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Abstract—This paper targets the identification of outlying sensors (that is, outlying reading sensors) and the detection of the reach of

events in sensor networks. Typical applications include the detection of the transportation front line of some vegetation or animalcule’s

growth over a certain geographical region. We propose and analyze two novel algorithms for outlying sensor identification and event

boundary detection. These algorithms are purely localized and, thus, scale well to large sensor networks. Their computational

overhead is low, since only simple numerical operations are involved. Simulation results indicate that these algorithms can clearly

detect the event boundary and can identify outlying sensors with a high accuracy and a low false alarm rate when as many as

20 percent sensors report outlying readings. Our work is exploratory in that the proposed algorithms can accept any kind of scalar

values as inputs—a dramatic improvement over existing work, which takes only 0/1 decision predicates. Therefore, our algorithms are

generic. They can be applied as long as “events” can be modeled by numerical numbers. Though designed for sensor networks, our

algorithms can be applied to the outlier detection and regional data analysis in spatial data mining.

Index Terms—Sensor networks, event boundary detection, outlying sensor identification, ROC curve analysis.

Ç

1 INTRODUCTION

IN ecological studies, sensor networks can be deployed to
monitor the invasive species spread. This represents a class

of sensor network applications in which events (phenom-
ena) span a relatively large geographic region. In this paper,
we consider the detection of the event boundary. This is an
important task in sensor networks for many reasons. For
example, the reach of the special vegetation or an animal-
cule’s growth provides ecologists with the most important
information.

Event boundary detection is a challenging problem. As

understood by researchers, sensor networks suffer from a

very limited resource provisioning. Further, sensors are

error prone due to low cost; thus, they are usually densely

deployed to compensate for each other. Therefore, in

designing algorithms for boundary detection, we face the

problem of efficiently processing a large volume of data

containing redundant and spurious information. Moreover,

we need to disambiguate an outlying reading and a reading

that signals an event, since they are indistinguishable in

nature.
Our objective is to design localized algorithms to identify

outliers (outlying sensors) and event sensors at an event

boundary. As reported earlier, an outlying reading and a

reading signaling an event in a sensor network may not be

distinguishable. However, outlying readings are geogra-

phically independent, whereas normal sensors observing

the same phenomenon are spatially correlated [11]. These

observations constitute the base for our algorithm design.
We first propose an algorithm to identify outlying

sensors. These sensors may report outlying values due to

hardware defects or environmental variations. The basic

idea of outlying sensor detection is given as follows: Each

sensor first computes the difference between its reading and

the median reading from the neighboring readings. Each

sensor then collects all differences from its neighborhood

and standardizes them. A sensor is an outlier if the absolute

value of its standardized difference is sufficiently large.
We then propose an algorithm for event boundary

detection. This algorithm is based on the outlying sensor

detection algorithm and the following simple observation.

For an event sensor, there often exist two regions, with each

containing the sensor, such that the absolute value of the

difference between the reading of the sensor and the

median reading from all other sensors in one region is

much larger than that in another region.
Our algorithms require threshold values for comparison.

We propose an adaptive threshold determination mechan-

ism based on the receiver-operating characteristic (ROC)

curve analysis. The performances of these algorithms are

verified by extensive simulation study.
Special features of our algorithms include the following:

1. The input can be any numeric value. This is
significantly different from the existing work [6],
[11] based on 0/1 decision predicates, where 1
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indicates the occurrence of some phenomenon, and 0
indicates a normal status.

2. The computation overhead is low, which involves
only simple algebraic operations.

3. The communication overhead is low, since sensor
readings are disseminated to the neighborhood only.

4. Event boundaries can be accurately identified even
when many sensors report outlying measurements.
In other words, outliers and boundary sensors can
be clearly differentiated.

This paper is organized as follows: In Section 2, we

summarize the adopted network model and major related

work. The two localized algorithms for outlier identification

and event boundary detection are proposed in Sections 3

and 4, respectively. Performance metrics and analysis are

outlined in Section 5. Our simulation results are reported in

Section 6. We conclude our paper in Section 7 with a future

research discussion.

2 NETWORK MODEL AND RELATED WORK

2.1 Network Model

Throughout this paper, we assume that N sensors are

uniformly distributed in the network area, with a base

station residing in the boundary. The network region is a

b� b squared field located in the two-dimensional eucli-

dean plane R2. A sensor’s reading is outlying if it deviates

significantly from other readings of neighboring sensors [1].

Sensors with outlying readings are called outliers or outlying

sensors, whereas sensors with normal readings are called

normal sensors. In this paper, the ith sensor Si and its

location will be used interchangeably. We use S to denote

the set of all the sensors in the field, and R denotes the radio

range of the sensors. Let xi denote the reading of the

sensor Si. Instead of a 0-1 binary variable, xi is assumed to

represent the actual reading of a factor or variable such as

temperature, light, sound, the number of occurrences of

some phenomenon, and so on. Therefore, xi can be

continuous or discrete.
Informally, an event can be defined in terms of sensor

readings. An event, denoted by E, is a subset of R2 such that

the readings of the sensors in E are significantly different

from those of sensors that are not in E. A sensor detecting

some event is called an event sensor. An outlying sensor can

be viewed as a special event that contains only one point,

that is, the sensor itself. A point x 2 R2 is said to be on the

boundary of E if and only if each closed disk centered at x

contains both points in E and points that are not in E. The

boundary of the event E, denoted by BðEÞ, is the collection of

all the points on the boundary of E.
We assume that each sensor can locate its physical

position through either GPS or GPS-less techniques such as

[5], [14], [20]. Note that in this paper, we focus on the

detection of outliers and event boundary sensors; thus,

report generation and delivery to the base station will not

be considered. Further, we assume that there exists a media

access control (MAC) layer protocol to coordinate neighbor-

ing broadcastings such that no collision occurs.

2.2 Related Work

Spatial outlier detection and regional data analysis have
been extensively studied in spatial data mining research
[12], [15], [16]. In this section, we briefly survey related
results in sensor network research.

As we have noted earlier, when a remarkable change in
the readings of sensors is detected, an outlier or some event
must have occurred. This observation is explored in [4],
[13], [17] for 0/1 decision predicate computation. The
related algorithms require only the most recent readings
(within a sliding window) of individual sensors. No
collaboration among neighboring sensors is exploited. In
[4], the “change points” of the time series are statistically
computed. The detector proposed in [13] computes a
running average and compares it with a threshold, which
can be adjusted by a false alarm rate. In [17], kernel density
estimators are designed to check whether the number of
outlying readings is beyond an application-specific thresh-
old. Note that none of these works can disambiguate
outlying sensors and real event sensors, since only observa-
tions from individual sensors are studied. By exploring the
correlation among neighboring sensors, our algorithms can
discern outlying sensors from event sensors and compute
the boundary of the event region.

For outlying or misbehaving node identification, one
solution is to seek the help of the base station [18], [19].
Staddon et al. [18] propose tracing failed nodes in sensor
networks at a base station, assuming that all sensor
measurements will be directed to the base station along a
routing tree. In this work, the base station that has a global
view of the network topology can identify failed nodes
through route update messages. In [19], base stations
launch marked packets to probe sensors and rely on their
responses to identify and isolate insecure locations. Our
algorithm is more versatile. It is purely localized, which can
save a great amount of communication overhead and
therefore help elongate the network lifetime.

To the best of our knowledge, the only work that
targets localized event boundary detection in sensor
networks is the one in [6], in which three proposed
schemes take as inputs the 0/1 decision predicates from
neighboring sensors. The work for event region detection
in [11] also takes only 0/1 decision predicates. This is a
major drawback as compared to our work, which does not
impose such restrictions. Further, the threshold in our
algorithms can be determined based on the ROC curve
analysis, which is computationally efficient as compared to
those in [6] and [11]. Using 0/1 decision predicates for
boundary computation may have the following disadvan-
tages: 1) The 0/1 decision predicates are the results of
comparing current sensor readings with a threshold. If the
threshold is a global cut based on a priori information,
then the 0/1 predicates will miss the spatial information
on deployed sensors. 2) The 0/1 decision predicates are
the preprocessed results of the actual measured data.
Detection over binary predicates represents the second-
round approximation. 3) The 0/1 predicates may not be
correct due to faulty sensors. Intuitively, algorithms based
on original sensor readings or measurements should be
more precise and more robust.
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3 LOCALIZED OUTLYING SENSOR DETECTION

In this section, we describe our algorithm for detecting

sensors whose readings (measurements) deviate consider-

ably from their neighbors.

3.1 Derivation of Detection Procedure

The procedure of locating outliers in sensor networks could

be formalized statistically as follows: Consider how we can

compare the reading at Si with those of its neighbors. Let

NðSiÞ denote a bounded closed set ofR2, which contains the

sensor Si and additional k sensors Si1; Si2; � � � ; Sik. The set

NðSiÞ represents a closed neighborhood of the sensor Si. An

example of NðSiÞ is the closed disk centered at Si, with the

radius R. Let x
ðiÞ
1 ; x

ðiÞ
2 ; � � � ; x

ðiÞ
k denote the measurement at

Si1; Si2; � � � ; Sik, respectively. A comparison between xi and

fxðiÞ1 ; x
ðiÞ
2 ; � � � ; x

ðiÞ
k g could be done by checking the difference

between xi and the “center” of fxðiÞ1 ; x
ðiÞ
2 ; � � � ; x

ðiÞ
k g. Clearly,

such a difference is

di ¼ xi �medi; ð1Þ

where medi denotes the median of the set fxðiÞ1 ; x
ðiÞ
2 ; � � � ; x

ðiÞ
k g.

We note that the medi in (1) should not be replaced by the

mean ðxðiÞ1 þ x
ðiÞ
2 þ � � � þ x

ðiÞ
k Þ=k of the set fxðiÞ1 ; x

ðiÞ
2 ; � � � ; x

ðiÞ
k g.

This is because the sample mean cannot represent the

“center” of a sample well when some values of the sample

are extreme. However, median is a robust estimator of the

“center” of a sample. If di is large or large but negative, then

it is very likely that Si is an outlier. Now, we start

quantifying the degree of extremeness of di. To do this,

we need the differences d that are associated with sensors

that are near Si and computed via (1).
Consider another bounded closed set N�ðSiÞ � R2,

which contains Si and additional n� 1 sensors. This set

N�ðSiÞ also represents a neighborhood of Si. Among many

choices of N�ðSiÞ, one could select N�ðSiÞ ¼ N ðSiÞ. We

denote the n sensors in N�ðSiÞ by S1; � � � ; Si; � � � ; Sn (see

Fig. 1 for an illustration of N and N�). According to (1),

sensors in N�ðSiÞ yield d1; � � � ; di; � � � ; dn. Now, if di is

extreme in D ¼ fd1; � � � ; di; � � � ; dng, then Si will be treated as

an outlying sensor. The decision can be made vigorously by

using the following procedure. Let �̂ and �̂ denote,

respectively, the sample mean and sample standard

deviation of the set D, that is,

�̂ ¼ 1

n

Xn
i¼1

di

�̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn
i¼1

ðdi � �̂Þ2
s

:

Standardize the data set D to obtain fy1; � � � ; yi; � � � ; yng,
where

y1 ¼
d1 � �̂
�̂

; � � � ; yi ¼
di � �̂
�̂

; � � � ; yn ¼
dn � �̂
�̂

: ð2Þ

Decision. If jyij � �, then treat Si as an outlying sensor. Here,
�ð> 1Þ is a preselected number.

We now start justifying the above decision-making

procedure under certain assumptions. For this purpose,

we first need some result of the median. Given NðSiÞ,
assume that x

ðiÞ
1 ; x

ðiÞ
2 ; � � � ; x

ðiÞ
k form a sample from a popula-

tion having a continuous distribution function F . Let

x
ðiÞ
1 ; x

ðiÞ
2 ; � � � ; x

ðiÞ
k be rearranged in the order from least to

greatest and let the ordered values be x
ðiÞ
ð1Þ; x

ðiÞ
ð2Þ; � � � ; x

ðiÞ
ðkÞ,

where x
ðiÞ
ð1Þ � x

ðiÞ
ð2Þ � � � � � x

ðiÞ
ðkÞ. Then, (1) can be rewritten as

medi ¼
x
ðiÞ
ððkþ1Þ=2Þ if k is odd

ðxðiÞðk=2Þ þ x
ðiÞ
ðk=2þ1ÞÞ=2 if k is even:

(
ð3Þ

Assuming that the median of the distribution F is ~�, and
F ð~�Þ ¼ 0:5 has a unique solution, we have the following:

Proposition. As k!1, medi converges in probability to ~�.

To prove this, we first note the following special case of

Theorem 9.6.5 in [21]: If kpk is a positive integer such that

pk ¼ 0:5þOð1=kÞ, then, as k!1, x
ðiÞ
ðkpkÞ converges in

probability to ~�. For any real number a, let bac denote the

largest integer that is less than or equal to a and let ðaÞ denote

the difference a� bac. Then, 0 � ðaÞ < 1. Set p1k ¼ b0:5kcþ1
k .

Then,

p1k ¼
0:5k� ð0:5kÞ þ 1

k
¼ 0:5þO 1

k

� �
:

Let p2k ¼ p1k � 1=k. Then, p2k ¼ 0:5þOð1=kÞ. Therefore,

both x
ðiÞ
ðkp1kÞ and x

ðiÞ
ðkp2kÞ converge in probability to ~�. Now,

the proposition follows from the observation that (3) is

equivalent to the following:

medi ¼
x
ðiÞ
ðkp1kÞ if k is odd

ðxðiÞðkp1kÞ þ x
ðiÞ
ðkp2kÞÞ=2 if k is even:

(

The above property of median is established for a quite
general class of F . Deeper results of median are also
available. For example, an asymptotic normal distribution of
median can be obtained under some general conditions [3].

Now, consider the following simple scenario, where
1) readings of sensors in N�ðSiÞ, that is, x1; � � � ; xn, are
independent, 2) for each sensor Sj in N�ðSiÞ, the readings
from the sensors in NðSjÞ form a sample of a normal
distribution, and 3) all the variances of the above mentioned
distributions are equal. Since the median is equal to the
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Fig. 1. An N� neighborhood of sensor Si and N neighborhoods of

sensors inside N�ðSiÞ. Each N neighborhood is used to compute di,

whereas the N�ðSiÞ is used to compare the di’s.



mean for any normal distribution, it follows from the
proposition and from 1)-3) that, as k becomes large, the
sequence d1; � � � ; dn forms approximately a sample from a
normal distribution with mean equal to 0. This implies that
as k is large, the sequence from standardization, that is,
y1; � � � ; yn, can be treated as a sample from a standard
normal population Nð0; 1Þ. When xi is particularly large or
small, compared with all of the other x values, di will
deviate markedly from all the other d values. Consequently,
jyij will be large, which implies that yi will fall into the tail
region of the density of the standard normal population.
However, if jyij is large, the probability of obtaining this
observation yi is small and, thus, Si should be treated as
outlying. When � ¼ 2, the probability of observing a yi with
jyij � 2 is about 5 percent.

3.2 Algorithm

Let C1 denote the set of sensors with jyij � �. The set C1 is
viewed as a set of sensors that are claimed as outliers by the
above procedure. The procedure in Section 3.1 can be
summarized into the following algorithm:

Algorithm 1

1. Construct fNg and fN �g. For each sensor Si,
perform the following steps.

2. Use fN ðSiÞg and (1) to compute di for sensor Si.
3. Use fN �ðSiÞg and (2) to compute yi for sensor Si.
4. If jyij � �, where � > 1 is predetermined, assign Si to
C1. Otherwise, Si is treated as a normal sensor.

Clearly, jC1j, which is the size of C1, depends on �.
Assuming that the y values in (2) constitute a sample of a
standard normal distribution and the decisions are made
independently, then, if � is chosen so that the right-tail area
of the density of Nð0; 1Þ is �, jC1j will be about ��N .

In practice, a sensor becomes outlying if 1) data
measurement or data collection makes errors, 2) some
variability in the area surrounding the sensor has changed
significantly, or 3) the inherent function of the sensor is
abnormal. In any of the three cases, readings from outlying
sensors do not reflect reality, so they can be discarded
before further analysis on sensor data. However, outlying
readings may contain valuable information related to events
and provide help in detecting the events. For this reason,
issues concerning event region detection will be addressed
in the presence of data from outlying sensors.

4 LOCALIZED EVENT BOUNDARY DETECTION

In this section, we describe our procedure for localized
event region detection. To detect an event region, it suffices
to detect the sensor nodes near or on the boundary of the
event. We note that C1 may contain some normal sensors
close to the event boundary. However, Algorithm 1 usually
does not effectively detect sensors close to the boundary of
the event. To illustrate this point, let us consider the simple
situation where the event lies to one side of a straight line.
Suppose that readings of sensors in the event (region) E
form a sample from a normal distribution Nð�1; �

2Þ, and
sensor readings outside E form another sample from
Nð�2; �

2Þ, where �1 6¼ �2, and � is small as compared to
j�1 � �2j. fNg and fN �g are constructed using closed disks.

Consider a sensor Si that is close to the event boundary.
Below, we will show that even under some quite favorable
setting, such a sensor Si may not be detected, that is,
assigned to C1 by Algorithm 1.

Assume that readings of sensors in a neighborhood of Si
are within 2� distance from the means of their correspond-
ing normal distributions. Take each N neighborhood of
sensors in N�ðSiÞ to be sufficiently large. Due to uniformity
of the deployment of sensors, calculation based on (1)
shows that each d follows Nð0; �2Þ approximately. For
example, at sensor S1 shown in Fig. 2, d1 follows
approximately Nð0; �2Þ. The reasoning is explained as
follows: Let R1 denote the portion of NðS1Þ that lies on
the right-hand side of the event boundary and R2 denote
the remaining portion of NðS1Þ. Then, the area of R1 is
larger than that of R2. Since the sensors are uniformly
distributed, the expected number of sensors in R1 is larger
than the expected number of sensors in R2. Then, med1 will
be obtained using the sensor readings from R1. When � is
small compared to j�1 � �2j, med1 is about �2 so that d1,
which is about x1 � �2, follows approximately Nð0; �2Þ.
Furthermore, it is seen that y1; � � � ; yn from (2) form
approximately a sample of Nð0; 1Þ, where each member of
the sample is within distance 2 of the mean 0. Therefore, C1

from Algorithm 1 will not pick up this sensor Si if � ¼ 2.
So that sensors near and on BðEÞ can be detected

efficiently, the procedure described in Algorithm 1 should
be modified. As motivated above, to detect a sensor Si close
to the boundary, we should select a special neighborhood
NNðSiÞ such that di, compared with d values from
surrounding neighborhoods, is as extreme as possible.
There are many options in doing this. Here, we describe
two of them: random bisection and random trisection.

4.1 Random Bisection

Consider an Si from the set S � C1. Place a closed disk
centered at Si. Randomly draw a line through Si, dividing
the disk into halves. Calculate di in each half. Use NNðSiÞ
to denote the half disk yielding the largest jdij. For an
illustration, see Fig. 3. In the figure, the line randomly
chosen meets the boundary of the disk at points P1 and P2,
and the boundary of the event meets the boundary of the
disk at points A and B. Due to uniformity of sensor
deployment, we see that jdij, from the half disk containing
P1, P2, B, and Si, is the largest and, hence, this half will be
used as NNðSiÞ. After NNðSiÞ is found, the resulting di
will be used to replace the old di, keeping unchanged all of
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of l. Si is a sensor located on BðEÞ, and S1 is a sensor inside N�ðSiÞ.
Both N�ðSiÞ and NðS1Þ are closed disks.



the other d values from N�ðSiÞ. Then, perform the

calculation in (2) and make a decision on Si. We note that

for random bisection, as well as random trisection (intro-

duced next), lines are drawn randomly to form sectors

simply due to the fact that the location and the shape of an

event boundary are usually unknown a priori.

4.2 Random Trisection

Consider a closed disk centered at Si 2 S � C1. Randomly
divide the disk into three sectors with an equal area. Number
the sectors as i, ii, and iii, as shown in Fig. 4. Form a union by
using any two sectors and calculate di in each union
(total ¼ 3). The union resulting in the largest jdij is
NNðSiÞ. It is easy to see in Fig. 4 that NNðSiÞ is the union
of sectors i and iii. The di with the largest jdijwill replace the
previous di, keeping all of the other d values unchanged from
N�ðSiÞ, and, subsequently, a decision will be made on Si.

4.3 Event Boundary Determination

There are two options for the decision on Si, based on

NNðSiÞ. If jyij < �, Si would be treated as a normal sensor.

If jyij � �, the sensor Si can be close to or far away from the

boundary BðEÞ. Let C2 denote the set of all the sensors with

jyij � �. The set C2 is expected to contain enough sensors

close to the event boundary (see Fig. 5c). In general, C2

catches more sensors near the event boundary than C1 does.

Now, we discuss how we can combine C1 and C2 to infer the

event boundary.

As seen in the derivation of C1 and C2, the set C1 is

expected to contain outlying sensors, and C2 is expected to

contain sensors close to the event boundary. However, in

general, C1 also contains some sensors near the boundary,

which are not outlying, and C2 contains some sensors that

are not close to the boundary. We now present a method to

combine C1 and C2 to form a set of sensors that can be used

to infer the outline of the event boundary. Consider how we

can select sensors from the union C1 [ C2 to approximate the

boundary. For a sensor Si 2 C1 [ C2, draw a closed disk

DðSi; cÞ with radius c, centered at Si. The expected number

of sensors falling into the disk is m ¼ �c2N
b2 . Since sensor

readings are usually correlated, and C2 mainly contributes

to the set of sensors near the event boundary, Si is expected

to be close to the boundary if DðSi; cÞ contains at least one

sensor from C2, which is different from Si. For any positive

integer m, let C3ðmÞ denote the subset of C1 [ C2 such that

for each Si 2 C3ðmÞ, the disk D Si;
ffiffiffiffiffiffi
mb2

�N

q� �
contains at least

one sensor from C2 that is different from Si. The set C3ðmÞ
will serve as a set of sensors used to infer the event

boundary (see Fig. 5d). For convenience, sometimes, we will

write C3 as C3ðmÞ.
Now, we summarize the above procedure of finding C2

and C3 into the following algorithm:

Algorithm 2

1. Construct fNg and fN �g. Apply Algorithm 1 to
produce the set C1 ð� ¼ �1Þ.
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Fig. 3. Illustration of random bisection. NNðSiÞ is the half disk

containing P1, Si, P2, and B.

Fig. 4. Illustration of random trisection. Sectors P1SiP2, P2SiP3, and

P3SiP1 are numbered as i, ii, and iii, respectively. Each sector contains

an angle equal to 2�=3. NNðSiÞ is the union of sectors i and iii.

Fig. 5. Illustration of C1, C2, and C3. Data in (a) are obtained from one run
of the experiment, leading to panels in the third row of Fig. 12. The
interior of the ellipse is the event region. A sensor becomes outlying,
with probability p ¼ 0:2. A � represents a sensor and a þ represents an
outlying sensor. A 	 represents a node in (b) C1, (c) C2, and (d) C3,
respectively.



2. For each sensor Si 2 S � C1, perform the following
steps. Obtain NNðSiÞ and update di from Step 1 to
the new di from NNðSiÞ, keeping unchanged all of
the other d values from N�ðSiÞ obtained in Step 1.
Use (2) to recompute yi. If jyij � �, assign Si to set
C2 ð� ¼ �2Þ; otherwise, treat Si as a normal sensor.

3. Obtain C3ðmÞ, where m is a predetermined positive
integer.

We stress on the following points on the use of
Algorithm 2. First, the updated di in Step 2 is only needed
when making a decision on sensor Si. Once such a decision
is made, this new di will have to be changed back to the
original one obtained in Step 1. Second, assuming that the
y values in (2) constitute a sample of a standard normal
distribution and the decisions are made independently. If �1

and �2 are such that the right-tail areas of the density of
Nð0; 1Þ are �1 and �2, respectively, the size of C2 is about
ð1� �1Þ � �2 �N . Third, unlike Algorithm 1, which utilizes
the topological information of sensor locations to find C1,
Algorithm 2 uses the geographical information of locations
to locate C2 and C3.

To conclude this section, we make the following note on
the computational complexity of Algorithms 1 and 2.
Assume N�ðSiÞ ¼ N ðSiÞ for each sensor Si, which is
usually the case in a densely deployed sensor network.
Let � denote the average number of sensors in a typical
neighborhood N , which is also the average number of
neighboring sensors in the given network. Then, it can be
easily shown that both Algorithms 1 and 2 have a
computational complexity of Oð� log�Þ. Since each sensor
broadcasts a constant number of messages, the message
complexity of both algorithms is Oð�Þ.

5 PERFORMANCE EVALUATION

Evaluation of the proposed algorithms includes two tasks:
evaluating C1 and evaluating C3. In this section, we first
define metrics to evaluate C1. Then, we examine what type
of sensors could be detected as being in C2 by using
Algorithm 2. The finding is then used to define metrics to
evaluate the performance of C3.

5.1 Evaluation of C1

To evaluate the performance of C1, we compute the detection
accuracy aðC1Þ, defined to be the ratio of the number of
outlying sensors detected to the total number of outlying

sensors, and the false alarm rate eðC1Þ, defined to be the ratio

of the number of normal sensors that are claimed as

outlying to the total number of normal sensors. Let O
denote the set of outliers in the field, then

aðC1Þ ¼
jC1 \ Oj
jOj ; eðC1Þ ¼

jC1 �Oj
N � jOj : ð4Þ

If aðC1Þ is high, and eðC1Þ is low, Algorithm 1 has a good

performance.

5.2 When Could Sensors Be Assigned to C2?

Here, we present a brief examination on what kind of

sensors have the potential to be detected by Algorithm 2 as

belonging to C2. Let r denote the distance from the sensor Si
to the event boundary. We now informally show that if r is

larger than R=2, then the chance that Si will not be detected

by Algorithm 2 is high. We first consider the case where the

random trisection method is used in obtaining fNNg.
Let DðSi;RÞ denote the closed disk of radius R centered

at Si. Without loss of generality, we may assume that the

portion of the boundary falling into DðSi;RÞ is a line

segment. Clearly, if BðEÞ does not intersect DðSi;RÞ or

intersects DðSi;RÞ only in one sector, it is very likely that di
from the resulting neighborhood NNðSiÞ will not become

extreme among d values from N�ðSiÞ so that Si may not be

detected as a sensor in C2. Therefore, we only need to

consider two cases, shown in Figs. 6 and 7, where BðEÞ
intersects DðSi;RÞ in at least two sectors.

Consider Fig. 6, where BðEÞ intersects DðSi;RÞ in two

sectors. Clearly, NNðSiÞ should be the union of sectors i

and iii. The event boundary cuts NNðSiÞ into two parts.

The part occupied by the event, that is, the part containing

P1, has the following area:

A1 ¼
�R2

2�
!� 1

2
R2 sin!;

where ! 2 ð0; �
 is the value of ffASiB. Consequently, the

area of the other part is given as follows:

A2 ¼
�R2

2�

4�

3

� �
�A1:

So that di from NNðSiÞ becomes extreme, we require

A1 � A2, which implies that

1150 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 8, AUGUST 2007

Fig. 6. The event boundary intersects the disk DðSi;RÞ in two sectors: i

and iii. A and B are two intersection points between the event boundary

and the boundary of the disk. r is the distance from sensor Si to the

event boundary.

Fig. 7. The event boundary intersects the disk DðSi;RÞ in three sectors:

i, ii, and iii. A and B are two intersection points between the event

boundary and the boundary of the disk. r is the distance from sensor Si
to the event boundary.



2
�R2

2�
!� 1

2
R2 sin!

� �
� �R

2

2�

4�

3

� �
:

Simplification leads to !� 2�
3 � sin!. We see that ! � 2�

3 ,
since sin! � 0. Then,

r ¼ R cos
!

2
� R cos

1

2

2�

3

� �
¼ R

2
:

Now, consider Fig. 7, where BðEÞ intersects DðSi;RÞ in
all three sectors. Let ! 2 ð0; �
 be the value of ffASiB. Then,
! � 2�=3. Therefore, r ¼ R cos !2 � R

2 . Summarizing the
above shows that r < R

2 .
Similarly, when the random bisection method is used in

obtaining fNNg, we can also show that r < R
2 .

Due to the above property of R, we call R=2 the tolerance
radius.

5.3 Evaluation of C3

Here, we first describe a quantity to judge how well C3 can
be used to fit the boundary. Then, we present a quantity to
examine how many sensors that are “far away” are
included in C3. We begin with the following definition:

Definition. For a positive number r, let BAðE; rÞ denote the set
of all points in R2 such that the distance of each point to the
boundary BðEÞ is at most r. The degree of fitting of C3 is
defined as

aðC3; rÞ ¼
jBAðE; rÞ \ C3j
jBAðE; rÞ \ Sj : ð5Þ

Intuitively, BAðE; rÞ is a strip with width 2r, centered

around the event boundary. The quantity aðC3; rÞ is

expected to provide valuable information on whether or

not the detection algorithm performs well in detecting the

boundary of the event. The reasoning is explained as

follows: Suppose BAðE; rÞ is such that all the sensors in

BAðE; rÞ provide a good outline of the boundary BðEÞ. If

aðC3; rÞ is large, say, above 90 percent, all of the sensors in

BAðE; rÞ that are detected by an event detection algorithm

are also expected to provide a good outline of the boundary

of the event.
The value of r plays an important role in interpreting

BAðE; rÞ and aðC3; rÞ. If r is large, say, above R=2, Section 5.2
shows that many sensors within BAðE; rÞ will not be
detected so that aðC3; rÞ can be very low. On the other
hand, if r is very small, BAðE; rÞ may become a strip
containing few sensors so that BAðE; rÞ does not present a
good description of the boundary BðEÞ. A natural question
is then: How can one choose an appropriate r such that
BAðE; rÞ provides a good outline of the boundary and
aðC3; rÞ is informative?

To get an answer, we first note that if these N sensors are
placed into the field by using the standard grid method, a
typical grid is a square with width equal to b=

ffiffiffiffiffi
N
p

. Given
BAðE; rÞ, randomly draw a square Q “inside” BAðE; rÞ such
that 1) its width is 2r and 2) two sides of the square are
“perpendicular” to the boundary BðEÞ (see Fig. 8 for an
example of Q).

Set 2r ¼ c� bffiffiffi
N
p , where c is to be determined. That is, the

width of the fitted square Q equals c times the width of a

typical grid square. Clearly, the expected number of sensors

caught by Q is

N � area of Q

area of sensor field

� �
¼
N � c� bffiffiffi

N
p

� �2

b2
¼ c2:

For BAðE; rÞ to provide a good outline of the boundary,

intuitively, we could choose r such that c2, which is the

expected number of sensors inside Q, equals 1. When

c2 ¼ 1, r has the following value:

r1 ¼
1

2

bffiffiffiffiffi
N
p
� �

: ð6Þ

Note that r1 equals half the width of a typical grid.

We now turn to examining how many sensors not close

to the boundary are contained in C3. Motivated by

Section 5.2, we only check those sensors whose distances

to the boundary are at least R=2. Let AðE;RÞ denote the set

of all points in R2 such that the distance of each point to the

boundary BðEÞ is at least R=2. Define the false detection rate

of C3 to be the following quantity:

eðC3; RÞ ¼
jAðE;RÞ \ C3j
jAðE;RÞ \ Sj : ð7Þ

If eðC3; RÞ is small, sensors far away from the event

boundary are not likely to be contained in C3.

6 SIMULATION

In this section, we describe our simulation setup, discuss

the issue of determination of threshold values, and report

our experimental results.

6.1 Simulation Setup

We use MATLAB to perform all simulations. All the sensor

nodes are uniformly distributed in a 64 � 64 square region.

The number of nodes is 4,096. Without loss of generality, we

assume that the square region resides in the first quadrant

such that the lower-left corner and the origin are co-located.

Sensor coordinates are defined accordingly. Normal sensor

readings are drawn from Nð�1; �
2
1Þ, whereas event sensor

readings are drawn from Nð�2; �
2
2Þ. In the simulation, we

choose �1 ¼ 10, �2 ¼ 30, and �1 ¼ �2 ¼ 1. Note that these

means and variances can be picked arbitrarily, as long as

j�1 � �2j is large enough compared with �1 and �2. We

choose �1 ¼ �2 ¼ 1 because they represent the system
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Fig. 8. An illustration of the square Q fitted into the boundary area.



calibration error, which should be small for a sensor that is

not outlying.
In all the simulation scenarios, we choose N ¼ N�, and

NðSiÞ contains all one-hop neighbors of Si. Construction of
NNðSiÞ is based on NðSiÞ. Increasing the size ofN requires
increasing either the transmission range, to enlarge the one-
hop neighbor set, or the hop count. We note that multihop
neighborhood information implies high communication
overhead. Since our simulation focuses on the evaluation
of the proposed algorithms, we choose to increase the
transmission range and, thus, N always contains one-hop
neighbors. We call the average number of sensors in N the
density of the sensor network.

To simulate Algorithm 1 for outlying sensor detection,

no event is generated in the network region. All outlying

values are drawn from Nð30; 1Þ. In the simulation of event

boundary detection, a sensor in the event region gets a

value from Nð10; 1Þ with probability p and a value from

Nð30; 1Þ with probability 1� p. A sensor out of the event

region gets a value from Nð30; 1Þ with probability p and a

value from Nð10; 1Þ with probability 1� p. These settings

are selected to make readings from an event region and

readings outside the region largely interfere with each

other. Though various event regions with different bound-

ary shapes can be considered, in this paper, we focus on

two typical cases: the event regions with ellipses or with

straight lines as the boundaries. Straight lines are selected

because, when the event region is large, the view of a sensor

near the boundary is approximated by a line segment in

most cases. An ellipse represents a curly boundary. Our

simulation produces similar results for event regions with

other boundary shapes. The event regions are generated as

follows: For a linear boundary, a line y ¼ kxþ b is

computed, where k ¼ tan� is the slope, with � drawn

randomly from ð0; �2Þ, and b is the intercept, drawn

randomly from (�16, 16). The area below the line is the

event region. For a curly boundary, the event region is

bounded by an ellipse that can be represented by

Eða; b; x0; y0; 	Þ ¼ 0 [6]. Here, 2a and 2b are the lengths of

the major and minor axes of the ellipse, with a and b drawn

randomly from [4] and [16]. ðx0; y0Þ is the center of the

ellipse, where x0 and y0 are randomly chosen from

½a; 64� a
. 	 is the angle between the major axis of the

ellipse and the x-axis is a random number between 0 and �.
Note that both Algorithms 1 and 2 need thresholds �1

and �2 to compute C1 and C2. Determination of these values
is discussed in the next subsection.

6.2 Determination of Thresholds

One possibility of obtaining the threshold values [9] is to

estimate them according to p, which is the probability that a

sensor becomes outlying. For example, from the theory of

normal distributions, the ideal relationship between �1 and

p, under the strict assumptions stated after Algorithm 1,

may be seen partially in Table 1. However, due to practical

violations of the assumptions, the actual relationship might

deviate significantly from the one listed in the table.

Therefore, to obtain more accurate detection results, one

needs some alternative methods to estimate the threshold

settings. For convenience, we simply choose �2 ¼ �1 ¼ � in

this paper because both Algorithms 1 and 2 follow the same

procedure except that they utilize different neighborhoods

to compute d value. This means that once we have an

estimate for �1, the same estimate will also be used for �2. In

this section, we propose to determine �1 by using an

adaptive threshold determination scheme through the ROC

(receiver operating characteristic) curve analysis [10].

Here is the idea of this scheme. Periodically, the base

station queries a subregion, where no event occurs, to

obtain a training data set and then executes the algorithm

for outlying sensor detection based on different threshold

settings. We note that the utilization of such training data is

practical in the sensor networks [2], [8]. Each time the false-

alarm rates and detection accuracies based on one query are

used to construct an ROC curve, where the abscissa

represents the false alarm rate, and the ordinate denotes

the detection accuracy. This curve outlines the relationship

between the accuracy and the false alarm rate when varying

the threshold values of �. The well-known fact is that an

improvement in the detection accuracy is usually accom-

panied by an increase in the false alarm rate. A common

practical choice of � is obtained from the knee point on the

curve, where the detection accuracy increases limitedly,

whereas the false alarm rate exhibits a large boost. The base

station will then broadcast the settings of the thresholds to

the whole network.

In our simulation studies, we only consider six threshold

settings: 3, 1.96, 1.65, 1.44, 1.28, and 1.15, as shown in

Table 1. For each query, the training data set contains

196 nodes, that is, about 5 percent of the entire network. In

the light of the ratio of the increase in detection accuracy to

the increase in the false alarm rate, one of these six settings

will be selected as the optimal setting, which corresponds to

the knee point. Details are provided as follows.

Fig. 9 shows some ROC curves under network density of

30 and different values of p, where the six points on each
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TABLE 1
Relationship between �1 and p When ys Are Identical

Independent Distribution (i.i.d.) from Nð0; 1Þ

Fig. 9. Examples of ROC curves for density ¼ 30 and different values

of p.



curve correspond to � ¼ 3; 1:96; 1:65; 1:44; 1:28; 1:15 in a

clockwise order. The detection accuracies and the false-

alarm rates associated with the points on the curves are

listed in Table 2, where, for a given cell, the first number

represents the false alarm rate and the second number the

detection accuracy. In the figure, we notice that the

detection accuracy increases, accompanied with a higher

false alarm rate, along with a smaller threshold setting. This

is the trade-off, summarized by ROC curves, between the

detection accuracy and the false alarm rate. Determination

of the optimal threshold value can be illustrated as follows:

Consider p ¼ 0:15 in Fig. 9. It is seen that the detection

accuracy has an apparent improvement, accompanied with

a slight increase in the false alarm rate when we change the

threshold from 1.65 to 1.44. (Actually, at this stage, the

increase in the false alarm rate is so small that it cannot be

seen in either Fig. 9 or Table 2.) Nevertheless, the detection

accuracy converts to increase slowly, whereas the false

alarm rate exhibits a large boost with the threshold shifting

from 1.44 to 1.28. Therefore, the point on the curve that

corresponds to the threshold value of 1.44 should be treated

as the knee point so that the optimal threshold equals 1.44

when p ¼ 0:15. In general, identification of the optimal

threshold value can be made by the following vigorous

procedure.

First, note that for any given density and value of p, the

corresponding ROC curve consists of five line segments. For

each line segment, determined by threshold values �ð1Þ and

�ð2Þ ð�ð1Þ > �ð2ÞÞ, we can compute the angle (not more than

�=2) formed by this line segment and a horizontal line

segment. Examples of these angles are given in Table 3. In

the table, the five components under a value of p are angles

corresponding to �1 ¼ 3:00; 1:96; 1:65; 1:44; and 1.28, respec-

tively. Clearly, the angle derived from a line segment

depends on the ratio of the increase in detection accuracy to

the increase in false alarm rate. Table 3 shows that as �ð1Þ

decreases, the angle decreases. As the angle becomes

smaller, the line segment becomes less steep. Our experi-

ence shows that the following is an efficient way to choose

the optimal threshold value: If there exists at least one pair

ð�ð1Þ; �ð2ÞÞ such that the angle from the corresponding line

segment is less than 1.5 (that is, 86 degrees), the largest

value of such �ð1Þ is selected as the optimal setting of the

threshold; otherwise, 1.15 (the smallest among the six

preselected values of the threshold setting) is chosen as the

optimal setting. Reconsider the case with density ¼ 30 and

p ¼ 0:15. It follows from Table 3 that only angles from the

line segments corresponding to ð�ð1Þ; �ð2ÞÞ ¼ ð1:44; 1:28Þ and

ð1:28; 1:15Þ are less than 1.5. Then, the largest �ð1Þ value such

that the angle is less than 1.5 is 1.44. Therefore, 1.44 is the

optimal threshold value. Optimal threshold values, derived

from Table 3, are provided in Table 4. We see that the

optimal threshold setting is smaller when there are more

outlying sensors in the network, that is, p is larger.

6.3 Simulation Results

In this section, we report our simulation results, each

representing an averaged summary of more than 100 runs.

More specifically, for each run of computation, the sensor

field with or without an event region is generated using the

procedure in Section 6.1, the optimal threshold value is

determined using the method described in Section 6.2, and

then Algorithm 1 or Algorithm 2 is applied to obtain the

values of the performance metrics. The averaged values of

the performance metrics that are more than 100 runs are

reported as our simulation findings. The performance

metrics include the detection accuracy and the false alarm

rate for outlying sensor detection, as defined by (4) in

Section 5.1 for the evaluation of C1, and the degree of fitting

and the false detection rate for event boundary detection, as

defined by (5) and (7) in Section 5.3 for the evaluation of C3.

Recall that two sets, C1 and C3, contain the detected outlying

sensors and boundary sensors, respectively.

We note that, based on the detection accuracy and the

false alarm rate, one usually has a good idea on whether or

not our outlying sensor detection algorithm works well in

practice. However, the use of information on the degree of

fitting and false detection rate is somewhat subjective.

Sometimes, our algorithm yields a clear outline of the event

boundary, but the degree of fitting can be low, and the false

detection rate can be high. In this paper, we do not make

any effort in trying to determine what values of the degree

of fitting and the false detection rate could indicate that the

event boundary has been successfully located. The related

issue will be addressed in our future work.
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TABLE 2
False Alarm Rates and Detection Accuracies Associated with

the Points Indicated on the ROC Curves in Fig. 9

TABLE 3
Angles of Line Segments of ROC Curves in Fig. 9

TABLE 4
Optimal Threshold Values Derived from Table 3



Figs. 10 and 11 plot the detection accuracy and false
alarm rate versus p, under different network densities for
the outlying sensor detection. Fig. 10 shows a general trend
that the detection accuracy decreases as p increases. In
Fig. 11, we observe that for densities equal to 20, 30, 40, and
50, the false alarm rate decreases as p increases. By carefully
tracing back the intermediate results, we find that the
adaptive threshold settings help decrease the false alarm
rate. In Figs. 10 and 11, we also observe that a higher
network density often leads to higher detection accuracy
and a lower false alarm rate. This is reasonable because
more sensors in N and N� together bring more information
for better results. Note that when p � 0:2 and density � 30,
the detection accuracy is above 93.7 percent, and false alarm
rate is less than 3.1 percent. For density ¼ 20, the detection
accuracy is around 90 percent, and false alarm rate is less
than 3.5 percent. In both graphs, we observe that a smaller
number of sensors in N with density ¼ 10 may not be a
good choice for Algorithm 1.

For the event boundary detection described in Section 4,

we need to set m in transition from C1 and C2 to C3. Through

simulation studies, we observe that a larger m usually

results in a higher degree of fitting and a higher false

detection rate when the network density and p are fixed. For

convenience, we fix m ¼ 4 in the following, since this

setting, in general, achieves a good degree of fitting and a

low false detection rate. Plots of the experimental results for

various scenarios are shown in Fig. 12.

The main observations from these plots are summarized

as follows: 1) For a fixed density, as p increases, the degree

of fitting tends to decrease, and the false detection rate

tends to increase. The main reason for this is that for a

larger p, more outlying sensors interfere with boundary

nodes. 2) For a fixed sensor outlying probability, as density

increases, the degree of fitting tends to become larger, and

the false detection rate tends to become smaller. This is due

to the fact that, with a higher density, more information is

available for the detection algorithms. 3) For a given shape

(line or ellipse) of the event boundary, the random trisection

method outperforms the random bisection method. This is

because random trisection induces a larger NN so that

more information is utilized in the detection process.

In Fig. 12, we see that the degree of fitting is low for cases

where density ¼ 10. Note that a low degree of fitting does not

mean that the boundary cannot be detected. Instead, it

means that more sensors close to the boundary escape the

detection. For example, Fig. 5d indicates a case where the

degree of fitting is as low as 53 percent for p ¼ 0:2. However,

for such a low value of the degree of fitting, the elliptical

boundary is still clearly identified. (In this scenario, the

outlying sensor detection accuracy is 92 percent.)

We have also conducted simulations when input data are

binary decision predicates and obtained results close to

those reported in Fig. 12. This indicates that our algorithms

are applicable to both 0/1 decision predicates and numeric

sensor readings.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present localized algorithms for the

identification of outlying sensors and event boundary in

sensor networks. We also propose a scheme to adaptively

adjust the thresholds in the base station. Simulation results

indicate that these algorithms can clearly detect the event

boundary and can identify outlying sensors with a high

accuracy and a low false alarm rate when as many as

20 percent of the outlying readings exist.

We believe that our ideas in detecting outlying sensors

and event boundaries can be extended to multimodality

sensor networks, and the data aggregation can be done

along both temporal and spatial dimensions for decreasing

the false alarm rate in outlying sensor detection and the

false detection rate for boundary detection. Thus, we

propose to explore along these directions in the future.

We will further study the minimum density requirement for

an expected detection accuracy of our proposed algorithms,

which can be used as a guideline for the selection of the

neighborhood N and/or N� in real network scenarios.

Furthermore, we intend to study other techniques for

thresholds (both �1 and �2) computation. For example,

� values may be determined based on the minimization of a

cost-based system. We will conduct more simulations for

the case of �1 6¼ �2 to study the performance of the proposed

algorithms. We also plan to study the robust estimates for

the population standard deviation. These estimates will

replace the corresponding estimates, such as �̂, in (2) in the

present description of our algorithms. Robust estimates are

less influenced by the values of outlying sensors. A

potential benefit of the use of robust estimates of population

standard deviation is that we could use the percentiles of

the standard normal distribution or 
2
1 to make decisions,

instead of the thresholds.
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Fig. 11. False alarm rate versus sensor outlying probability p for different

density values.

Fig. 10. Detection accuracy versus sensor outlying probability p for

different density values.
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Fig. 12. Performance of the event boundary detection algorithm under different values of sensor outlying probability p and network density. The first,

second, third, fourth, and fifth rows have a density equal to 10, 20, 30, 40, and 50, respectively.
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