes, we can save en-
ergy without compromising the well functioning of the nodes
and their sensing task. However, as shown in our experimental
simulations, EAD is quite effective even in the worst case con-
ditions, where nodes do not have overlapping coverage. Note
that even in the worst case settings, the probability of an event
going undetected is very low since EAD covers the subnet area
with a low number of nodes participating in it. As mentioned
earlier, after the EAD execution phase, all sleeping nodes are,
at the most, one hop away from a backbone node, and an event,
occurring at a close proximity of a sleeping node, has a high
likelihood of being detected by a backbone node.

6. Conclusion and future work

Recent innovative wireless technologies, and the evolution of
smart devices and smart sensors have played a major factor in
the development of future wireless sensor systems. However,
before these systems become a common place, many chal-
lenging issues need to be resolved. In this paper, we focus
upon the energy consumption related problems, and we pro-
pose a data-centric routing mechanism based on a broadcast
tree routed at the sink node with a maximum number of leaves.
We have presented our EAD protocol, and we have reported
on its performance evaluation using an extensive set of simu-
lation experiments. Our results indicate that EAD extends the
overall network lifetime by turning off the transceivers of all
leaf nodes in the broadcast tree, leaving only non-leaf nodes
in charge of data aggregation and traffic relaying.

As a future work, we intend to study analytically the per-
formance of our scheme, and define an analytical function that
determines the optimal value of the EAD refresh interval. We
also plan to investigate how our algorithm would behave in
real world scenarios [2,3,18].

References

[1] ASH Transceiver Designer’s Guide, http://www.rfm.com (2002).
[2] A. Boukerche and S. Nikoletseas, Protocols for Data Propagation in

Wireless Sensor Networks, in: Wireless Communications Systems and
Networks, ed. M. Guizani (Kluwer Academics, 2004) pp. 23–51.

[3] A. Boukerche, R.W.N. Pazzi and R. Araujo, A supporting protocol to
periodic, event-driven and query-based application scenarios for critical
condition surveillance, in: ALGOSENS (2004).

[4] B. Chen, K. Jamieson, H. Balakrishnan and R. Morris, Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc
wireless networks, in: Proceedings ACM SIGMOBILE Annual Interna-
tional Conference on Mobile Computing and Networking (July 2001)
pp. 85–96.

[5] D. Estrin, D. Culler, K. Pister and G. Sukhatme, Connecting the physical
world with pervasive networks, IEEE Pervasive Computing (2002) 59–
69.

[6] D. Estrin and R. Govindan, Next century challenges: Scalable coordi-
nation in sensor networks, in: Proceedings The International Society
for Optical Engineering (1999) pp. 229–237.

[7] D. Estrin, et al., http://nesl.ee.ucla.edu/tutorials/mobicom02.

EVALUATION OF A NOVEL ENERGY-AWARE DATA-CENTRIC ROUTING ALGORITHM 635

[8] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to
the Theory of NP-completeness (Freeman, San Francisco, CA, 1978).

[9] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin and
D. Ganesan, Building efficient wireless sensor networks with low-level
naming, in: Proceedings The Eighteenth ACM Symposium on Operating
Systems Principles (2001) pp. 146–159.

[10] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-
efficient communication protocol for wireless microsensor networks,
in: Proceedings Annual Hawaii International Conference on System
Sciences (2000).

[11] J. Hill, A software architecture to support network sensors (Master’s
Thesis, UC Berkeley, 2000).

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar and J. Heidemann, System archi-
tecture directions for networked sensors, in: Proceedings International
Conference on Architectural Support for Programming Languages and
Operating Systems (November 2000).

[13] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: A
scalable and robust communication paradigm for sensor networks, in:
Proceedings The Annual international conference on Mobile computing
and networking (2002) pp. 56–67.

[14] B. Krishnamachari, D. Estrin and S. Wicker, Impact of data aggregation
in wireless sensor networks, in: Preceedings The International Confer-
ence on Distributed Computing Systems Workshops (2002) pp. 575–578.

[15] S. Madden, M.J. Franklin and J.M. Hellerstein and W. Hong, TAG: A
tiny aggregation service for ad-hoc sensor networks, in: Proceedings
Symposium on Operating Systems Design and Implementation (2002).

[16] R. Min, M. Bhardwaj, S.-H. Choi, N. Ickes, E. Shih, A. Sinha, A. Wang
and A. Chandrakasan, Energy-centric enabling technologies for wireless
sensor networks, IEEE Wireless Communications (August 2002) 28–
39.

[17] A. Nasipuri and K. Li, A directionality based location discovery scheme
for wireless sensor networks, in: Proceedings The First ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications (2002)
pp. 105–111.

[18] S. Nikoletseas et al., A sleep-awake protocol for information propaga-
tion in smart dust networks, in: Proceedings 3rd Workshop on Mobile
and Ad-Hoc Networks p. 225-.

[19] NRL’s Sensor Network Extension to ns-2, http://nrlsensorsim.pf.itd.nrl.
navy.mil/.

[20] C.E. Perkins, Ad Hoc On Demand Distance Vector (AODV) Rout-
ing, IEFT Internet Draft, available at: http://www.ieft.org/
internet-drafts/draft-ietf-manet-aodv-02.txt.

[21] V. Raghunathan, C. Schurgers, S. Park and M. Srivastava, Energy-aware
wireless sensor networks, IEEE Signal Processing 19 (2002) 40–50.

[22] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Srivastava, Optimiz-
ing sensor networks in the energy-latency-density design space, IEEE
Transactions on Mobile Computing 1(1) (2002) 70–80.

[23] K. Sohrabi, J. Gao, V. Ailawadhi and G. Pottie, Protocols for self-
organization of a wireless sensor network, IEEE Personal Communica-
tions Magazine 7(5) (2000) 16–27.

[24] The Network Simulator ns-2: Documentation, http://www.isi.edu/
nsnam/ns.

[25] Y. Xu, J. Heidemann and D. Estrin, Geography-informed energy con-
servation for ad hoc routing, in: Proceedings ACM SIGMOBILE An-
nual International Conference on Mobile Computing and Networking
(Rome, Italy, July 2001) pp. 70–84.

[26] W. Ye, J. Heidemann and D. Estrin, An energy-efficient MAC protocol
for wireless sensor networks, in: Proceedings IEEE INFOCOM (2002)
pp. 1567–1576.

Azzedine Boukerche is a Full Professor and holds
a Canada Research Chair Position at the University
of Ottawa. He is also the Founding Director of PAR-
ADISE Research Laboratory at Ottawa U. Prior to
this, he hold a faculty position at the University of
North Texas, USA, and he was working as a Se-
nior Scientist at the Simulation Sciences Division,
Metron Corporation located in San Diego. He was
also employed as a Faculty at the School of Com-
puter Science McGill University, and taught at Poly-

technic of Montreal. He spent a year at the JPL-California Institute of Tech-
nology where he contributed to a project centered about the specification and
verification of the software used to control interplanetary spacecraft operated
by JPL/NASA Laboratory.

His current research interests include wireless networks, mobile and per-
vasive computing, wireless multimedia, QoS service provisioning, wireless
ad hoc and sensor networks, distributed systems, distributed computing,
large-scale distributed interactive simulation, and performance modeling. Dr.
Boukerche has published several research papers in these areas. He was the
recipient of the best research paper award at PADS’97, and the recipient of
the 3rd National Award for Telecommunication Software 1999 for his work
on a distributed security systems on mobile phone operations, and has been
nominated for the best paper award at the IEEE/ACM PADS’99, and at ACM
MSWiM 2001. Dr. A. Boukerche serves as an Associate Editor and on the
editorial board for ACM/Springer Wireless Networks, the Journal of Parallel
and Distributed Computing, The Wiley Journal of Wireless Communication
and Mobile Computing. He served as a Founding and General Chair of the
first Int’l Conference on Quality of Service for Wireless/Wired Heterogeneous
Networks (QShine 2004), ACM/IEEE MASCOST 1998, IEEE DS-RT 1999-
2000, ACM MSWiM 2000; Program Chair for ACM/IFIPS Europar 2002,
IEEE/SCS Annual Simulation Symposium ANNS 2002, ACM WWW’02,
IEEE/ACM MASCOTS 2002, IEEE Wireless Local Networks WLN 03-04;
IEEE WMAN 04-05, ACM MSWiM 98–99, and TPC member of numerous
IEEE and ACM conferences. He served as a Guest Editor for JPDC, and
ACM/kluwer Wireless Networks and ACM/Kluwer Mobile Networks Appli-
cations, and the Journal of Wireless Communication and Mobile Computing.

Dr. Boukerche serves as a Steering Committee Chair for ACM MSWiM,
IEEE DS-RT, and ACM PE-WASUN Conferences.
E-mail: boukerch@site.uottawa.ca

Xiuzhen Cheng is an Assistant Professor in the De-
partment of Computer Science at the George Wash-
ington University. She received her MS and Ph.D.
degrees in Computer Science from University of
Minnesota—Twin Cities in 2000 and 2002, respec-
tively. Her current research interests include local-
ization, data aggregation services, and data stor-
age in sensor networks, routing in mobile ad hoc
networks, and approximation algorithm design and
analysis. She is a member of the ACM and IEEE.

E-mail: cheng@gwu.edu

Joseph Linus has recently graduated with a MSc Degree from the Depart-
ment of Computer Sciences, University of North Texas. His current research
interests include wireless sensors networks, and mobile ad hoc networks.

