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Abs t rac t  Estimating the distance between two points is of fundamental 

concern. This paper investigates some statistical properties of three estima- 

tors of the distance between two points on a plane. The results of several 

theoretical comparisons of the performance of the estimators assuming a 

large sample size are given. Also given is the comparison of the perfor- 

mance of the estimators using simulation when the sample size is small. 

These comparisons suggest that the estimator of choice is not the most 

"natural" estimator in this situation. Although the discussion is given in 

the framework of the plane, the results are readily extended to high dimen- 

sional spaces. 
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1 I n t r o d u c t i o n  

What is the distance between two points? This seemingly simple question 

can take many forms and has been the subject of a good deal of work. Per- 

haps the simplest example is the (Euclidean) distance between two points 

(vectors) in a p-dimensional Euclidean space p > 2. Let a' = (al, a2 , . . . ,  ap) 

and b ~ = (bl, b2, . . . ,  bp) be two points with I denoting the transpose oper- 

ation. Then the Euclidean distance between these two points is d(a, b) = 

p (~~k=l(ak --bk)2) 1 / 2  . The Euclidean distance can be generalized in many 

different ways. One example of generalizations is the metric ([1]), which has 

wide applications in various areas such as differential equations, signal pro- 

cessing and control theories. Another example is the dissimilarity measure 

([2]), which is fundamental to clustering techniques and recently has found 

important applications in microarray data analysis. We note that the Eu- 

clidean distance and its generalizations are often applied to compute the 

distance between two objects when the numerical characteristics (e.g., co- 

ordinates) of the objects are completely known. If such precise numerical 

information is not available, how can we proceed to obtain the distance? 

This paper will provide an answer for the case concerning the distance be- 

tween two points on a plane. To do so, statistical properties of estimators of 

the distance need to be examined. This paper is motivated by the following 

situation. 
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Orthopaedic surgeons, before implanting metal stems into the bones 

of patients, need to match as closely as possible bone geometry and the 

geometry of the metal stem. At the time of this investigation, this was done 

by comparing x-rays of the bone to the stem templates. Before CT-scan 

measurements will be commonly used, it is important to understand sources 

and magnitudes of errors made when this technique is used to measure 

distances. Suppose A and B are two different points on a CT-scan image of 

bone cross-section. Also suppose {U1, U2 , . . . ,  Un} and {V1, V2 , . . . ,Vn}  

represent coordinates of the independent measurements of A and B in the 

source coordinate system. The question is how these measurements should 

be used to determine the distance dAB between A and B. 

In order to approach the problem in a statistical way, we may assume 

A, B, U1,U2, . . .  ,Un and V1,V2, . . .  ,Vn all lie in a two dimensional Eu- 

clidean plane. In this paper, we study properties of three estimators of dAB. 

The first estimator dl is natural and is obtained by taking the average 

of distances between pairs of measurements. This is the estimator that is 

sometimes used in orthopaedic experiments. The second estimator d2 is also 

natural and is just the distance of average locations. The third estimator 

d3, defined in Section 3, is less natural. Section 2 of this paper shows that 

d2 outperforms dl for large sample sizes under the normality assumption. 

Section 3 defines da and shows that under the normality assumption, (d3) 2 

is the uniform minimum variance unbiased estimator (UMVUE) of (dAB) 2 

while d2 and (d2) 2 are the maximum likelihood estimator (MLE) of dAB and 
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(dAB) 2, respectively. Comparison between d2 and d3 for large sample sizes 

is also provided. In Section 4, some simulation studies are presented to com- 

pare the performance of three estimators for small samples. The conclusion 

is given in Section 5. 

2 T w o  Natura l  Es t imators  

Let DA and DB denote the coordinates of A and B respectively. For con- 

venient comparisons, we assume tha t  U1, U2, . . . ,  Un is a random sample 

from a bivariate normal distribution N(DA, El) ,  and V1, V2, . . . ,  Vn an in- 

dependent random sample from a bivaxiate normal distribution N(DB , 2~2), 

where DA and DB are two unknown mean vectors and ,U1 and E2 are two un- 

known variance-covariance matrices (assumed to be positive definite). The  

above assumption will be used through out this paper. Our main concern is 

how one can use Ui 's  and Vi 's  to obtain a good estimator of the distance 

between DA and DB, i.e. dAB. 

Let tlxlt denote the usual norm of  a vector x in a 2-dimensional Euclidean 

plane, i.e., Ilxll = V ~ I  + x~ for x '  = (xl,  x2). Then the distance between 

DA and DB is just dAB = [IDA - DB[I. There  are two intuitive ways for 

us to proceed to obtain estimators of dAB. One intuitive way is to take 

1 n the arithmetic average of the distances ItUi - Viii, i.e., ~ ~ i = l  IIUi - Viii, 

denoted dl (n). Another way is to look at unbiased estimators of DA -- DB. 

Such an unbiased estimator is the difference of the averages of the two 

n v 1 n samples, given as l~l - ~r, where l~l = ~ ~ 1  i and V = ~ )-~4 Vi.  Thus 
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one may think of using ]10 - VII, denoted d2(n), to estimate dAB. Now a 

natural  question arises: which of dl (n) and d2 (n) provides a bet ter  estimate? 

The following lemma suggests tha t  d2(n) should be preferred to dl(n) if n 

is large. 

L e m m a  1 For any finite n, both dl(n) and d2(n) are biased estimators of 

daB. For n --+ oo, dl (n) overestimates dab while dz(n) converges to dAB. 

PROOF. Let X = Ux - V 1 .  Then X ,~ N ( # , S ) ,  where # = /ZA - -P B  

and 27 = 2Yl + ~2 is positive definite. Clearly, P(a + b ' X  < 0) > 0 for 

any fixed number a and vector b = (bl,b2)' with b ' X  ~ 0. Therefore, 

P ( l l X l l  = a + b ' X )  = 1 - P(IIXII # a + b ' X )  < 1 - P(a + b ' X  < 0) < 1. 

In other words, P(IlXll = a + b'X) # 1 for any a and vector b. This 

and the fact tha t  the function Ilzll is convex show that  the strict form of 

Jensen's  Inequal i ty  apphes: E d l ( n )  = EIIUa - Vxll  = EIIXII > IIEXII = 

IlttA - t tB[I  = dAn, where E refers to the expectat ion operation. Similarly, 

Ed2(n) = EIlO-~rl l  > I IEO-EVII  = II~tA--ttzll = dAB. The above proves 

the first s ta tement  of the lemma. 

By the strong law of large numbers, it is seen tha t  as n ~ or 

6 ( n )  = 1113- VII ~ IIEU~ - EV~II = IlttA -- ~BII, 

and 

1 ~ HUi - V~ll ?z_~" EI]U 1 _ Vii] > [I/~A - #BH. d~(n) = 
i=l  

This completes the proof of the second statement.  
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3 A T h i r d  E s t i m a t o r  

To obtain another est imator of dAB ' w e  begin with a UMVUE of (dAB) 2. 

Intuitively the square root  of a UMVUE of (dAB) 2 should provide a good 

estimator of dAB. 

Let Xi  = U i -  Vi.  Then Xi "~ N(/~, S) ,  where # = ~A - - ~ B  and 

n X E = ~ 1 + ~ 2 .  Let X~ = (Xix,Xi2),  X j  = - ~ i = 1  ij, for j = 1,2, and 

matr ix S = (stj) with stj = ~ ~ ; = l ( X k t  - f Q ) ( X k j  - f ( j )  for l , j  = 1, 2. 

sjj is the sample variance of the sample Xl j ,  X 2 j , . . . ,  X,~j and will also be 

denoted by S 2. Set d3(n) = ( X ' X  - l t r (S) ) l /2 ,  where :K = K1 ~-~i=ln Xi  and 

tr(S) denotes the trace of the matr ix  S. 

L e m m a  2 (dz(n)) 2 is a UMVUE of (dAB) 2. 

PROOF. Let ~' ----- (~l,  ~2). From results on univariate normal distributions it 

is well known tha t  ~j ~-~ - ~ojl ~ .  is a UMVUE of #~ for j = 1, 2 [See, for example, 

Problem 2.5 of Chapter  2, [3]]. Then since the sum of UMVUEs is also a 

UMVUE [See, for example, 5a.2.(e) of [4]], it follows that  ~ - n T~z = 

X ' X  - ~tr(S)  is the UMVUE of # '#  = (dAn) 2. 

Thus (d3(n)) 2 is the best est imator of (dAB) 2. Clearly, iX is the MLE 

of #. By the invariance property of MLEs, (d2(n)) 2 = X ' X  is the MLE of 

~']~ -- (dAB) 2 ( and d2(n) is the MLE of dAB). We note tha t  the bias of 

(d2(n)) 2 in estimating (dAB) 2 is E(d2(n)) 2 - (dAB) 2 = E[(d3(n)) 2 + s~ + 
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S_~]_(dAB)2 ~(ESZ1+ES g) = 1 (a2+ag), where a 2 and a2 2 are the upper 
n J  ~ n 1 

left hand and lower right hand elements of S ,  respectively. 

Lemma 2 implies tha t  d3 (n) could be used as a good estimator of dAB. 

The following comparison shows that  d2 and d3 are very close to each other 

when n is large. 

L e m m a  3 d3(n) = d2(n) + O ( I  ) a.s. 

PROOF. Using the previous notations, we see that  X l ,  X2, . . . ,  Xn now 

constitute a random sample from the distribution with mean # and variance- 

2 covariance matr ix  S .  It is well known that  S] --+ aj  a.s. as n -~ oo for 

j = 1,2. So n(Sll 2 +$2)2 = O ( I )  a.s. Therefore (d3(n)) 2 = (d2(n)) 2 _ ~($11 2 + 

$2 2) = (d2(n)) 2 + O ( I  ) a.s. By the Taylor expansion, ((d2(n)) 2 + O ( I ) )  1/2 = 

1 0 f l ~  d2(n) + ~ ~ j ,  where ~ is some statistic taking values between (d2(n)) 2 

and (d2(n)) 2 + O ( 1 ) .  Since d2(n) --+ I1#11(# 0) a.s. as n --+ co, it follows that  

1 O(1) a.s. Thus d3(n) = d2(n) + O ( I )  a.s. 2 v ~ -  

Note that  the proof of Lemma 3 does not need the normality assumption 

imposed on U1, U2, . . . ,  Un and V1, V2, . . . ,  Vn. 

4 S i m u l a t i o n  Study 

Most of the above analysis focuses on the comparisons of the three estima- 

tors dx (n), d2 (n), and d3 (n) for large n. For small values of n, the comparison 

may be done through simulation. Results of simulations under various forms 
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of variance-covariance matrices show: a) For any n, the mean squared er- 

ror (MSE) of dl (n) is larger than that of d2 (n) or d3 (n). b) The difference 

between the MSEs of d2 (n) and d3 (n) decreases as n increases, and such a 

difference usually becomes negligible for n > 20. c) The MSEs of the three 

estimators tend to stabilize after n = 500. 

While c) shows the convergence rate of the estimators, both a) and b) 

indicate that for small n values, d2(n) or d3(n) should be used instead 

of dl (n). Figures 1 and 2 provide a typical plot for comparing the three 

estimators with small n and large n, respectively. In the plots, the two 

bivariate normal distributions N (/aA, $1) and N (#B, Sz) are such t h a t / ~  = 

= ( 1 0 , 0 ) ,  

~i = , and 232 = 

10 

(1) 10 

- 1  10 

From the figures, it is seen that the performance of dl (n) is the worst and 

d2 (n) and d3 (n) have similar performance. 

5 C o n c l u s i o n  

This paper investigates some statistical properties of three estimators dl, 

d2, and d3 of distance dAB between two points A and B on a plane. Al- 

though this presentation focuses on the distance between two points on a 

plane, the results are readily extended to three or higher dimensional cases. 

Motivated by the CT-scan measurement problem, the topic on examining 

statistical properties of various distance estimators may find many impor- 
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Fig. 1 MSEs of the three estimators again.qt small sample size. The solid curve 

is the MSE of dz(n), dashed curve is the MSE of d2(n), and the dotted curve is 

the MSE of da(n). 

tant  practical applications in other fields. For example, in wireless sensor 

network, a current hot area of computer  science, range estimation for lo- 

cation discovery requires the distance computat ion between two reference 

points [see, for example, [5]]. When the reference points do not have deter- 

ministic location information, which is a common case, distance estimators 

such as those discussed in this paper may need to be applied for bet ter  

performance. 

Based on the work in this paper, we now make suggestions to the use 

of these three estimators. For large sample size n, Lemma 1 and Lemma 3 

suggest tha t  dl be discarded and either d2 or d3 be used to estimate dAB. 
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Fig. 2 MSEs of the three estimators against large sample size. The solid curve is 

the MSE of dl(n), dashed curve is the MSE of dz(n), and the dotted curve is the 

MSE of da (n). 

When n is small, we suggest the use of d2 or ds. This recommendation is 

based on Lernma 2 and simulation results described in Section 4. 
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