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Abstract Location-centric storage (LCS) is envisioned as

a promising scheme for robust and user-friendly on-

demand data storage in networking environments such as

the roadway sensor networks [Xing K et al. J Parallel

Distributed Comput 67:336–345, 2007; Xing K et al. in:

IEEE wireless communication and networking conference

(WCNC), 2005]. In this paper, we analyze the performance

of LCS in terms of storage and query overheads. This study

indicates that LCS utilizes network resource efficiently and

achieves good scalability. In particular, the storage over-

head of sensors is independent of the network size, and is

evenly distributed across the network. We also propose two

algorithms for data retrieval in LCS-enabled one-dimen-

sional and two-dimensional sensor networks. Our algo-

rithms guarantee that acquiring the stored data of any event

only takes a small number of communication hops to query

a small number of sensors.

Keywords Storage in sensor networks � Location-centric

storage � LCS � Query

1 Introduction

So far, four data storage methods have been proposed for

sensor networks. In Local Storage (LS), data is stored

where it is generated (and therefore can only be short-

lived), i.e., locally at the home sensor. In External Storage

(ES), data is sent to an outside access point for storage as

well as processing. In Data-Centric Storage (DCS), data is

stored according to name/location. For example, a data

centric storage scheme [10] based on geographic hash

tables [8] maps the data of the same type (name) to a fixed

location in the sensor network. The performance of these

three methods has been extensively studied [4, 8–11]. The

study indicates that no one outperforms the other two in all

application scenarios. The fourth storage method is termed

Location-Centric Storage (LCS), which complements

DCS, LS, and ES.

In LCS, event data is replicated at multiple locations

based on the associated parameter intensity. The intensity

of an event is a function of the event type, the significance

and the location of the event, the application scenario, etc.

The higher the intensity, the more number of replications

the event has, and the farther away from the home loca-

tion the event is stored. The intensity value of an event

depends on the application scenarios and the users’

demands.1 For example, a collision accident on highway
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may deserve the highest intensity and this event informa-

tion should be propagated miles away in order to keep

drivers nearby being alerted, while a collision accident on a

local road is usually as severe, and this event is not nec-

essarily sent far away because drivers at miles away may

not need this information. The basic concept of LCS has

been applied to the one-dimension sensor network mim-

icking a unidirectional highway for safety warning [15].

The generalization to roadways with intersections has been

reported in [14]. Two-dimension LCS has been proposed in

[13]. Compared to LS, ES, and DCS, LCS is based on a

completely different concept, and is more context-aware.

In this paper, we analyze the performance of LCS in

terms of storage and query overhead through both theo-

retical analysis and simulations. Our major contributions

are summarized as follows.

• We analyze the performance of LCS on storage

overhead. The results indicate the fairness of LCS on

storage utilization, therefore no storage hot spots will

be generated. In addition, the storage consumption at

each sensor is independent of the network size, thereby

LCS scales well to large networks. Such locality

property testifies the efficiency of LCS in resource

(power, bandwidth, memory, etc.) consumption, which

is further verified by our simulation study.

• We theoretically study the query overhead for a user to

obtain the relevant information in his/her close prox-

imity. The study shows that the overhead is low.

Indeed, with known location information, the queries

can be sent to the right sensor hosting the required

information deterministically, thus significantly con-

serves network resources such as bandwidth and battery

power.

• We also propose algorithms to effectively and efficiently

query a small subset of sensors to retrieve all the infor-

mation stored in an one-dimension or two-dimension

sensor network, which is important for surveillance

sensor networks. To obtain the set of sensors to query, we

derive a hypercube from the original network graph, and

then apply the single-error-correcting code (Hamming-

code) to compute a small dominating set, which contains

all the stored information. Our analysis indicates that the

computed dominating set is at most twice of the optimal

subset that should be queried in order to retrieve all the

information.

The rest of the paper is organized as follows. First we

briefly overview the location-centric storage protocol for

sensor networks in Sect. 2. We then conduct theoretical

performance analysis on storage and query overheads in

Sect. 3. We also propose two algorithms for one-dimension

and two-dimension sensor network data retrieval and study

their performance in Sect. 4. Simulation results are

reported in Sect. 5. The paper is concluded in Sect. 6 with a

discussion of the four storage methods.

2 Overview of location-centric storage

In this section, we briefly overview the basic concept of

LCS. One-dimension LCS was first introduced in [15] for

roadway safety warning. LCS for general sensor networks

was proposed in [13].

We assume that sensors can obtain their own geometric

coordinates (Sx, Sy) using GPS or other techniques, such as

those proposed in [1, 6, 12]. We further assume that a

robust broadcasting protocol is in place such that infor-

mation can be properly disseminated.

When detecting an event, the home sensor2 creates a

record with the following five fields:

• The time indicating when the event occurs.

• The location [i.e., the coordinates (Sx, Sy)] of the event.

For simplicity, we assume an event collocates with its

home sensor. Note that the time and location fields

together uniquely identifies an event record. Here we

assume that there is at most one event occurs at a

specific location at any instant of time.

• An integral intensity value (r) that characterizes the

event. Intensity values are application-specific. For

example, if the event is a car crash [15] in roadway

safety warning, the intensity value could characterize

the time needed to clear the road. In context-aware

facility query [13], the intensity value indicating the

availability of a gas station may be proportional to the

price the owner would like to pay for this service.

Generally speaking, the higher the intensity, the wider

area the record should be dispatched to; the closer the

sensor to the event location, the higher the probability

of the sensor storing the record.

• A Time-To-Live (TTL) as the expiration time (relative

to the current moment) of the record. Records are

purged from the database when their TTL values

reach 0.

• The type of the event.

In LCS, when a sensor receives an event record, it

computes its distance to the event location and checks

whether it is ‘‘close enough’’3 to the event location. Thus

each sensor is able to locally and independently determine

whether it should drop or store the received event record.

2 An event is usually detected by multiple sensors simultaneously but

one sensor will be designated for reporting the event [2]. We term this

sensor the ‘‘home sensor’’ of the event.
3 Here ‘‘close enough’’ means that this sensor is the closest among its

neighboring sensors to one of the ideal locations where the record

should be stored.
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When a user query is received, a response is generated

based on the information stored in the sensor’s database.

This procedure can be formally defined by the following

LCS protocol.

1. When detecting an event, the home sensor S creates,

stores and broadcasts an event record.

2. When receiving an event record, a sensor stores the

record if (a) its X coordinate 2 fxþ 20; xþ 21; xþ
22; . . .; xþ 2r�1g; and (b) its Y coordinate 2 fyþ
20; yþ 21; yþ 22; . . .; yþ 2r�1g; where r and (x, y) are

the intensity value and the event location, respectively.

Otherwise, the record is dropped. In both cases, the

sensor broadcasts the record if its distance to the event

location is less than 2r-1 in both X and Y dimensions.

3. After a record is stored, its TTL value decreases by the

clock tick. The entry containing the record will be

purged out of the database immediately when TTL

reaches 0.

4. When receiving a user query, a response to the user

based on the information stored in the sensor’s

database will be generated.

It should be noticed that for a particular pair of (i, j),

where i; j 2 f0; 1; 2; . . .; r� 1g; there is probably no sensor

on the exact point of (x ± 2i, y ± 2j). In this case, the sensor

closest to the point in the neighborhood takes the place and

keeps a copy of the record.

From the LCS protocol, it can be easily seen that records

are stored in exponentially expanding frames, where the

distance between the i-th and (i ? 1)-th frame is 2i.

Besides, the larger the intensity value, the more expanding

frames that will contain the information, and thus the fur-

ther the information can reach. As an example, Fig. 1

shows a sensor network with two events. The event

detected at the solid dot has an intensity of 3. Therefore, its

record is stored in a sensor whose horizontal and vertical

distances to the solid dot are members of the set {1, 2, 4}

(corresponding to 20, 21, and 22, respectively). Similarly,

the other event detected at the solid square has an intensity

of 2. In this case, fewer sensors in a smaller area store the

copies of the record.

3 Storage and communication overheads analysis

Due to its simple structure, the LCS protocol has several

well-defined properties that lead to promising performance.

The following theorems provide the analysis.

Theorem 3.1 Given two records A and B produced by

two nodes at different locations (Ax, Ay) and (Bx, By),

respectively. Let rA and rB be their corresponding intensity

values.

1. If Ax = Bx and Ay = By, at most 16 nodes store both

records.

2. If Ax = Bx or Ay = By, at most 4(2r ? 1) nodes store

both records, where r = min{rA, rB} is the smaller

intensity value among the two.

Proof We assume that both records are alive at the same

time (since otherwise no nodes will store both of them).

The storage locations for record A are then fðAx � 2i;Ay �
2 jÞji; j 2 f0; 1; . . .; rA � 1gg: Similarly, we can determine

the storage locations for B.

Case 1 Ax = Bx and Ay = By.

Without loss of generality, we assume Ax \ Bx. Con-

sider the X coordinate only. Ax and Bx partition the X axis

into three intervals: (-?, Ax), [Ax, Bx], (Bx, ?). Using the

reduction to absurdity approach, we will prove that there

exists at most one X coordinate in the right (left) interval

such that nodes with this X coordinate will store both

records of A and B.

Given two nodes at (x1, y1) and (x2, y2) with x1; x2 2
ðBx;1Þ: For contradiction we assume that both nodes store

both records. Without loss of generality, we further assume

x2 [ x1. Let ax1, bx1, ax2, bx2 (Fig. 2) be the values

such that

Fig. 1 An example of location-centric storage scenario. All circles

store the event record for the event at the solid dot, whose intensity

value is 3; And all squares keep a copy of the event record for the

event at the solid square, whose intensity value is 2

Ax Bx x1 x2 X-coordinate

2
bx2

2
bx1

2
ax1

2
ax2

Fig. 2 Two nodes at (x1, y1) and ðx2; y2Þ; x1; x2 2 ðBx;1Þ
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x1 ¼ Ax þ 2ax1 ¼ Bx þ 2bx1 ð1Þ

x2 ¼ Ax þ 2ax2 ¼ Bx þ 2bx2 ð2Þ
It is easily seen that ax2 [ ax1 and bx2 [ bx1 since

x2 [ x1. Further, Ax \ Bx induces ax1 [ bx1 and ax2 [ bx2.

From Eqs. 1 and 2, we obtain

2ax1 � 2bx1 ¼ 2ax2 � 2bx2

) ð2ax1�bx1 � 1Þ ¼ 2bx2�bx1ð2ax2�bx2 � 1Þ
ð3Þ

In Eq. 3, the left side value is odd while the right side value

is even, which is impossible. Therefore, the assumption

that there exist two nodes storing both records can not

be held true. Thus we have proved that at most one x in

(Bx, ?) such that the node at (x, y) stores both records.

With a very similar derivation, the same conclusion

holds for the interval (-?, Ax). In the following, we will

prove that for those nodes whose X coordinates are in [Ax,

Bx], at most two of them may store both records of A and B,

again using reduction to absurdity.

For contradiction we assume three such nodes at dif-

ferent locations (x1, y1), (x2, y2) and (x3, y3) store both

records. Let axi; bxiði 2 f1; 2; 3gÞ (Fig. 3) be the values

such that

x1 ¼ Ax þ 2ax1 ¼ Bx � 2bx1 ð4Þ

x2 ¼ Ax þ 2ax2 ¼ Bx � 2bx2 ð5Þ

x3 ¼ Ax þ 2ax3 ¼ Bx � 2bx3 ð6Þ

Without loss of generality, we assume x1 \ x2 \ x3.

Hence we have bx1 [ bx2 [ bx3. Also, from the above

equations, we obtain

2bx1�bx2ð2ax2�bx1 � 1Þ ¼ ð2ax1�bx2 � 1Þ ð7Þ

2bx1�bx3ð2ax3�bx1 � 1Þ ¼ ð2ax1�bx3 � 1Þ ð8Þ

2bx2�bx3ð2ax3�bx2 � 1Þ ¼ ð2ax2�bx3 � 1Þ ð9Þ

Equation 7 is true if and only if ax2 = bx1 and ax1 = bx2

(otherwise the parity of the two sides would be different).

Similarly, Eqs. 8 and 9 are true if and only if ax3 = bx1,

ax1 = bx3, ax3 = bx2, ax2 = bx3. Therefore ax1 = ax2 =

ax3 = bx1 = bx2 = bx3, and thus x1 = x2 = x3, which

contradicts the assumption.

From the above analysis, we conclude that there are at

most four different X coordinates such that the nodes with

these coordinates will store both records. The same argu-

ment holds true for the Y coordinate. Therefore there are at

most 16 positions at which the nodes store both records.

Case 2 Ax = Bx or Ay = By.

Consider the case of Ax = Bx and Ay = By. From the

above analysis, we know that at most four different Y

coordinates whose nodes store records for both events.

Further, there are at most 2r ? 1 different X coordinates

whose nodes store both records, where r = min{rA, rB}.

Therefore at most 4(2r ? 1) nodes store both records of A

and B. A similar discussion holds for the case when Ax =

Bx and Ay = By. h

Corollary 1 Assume all event records have the same

intensity value r. Given two nodes at (Ax, Ay) and (Bx, By),

respectively,

1. If Ax = Bx and Ay = By, they store at most 16

records in common.

2. If Ax = Bx or Ay = By, they store at most 4(2r ? 1)

records in common.

Proof Consider a node at (Sx, Sy). According to our

protocol, the node can only store event records generated

by nodes at ðSx � 2i; Sy � 2jÞði; j 2 f0; 1; 2; . . .; r� 1gÞ:
Therefore, we can reverse the roles of records and nodes in

the proof of Theorem 3.1, which leads to the corollary. h

Remark Theorem 3.1 indicates that no matter how big the

intensity value of a record is, there will be a fixed number

of sensors that store the same pair of records in the net-

work, as long as the two event locations are not colinear in

X and Y directions. However, when these two locations are

colinear in either X or Y direction, the intensity value does

matter. Particularly, intensity values determine how many

copies of the records can be stored and what distance the

records can be propagated. Therefore, they affect the

storage space at each sensor, as indicated by Theorem 3.2.

Corollary 1 shows that records are distributed among all

nodes instead of converging onto some of them. Thus no

hot spots will be created.

Theorem 3.2 Assume broadcast is instantaneous. Let the

average intensity value of records be r, and the average

TTL value be T (assumed as an integer). Also assume that

at any node, the number of events detected during a unit

time, denoted by N, follows a Poisson distribution with a

mean k. If N is independent node-wise and time-wise, the

average number of records stored at each node is

k(4r2 ? 4r ? 1)T.

Ax Bxx1 x2 x3 X-coordinate

2
bx3

2
bx2

2
bx1

2
ax1

2
ax2

2
ax3

Fig. 3 Three nodes at (x1, y1), (x2, y2) and ðx3; y3Þ; x1; x2;
x3 2 ½Ax;Bx�
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Proof Given a node at (Sx, Sy), it is easily seen that at any

time t, the node stores the records generated at (x, y) (where

x = Sx ± 2i and y = Sy ± 2j for i; j 2 f0; 1; . . .; r� 1gÞ
during the time interval [t - T, t]. Let Nx;y

k be the number of

events for which the node at (x, y) generates records during

the kth unit time interval ½t � T þ k � 1; t � T þ k� ðk 2
f1; 2; . . .; TgÞ: The average number of records generated by

this node during the time interval [t - T, t] is thus Wx;y ¼PT
k¼1 Nx;y

k : Consequently, at any time t, the number of

records stored in the node at (Sx, Sy) is W ¼
P

x;y Wx;y ¼P
x;y

PT
k¼1 Nx;y

k : Since Nx;y
k ’s are Poisson distributed and

independent from each other, W follows the Poisson

distribution with the mean k (2r ? 1)2 T = k(4r2 ?

4r ? 1)T. h

Remark Note from Theorem 3.2 that the average number

of records stored in each node at any instant time is inde-

pendent of the network size. This independency also

implies the bounded broadcast of records. Therefore, the

LCS protocol is efficient in terms of storage requirement,

power consumption, and bandwidth utilization. It is thus

highly scalable.

Theorem 3.3 Let r be the intensity value in an event

record. Assume the radio range of each sensor is set to

be one unit, then the record will be broadcasted at most

(2r - 1)2times. With a careful broadcast scheduling, this

upper bound can be reduced to 2r 9 (2r - 2) ? (2r ? 1).

Proof According to our protocol, a record with an

intensity r generated at (x, y) is propagated within the area

of [x - 2r-1, x ? 2r-1] and [y - 2r-1, y ? 2r-1]. Imagine

a grid laid on the area centered at (x, y), and each grid cell

is sized 1 9 1. Since the radio range of each sensor is one

unit of distance, only the nodes on (or closest to) the

crossings of the virtual grid lines need to participate in the

broadcast. Also note that the broadcast stops on the

boundary of the area. Therefore, the total number of

intermediate nodes participating in the broadcast is at most

(2r - 1)2.

This upper bound can be improved if the record is

propagated horizontally and vertically only when neces-

sary. To be specific, each of the sensors at (x ± i, y), where

i = 0, 1,…, 2r-1, needs to broadcast once; and each of the

sensors at (x ± 2i, y ± j), where i = 0, 1,…, r-1 and

j = 0, 1,…, 2r-1 - 1, needs to broadcast once. Therefore

the total number of broadcastings is at most 2r 9 (2r - 2)

? (2r ? 1). h

Remark From Theorems 3.2 and 3.3, we observe that

LCS is efficient in network resource (power, bandwidth,

memory) utilization. Further, LCS is fair to all nodes in

storage space, as long as the records are uniformly and

independently generated. This is an intrinsic difference

compared with DCS [8, 11], which creates storage hot spot

even when the number of events in the network is low.

Theorem 3.4 Suppose (x, y) is the location of a user and

(Sx, Sy) is the location of an event whose record has an

intensity value of r. Let dx = |x - Sx|, and dy = |y - Sy|. If

the user is in the broadcast region of this event, i.e., x 2
½Sx � 2r�1; Sx þ 2r�1� and y 2 ½Sy � 2r�1; Sy þ 2r�1�; the

average query distance dq is:

dq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

3
þ

a2 ln
ffiffiffiffiffiffiffiffiffi
a2þb2
p

þb
a

� �

6b
þ

b2 ln
ffiffiffiffiffiffiffiffiffi
a2þb2
p

þa
b

� �

6a
;

if x 6¼ Sx � 2i and y 6¼ Sy � 2j;

where i; j ¼ 0; 1; . . .;r� 1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

2
; otherwise:

8
>>>>>>>>><

>>>>>>>>>:

where

a ¼ ð2dlog2 dxe � 2blog2 dxcÞ=2

b ¼ ð2dlog2 dye � 2blog2 dycÞ=2

�

Proof We denote

Pa1 ¼ Sx þ 2blog2 dxc; Pa2 ¼ Sx þ 2dlog2 dxe

Pb1 ¼ Sy þ 2blog2 dyc; Pb2 ¼ Sy þ 2dlog2 dye

Therefore, a = (Pa2 - Pa1)/2, b = (Pb2 - Pb1)/2. Note

that a = 0 indicates that x = Sx ± 2i for i = 0, 1,…, r - 1,

and b = 0 indicates that y = Sy ± 2j for j = 0, 1,…, r - 1.

There are four different cases:

Case 1 a = 0, b = 0.

In this case, the user at (x, y) chooses the closest point

from (Pai, Pbj) (i, j = 1, 2), and sends the query to the node

at that point. Whichever point the user chooses, the situa-

tion is similar. Therefore, we will only consider the situa-

tion when (Pa1, Pb1) is the closest to the user, as shown in

Fig. 4.

Since (x, y) can be any point in the shaded square with

the same probability, the average query distance dq is

dq ¼
R a

0

R b
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dxdy

ab

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

3
þ

a2 ln
ffiffiffiffiffiffiffiffiffi
a2þb2
p

þb
a

� �

6b

þ
b2 ln

ffiffiffiffiffiffiffiffiffi
a2þb2
p

þa
b

� �

6a

Case 2 a = 0, b = 0.

In this case, (x, y) is on the line between (Pa1, Pb1) and

(Pa2, Pb1). The user will choose the closer point from

Wireless Netw (2010) 16:955–967 959
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(Pa1, Pb1) and (Pa2, Pb1) for the query. Therefore, the

average query distance is

a

2
¼

ffiffiffiffiffi
a2
p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

2
ð*b ¼ 0Þ

Case 3 a = 0, b = 0.

The derivation is similar to Case 2.

Case 4 a = 0, b = 0.

In this case, the user is at (Pa1, Pb1). Therefore, the

query distance is
ffiffiffiffiffiffiffiffiffi
a2þb2
p

2
¼ 0: h

Remark Theorems 3.4 and its proof reveal that when the

user resides in the broadcast region of an event, the query

distance is no more than the distance between the user and

the home location of this event. In fact, in most cases, the

former is much smaller than the latter, resulting in a low

query delay.

It is obvious that using the LCS protocol, the information

of an event can only be propagated to the furthest distance

of 2r-1, where r is the intensity value of the record corre-

sponding to the event. Therefore, a user can only be notified

of the events that occur within certain distance from the

user. This is characterized by Theorem 3.5.

Theorem 3.5 Assume all events have the same intensity

value r. Suppose an event occurs at an arbitrary location

(Sx, Sy) in the network, but a user at (x, y) can only com-

municate with nodes within an area of l 9 l (denoted byH)

centered at (x, y). Let dx = |Sx - x|, dy = |Sy - y|, and

b = min(r - 1, blog2 l c). The user is notified of the event

if ðSx; SyÞ 2 A;B or C; where area A;B and C are defined

as follows,

ðSx; SyÞ 2 A if dx� 2b þ l=2 and dy� 2b þ l=2

ðSx; SyÞ 2 B if ðdx� 2b þ l=2

and 2b þ l=2\dy� 2r�1 þ l=2Þ;
or

ð2b þ l=2\dx� 2r�1 þ l=2

and dy� 2b þ l=2Þ
ðSx; SyÞ 2 C if 2b þ l=2\dx; dy� 2r�1 þ l=2:

8
>>>>>>>><

>>>>>>>>:

Otherwise, the user cannot be notified.

Proof In the case of ðSx; SyÞ 2 area A;B or C; since the

information of any event occurs in area A;B or C is

recorded by some nodes in H; and the user communicates

with all nodes in H; the user will be notified of the event.

In the case that the event (Sx, Sy) occurs in the area other

than area A;B and C; since the information of the event is

not recorded by any node in H; the user won’t be able to

receive the event information. h

4 LCS query performance analysis

In this section, we study the query performance of LCS. In

a typical sensor network, query a number of (if not all)

sensors to retrieve gathered data is a central task for

monitoring and control. A naive but inefficient way is to

flood queries to all sensors in the monitored area. When

LCS is applied as the data storage method, a simple and

efficient approach for data retrieval is readily available. In

the following, we first propose a method for data retrieval

in a one-dimension network, and then extend the basic idea

to the two-dimension case.

4.1 Definitions

Given a graph G = (V, E), a dominating set D of G is a

subset of V such that for 8u 2 V � D; there is a v 2 D for

which ðu; vÞ 2 E (i.e., u is dominated by v). A dominating

set with a minimum cardinality is called a minimum dom-

inating set. Computing a minimum dominating set is NP-

complete [3]. Given a dominating set D of graph G, if each

vertex of G is dominated by exactly one element in D, then

D is called a perfect dominating set of G. A perfect dom-

inating set is necessarily a minimal dominating set.

Let n and m be k-bit binary numbers. The Hamming

distance h(n, m) of n and m is the number of bit positions in

which n and m differ. A k-dimension hypercube Hk is an

undirected graph with N = 2k vertices. In Hk, each vertex

is uniquely identified by a k-bit binary expansion of some

integer u 2 f0; 1; . . .;N � 1g; and an edge connects two

vertices u and v if and only if h(u, v) = 1.

b

b2

P
b1

(P  , P  )
a2 b2

(P  , P  )
a1 b1

P
1

P
2

(S  , S  )x y

(x, y)

(P  , P  )
a1 b2

(P  , P  )
a2 b1a

P

a a

Fig. 4 For a user at (x, y) in the shaded area, the record of the event at

(Sx, Sy) will be provided by the node at (Pa1, Pb1). The query distance

is thus the distance from (x, y) to (Pa1, Pb1). When the user is closer to

(Pa1, Pb2), (Pa2, Pb1) or (Pa2, Pb2), the calculation is similar
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Let C be an error-correcting code consisting of N

codewords, in which each codeword consists of n letters

taken from an alphabet A of length q, and every two dis-

tinct codewords differ in at least d = 2e ? 1 places. Then

C is said to be perfect if for every possible word w0 of

length n with letters in A; there is a unique code word w in

C in which at most e letters of w differ from the corre-

sponding letters of w0. An example perfect code is the

(k, t)-Hamming code, in which a codeword of length k

contains t check bits.

Computing a perfect dominating set D of Hk can be

transformed to the problem of computing a perfect single-

error-correcting code [7]:

Lemma 4.1 Given a k-dimension hypercube Hk, a perfect

dominating set D of Hk is precisely a perfect binary single-

error-correcting code with 2k codewords.

4.2 Query performance of LCS in one-dimension

sensor networks

Assume a one-dimension network containing N sensors,

denoted by S0, S1, S2, S3,…, SN-1, placed at locations 0, 1,

2, 3,…, N - 1, respectively, in a straight line. For sim-

plicity we focus on the special case when N = 2k and

minN�1
i¼0 frSi

g� k: For the general case, the one-dimension

network can be partitioned into multiple subnetworks sat-

isfying the above conditions, and the performance can be

analyzed accordingly.

A graph G(V, E) can be constructed by setting V = {S0,

S1, S2, S3,…, SN-1} and an edge eðSu; SvÞ 2 E if and only if

the distance between Su and Sv equals 2i, where i 2
f0; 1; . . .; k � 1g: Based on this graph model, a minimum

dominating set of G stores all event information recorded

in the whole network, which means that querying this

subset suffices in order to retrieve all events. Since com-

puting a minimum dominating set is NP-complete [3], a

computationally efficient algorithm in this section is to be

sought to find out a good approximation. In the following,

we first identify a hypercube Hk as a subgraph of G.

Lemma 4.2 G(V, E) defined above contains a k-dimen-

sion binary hypercube Hk as a subgraph.

Proof We prove this lemma by constructing Hk(V
0, E0) by

setting V0 = V and an edge eðSu; SvÞ 2 E0 if and only if

eðSu; SvÞ 2 E and h(u, v) = 1, since Su (Sv) resides at

position u(v), every pair of Su and Sv satisfying h(u, v) = 1

has a corresponding edge in E. h

Lemma 4.2 proves the existence of Hk in G. Since

V0 = V and E0 , E, a dominating set of Hk is also a

dominating set of G. According to Lemma 4.1, the problem

of finding a perfect dominating set in a hypercube Hk can

be transformed to the problem of finding a perfect single-

error-correcting code. Let’s consider the cases of k = 2t - 1

and k = 2t - 1 separately, where t is a non-negative integer.

4.2.1 Case I: k = 2t - 1

The following theorem maps the (k, t)-Hamming code to a

perfect dominating set in Hk when k = 2t - 1.

Theorem 4.3 Given a k-dimension hypercube Hk, if

k = 2t - 1, where t 2 f0; 1; . . .g;Hk has a perfect domi-

nating set containing exactly 2k

kþ1
nodes.

Proof For a (k, t)-Hamming codeword b1 b2…bk, the bit

positions bi satisfying i = 2j with j = 0, 1,…, t - 1 are the

check bits while others are data bits. Therefore the (k, t)-

Hamming code is used to correct a single error of data

words with length k - t. Since the (k, t)-Hamming code is a

perfect single-error-correcting code, the subset of vertices

in Hk whose binary representations correspond to the valid

Hamming codewords of all data words with length k - t is

a perfect dominating set, based on Lemma 4.1. The size of

this perfect dominating set is 2k-t, which equals to 2k

kþ1
: h

Theorem 4.4 When k = 2t - 1 for a non-negative inte-

ger t, the size of the perfect dominating set found via the

construction of a (k, t)-Hamming code is at most 2 � OPT,

where OPT is the cardinality of a minimum dominating set

of the original graph G(V, E) formed from the one-

dimension LCS network.

Proof Note that each node stores records from at most 2k

other sensors, namely dominates at most 2k nodes.

Therefore the size of a minimum dominating set of G(V, E)

is lower-bounded by N
2k ¼ N

2 log2 N; which means that

OPT � N
2 log2 N: According to Theorem 4.3, the size of the

perfect dominating set computed based on the construction

of a (k, t)-Hamming code is 2k

kþ1
¼ N

kþ1
¼ N

log2 Nþ1
�

N
log2 N� 2 � OPT : h

4.2.2 Case II k = 2t - 1

When k = 2t - 1, we can extend the binary representation of

each node in Hk from k bits to k0 bits, where k0 ¼ 2t0 � 1 and

t0 ¼ d log2ðk þ 1Þe: Therefore, we can compute the (k0, t0)-
Hamming code and find the corresponding dominating set in

the network. The following theorem maps the (k0, t0)-Ham-

ming code to a dominating set D of Hk when k = 2t - 1.

Lemma 4.5 Given a k-dimension hypercube Hk, where

k = 2t - 1. Let t0 ¼ d log2ðk þ 1Þe and k0 ¼ 2t0 � 1: Let

Bu ¼ bu
1bu

2 � � � bu
k0 � � � 0 denote the k0-bit binary representa-

tion of vertex u in Hk, where the bit positions

bu
kþ1; b

u
kþ2; . . .; bu

k0 are set to 0. In other words, Bu is obtained

Wireless Netw (2010) 16:955–967 961

123



by zero-extending the k-bit binary representation of u in Hk

to k0-bits. Let C be the (k0, t0)-Hamming code. Let D0 , C be

the set of Hamming codewords b01b02� � �b0kb0kþ1� � �b0k0 whose

binary segment b0kþ1b0kþ2� � �b0k0 contains at most one bit 1.

We claim that

• for V vertex u in Hk, there exists one codeword in D0

such that the Hamming distance between this codeword

and Bu is at most 1;

• the size of D0 is at most 2k�t0 :

Proof For contradiction we assume that there exists a

vertex v such that the Hamming distance between Bv and

any codeword in D0 is larger than 1. Since C is the (k0, t0)-
Hamming code, there exists a codeword w 2 C such that

the Hamming distance between w and Bv is at most 1.

Therefore w 62 D0: Thus w must have at least two 1’s in its

binary segment bw
kþ1bw

kþ2� � �bw
k0 : Note that the binary seg-

ment bv
kþ1bv

kþ2� � �bv
k0 of Bv are all zeros, therefore the

Hamming distance between Bv and w is at least 2, which

contradicts the previous derivation that the Hamming dis-

tance between Bv and w is at most 1.

Note that a Hamming codeword in C contains t0 check

bits. From the definitions of k0 and t0, these t0 check bits

reside in the least significant k-bits of the codeword. Since

D0, C, no two codewords in D0 have the same least

significant k-bits. Therefore jD0j � 2k�t0 : h

Note that for each codeword w0 2 D0; there exists a

vertex u in Hk such that the least significant k bits of Bu is

the same as those of w0. Let D be the set of vertices sat-

isfying this condition.

Theorem 4.6 D is a dominating set of Hk.

Proof Let u be an arbitrary vertex in Hk. Based on

Lemma 4.5, there exists w in D0 such that the Hamming

distance between w and Bu is at most 1. If the most sig-

nificant k0 - k bits of w has the bit 1, then the least sig-

nificant k bits of Bu and w must be the same; therefore

u 2 D: If the most significant k0 - k bits of w contain bit 0

only, Bu either equals w, or differ by 1 bit position with w.

In the first case, u 2 D; in the second case, u is adjacent to

some node in D. Therefore D is a dominating set of Hk. h

Theorem 4.7 The size of D is at most 2�OPT, where OPT

is the cardinality of a minimum dominating set of the ori-

ginal graph G(V, E) formed from the one-dimension LCS

network.

Proof From the construction of D, we have jDj � jD0j �
2k�t0 ¼ N

2dlog2ðkþ1Þe � N
kþ1
� N

k ¼ N
log2 N: By the same argument as

that in Theorem 4.4, we have OPT � N
2 log2 N: Therefore |D|

B 2�OPT. h

4.2.3 Algorithm

Algorithm 1 summarizes the procedure of finding a small

subset of nodes to query in the one-dimension LCS net-

work when N = 2k in order to retrieve all event information.

For example, given a one-dimension LCS network with

a network size of N = 128. A hypercube H7 can be derived

easily according to Lemma 4.2. Since k = 7, we have

t = 3. The (7,3)-Hamming code contains the following

valide codewords: {0000000, 0000111, 0011001, 0011110,

Algorithm 1
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0101010, 0101101, 0110011, 0110100, 1001011, 1001100,

1010010, 1010101, 1100001, 1100110, 1111000, 1111

111}. Therefore, we need to query only 16 sensors (S0, S7,

S25, S30,…) in order to retrieve all event information within

the one-dimension LCS network of 128 nodes.

4.3 Query performance of LCS in two-dimension

sensor networks

In this section we present how to extend the results in a

one-dimension network to the case of two-dimension.

Assume the user-queried area is N 9 N and N = 2k. The

following algorithm identifies the dominating set to query

for event information retrieval.

Theorem 4.8 All the information in the user-queried

area N 9 N is covered by the queried sensors in the set D.

Proof It is obvious that the information stored by sensor

Sa,b at (a, b) is covered by the sensors in the set D if

a 2 DX;j and b 2 Di;Y ; namely Sa;b 2 D:

Now we consider the cases of a 2 DX;j or b 2 Di;Y or

both, namely Sa;b 2 D: Following the results obtained for

the one-dimension network, we observe that a is dominated

by some node di in DX,j, and b is dominated by some node

dj in Di,Y, which indicate that the information stored at (a,

b) is covered by (di, dj). Therefore all the information in the

user-queried area is covered by the sensors in D. h

Based on Theorem 4.8, the size of the dominating set

found via Algorithm 2 is at most N2

ðlog2 Nþ1Þ2: Table 1 reports

several example results for the case of two-dimension

sensor networks. It indicates that Algorithm 2 is able to

greatly reduce the number of nodes to be queried.

5 Simulation

To evaluate the LCS protocol, we have conducted simu-

lations. In the simulations, we assume that there is a robust

routing protocol for message delivery. Besides, whenever a

node generates a record, the record is propagated in the

network immediately.

A two-dimension grid topology and a topology with

nodes uniformly distributed (referred to as random topology

henceforth)4 were considered. For the former, we used a

64 9 64 grid. One node is placed at the center of each grid

cell. For the latter, nodes are uniformly randomly deployed

in a 64 9 64 area. In either case, the total number of nodes

is 4096. We assume that the number of records generated by

each node within one second (i.e., the record generating

rate) follows the Poisson distribution with the mean k. Other

settings are as follows:

• The total simulation time is 200 s.

• k = 2i 9 10-3, where i is one of 0, 1,…, 8 for various

simulations.

• The intensity value r is randomly chosen from [0, 6].

• The TTL value is randomly chosen from [1, 100] in

seconds.

• The TTL value decreases by 1 at every second after the

record is inserted into the database.

• A record is removed from the database immediately

when its TTL value reaches zero.

During the simulation, the number of records stored in

each node is checked at every second. All the simulation

results shown in the following are averaged over 5 runs.

To measure the performance, we use the max-vs.-aver-

age storage ratio q(t). Let Ni(t) be the number of records

stored on node i (i = 1, 2,…, 4096) at time t. For t = 1,

2,…, 200, we define

MðtÞ ¼ max
i
fNiðtÞg

AðtÞ ¼
Pi

i NiðtÞ
4096

qðtÞ ¼ MðtÞ
AðtÞ

Among them, for a particular time t, M(t) indicates the

worst node storage consumption in the network, while A(t)

corresponds to the best case when all records are perfectly

evenly distributed across the network. Therefore, the ratio

measures the fairness of node storage of the LCS protocol.

Figure 5 shows the ratio at different simulation times for

k = 0.016, 0.032 and 0.064. The simulations for both

topologies have very similar results:

• The ratio drops quickly after the simulation starts and

soon becomes stable.

• The smaller the k, the slower the ratio becomes stable.

• The smaller the k, the larger the ratio.

• For different k’s, the ratios are not the same but fairly

close to each other.
Table 1 The network size and the corresponding number of sensors

to be queried

Network size N 9 N The number of queried sensors

8 9 8 4

128 9 128 256

215 9 215 4, 194, 304

4 Although we have only tested on two types of networks, based on

the properties aforementioned, we believe that the simulation results

can be extended to more general topologies where nodes are deployed

at random with arbitrary distributions.
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In the grid topology, the ratio becomes stable after

t = 40 s. In the random topology, the ratio takes a little bit

more time to stabilize. It owes to the randomness that

makes the worst case of storage consumption (i.e., M(t))

volatile.

Figure 6 shows the max-vs.-average ratio versus k, the

event generating rate for the two network topologies. It is

interesting to observe that when k increases, the ratio drops

below 2 quickly. It indicates that the worst case is closer to

the best case with higher k. Figure 7 shows how M(t) and

A(t) change with time for three different k values. We

observe that both M(t) and A(t) become stable after

t = 100 s. We also notice that larger k results in larger

M(t) and A(t). This is consistent with the expectation

because larger k means more records generated per unit

time.

6 LCS, DCS, LS, and ES: a discussion

Note that our LCS protocol is a complement to ES, LS, and

DCS. Comparison study of ES, LS, and DCS on the

overhead of storage, query, and update5 has been con-

ducted in [8, 10]. In this section, we will give a brief dis-

cussion on the performance of these methods.

In ES, all detected events are directed to a central pro-

cessing server such as a base station. Therefore the user

query overhead is negligible while the information update

overhead is a function of the network diameter. In LS,

events are stored locally. User queries must be flooded to

the whole network but the information update overhead is

negligible. In DCS, data is stored by name/location. A

geographic hash table [8] based data centric storage [10]

maps the data of the same type (name) to a fixed location in

the sensor network. DCS induces moderate amount of

query and update overhead. In the worst case, both kinds of

overhead of DCS are a function of the network diameter.

For a sensor network with significant number of queries

and relatively infrequent updates, ES is preferred; on the

0 50 100 150 200 
0 

5 

10 

15 

20 

25 

30 

Time 

M
ax

S
to

ra
ge

 / 
A

vg
S

to
ra

ge
 

λ  = 0.128 
λ  = 0.032 
λ  = 0.008 
λ  = 0.002 

0 50 100 150 200
0 

5 

10 

15 

20 

25 

30 

Time

M
ax

S
to

ra
ge

 / 
A

vg
S

to
ra

ge
 

λ  = 0.128 
λ  = 0.032 
λ  = 0.008 
λ  = 0.002 

Grid Topology Random Topology 

(a) (b) 
Fig. 5 The max versus average

storage ratio versus simulation

time for k = 0.002, 0.008, 0.032,

0.128. a Grid topology, b
Random topology

Algorithm 2

5 When we talk about the ‘‘overhead of query and update’’, we

actually refer to the communication overhead induced by user query

and information update. This is reasonable since in a resource-

constrained sensor network, communication is the most aggressive

energy consumer, which strongly impacts the network lifetime.
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other hand, if the number of updates is far more than that of

queries, LS is a better choice. DCS is applicable when the

amounts of queries and updates are comparable [10].

Among LS, ES and DCS, the last one has many inter-

esting features and deserves more discussion. A great

amount of research effort [4, 8–11] has been put into it

since its first introduction in the year of 2002 [10]. Com-

pared to LCS, DCS is based on a different view of routing

data, in which a type or a name instead of an IP address

should be attached as data identifier. This observation holds

true for many sensor network applications. For example,

the measurement summary or the occurrences of some

abnormal events, collaboratively computed by many sen-

sors, should be reported to certain nodes in a sensor net-

work deployed for monitoring and control. The concept of

data-centric binds the type with the data, since in reality

users care about ‘‘what has happened’’ instead of ‘‘which

sensor observes the occurrence’’. In DCS, a named data is

directed to a fixed location determined by a Geographic

Hash Table (GHT) [8]. All data with the same names are

hashed to the same position (actually to the sensors close to

that position). GHT relies on a geographic routing protocol

such as GPSR [5] for data dissemination, and exploits two

operations, Put(k, v) and Get(k, v), for data update and

query, where k is the name of the data whose value is v.

DCS suffers from the problem of single-point-of-failure,

since each type of data is mapped (hashed) to exactly one

location, and stored by the sensor that is geographically the

nearest to the hashed location. To improve the resilience to

node failure, Ratnasamy et al. [8] proposed to replicate the

stored data locally through the periodic refresh messages;

They also extended DCS to obtain Structured Replication

in DCS (SR-DCS) for load-balancing and better scalability.

In the Resilient DCS (R-DCS) [4], the coordinate space is

partitioned into Z zones, with each containing sensors

operating at different modes. An event is stored in its home

zone if there exists a sensor working at the Replica Mode

for that event type; Otherwise, the data is forwarded to the

closest replica node for that event type in nearby zones. It

is obvious that this two-level replication strategy improves

both the resilience of DCS against node failure and its

scalability. A different hierarchical architecture for DCS

based on Rendezvous regions (RR) is reported in [9], in

which all data with the same name are mapped to a RR

region instead of a single point. The storage of the data

within a region is controlled by a few elected nodes within

the region. This approach can tolerate dynamics such as

node mobility and has better scalability compared with the

basic DCS, but it suffers from clustered node failures. To

further improve resilience, Tamishetty et al. [11] proposed

to employ multiple hashing such that one type of event can

be replicated at multiple locations computed by different

hash functions.

Compared to DCS, LCS utilizes a completely different

concept. While DCS basically does m(data)-to-1(location)

mapping, LCS does 1(data)-to-m(locations), i.e., an event

record is replicated at multiple positions in the neighbor-

hood of the event location based on the intensity of the

event. Consequently, LCS has better scalability and stron-

ger resilience against node failures compared with DCS.
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Note that LCS and DCS can coexist in a sensor network

since they target different application scenarios. DCS is

designed for large-area data dissemination. The designated

storage location for a type of events in DCS decreases query

overhead since no flooding is involved. On the other hand,

LCS is designed for scenarios when the event information is

needed only when the user is approaching the event loca-

tion. Querying a specific event in LCS requires global

flooding.

LCS is different from LS too. In LCS, a group of sensors

store an event generated roughly at the geometric center of

the group, while in LS a sensor stores its local observations.

LCS has better resilience against node failures, and is suit-

able for summary data dissemination. Overall, LCS is a

novel storage method that is a complement to DCS, LS, and

ES, and fits in well with various sensor network applications.
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