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Abstract—We transform the 3D underwater sensor network (USN) localization problem into its 2D counterpart by employing sensor
depth information and a simple projection technique. We first prove that a nondegenerative projection preserves network localizability.
We then prove that given a network and a constant £, all of the geometric k-lateration localization methods are equivalent. Based on
these results, we design a purely distributed bilateration localization scheme for 3D USNs termed as Underwater Sensor Positioning
(USP). Through extensive simulations, we show that USP has the following nice features: 1) improved localization capabilities over
existing 3D methods, 2) low storage and computation requirements, 3) predictable and balanced communication overhead, and

4) robustness to errors from the underwater environment.

Index Terms—Underwater sensor networks, projection, localizability study, 3D localization.

1 INTRODUCTION

UNDERWATER sensor networks (USNs) consist of a variable
number of sensors designed to collaboratively monitor
an oceanic environment. To achieve this objective, sensors
self-organize into an autonomous network that can adapt to
the characteristics of a given underwater area. The main
motivations for USNs are their relative ease of deployment
and lower costs, as they eliminate the need for underwater
cabling and do not interfere with shipping activities.
Although USNs are envisioned to enable diverse
applications such as aquatic resource monitoring, disaster
prevention, and assisted navigation, their unique properties
have necessitated an innovative reexamination of problems
related to protocol layer design [1], [2], [3], [4], topology
formation [5], [6], target tracking [7], and localization [8].
Indeed, propagation delays, motion-induced Doppler shift,
limited bandwidth, and multipath interference render many
previously proposed solutions inaccurate or infeasible [9].
This is especially relevant for sensor nodes location
discovery [10] where, for example, commonly employed
RSS-based localization techniques provide ambiguous
results in underwater environments [9]. Even the well-
established Global Positioning System (GPS) does not work
well underwater [11]. Besides the unavailability of GPS, 3D
localization becomes even more challenging due to the
economically driven sparseness of USN deployments [12]
and the unavailability of sufficient numbers of underwater
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beacons. These properties make USN localization a non-
trivial task with relatively few options available.

In this paper, we study the problem of 3D underwater
sensor network localization. The network localization problem
seeks to determine a unique position for each node in a
network given the positions of some nodes (termed as
“beacons” or “anchors”) and the knowledge of some
internode distances (ranges). We formally identify the
conditions that make it possible to transform the 3D
underwater localization problem into its 2D counterpart,
and design a projection-based distributed localization
framework for underwater sensor positioning. Our research
is motivated by the following observations:

e Localization in terrestrial sensor networks, which is
known as 2D localization, has been extensively
studied and many elegant ideas have been pro-
posed. It is straightforward to directly adopt mature
2D localization schemes when the 3D localization
problem is transformed into its 2D counterpart.

e Existing 3D underwater localization schemes re-
quires noncoplanar anchor nodes to uniquely loca-
lize a sensor, which implies that at least one anchor
with position information needs to be underwater.
However, deploying anchor nodes underwater is
either infeasible or cost-prohibitive, especially in
deep oceanic environments. This is a “chicken or
egg” problem: if there is an easy way to localize an
anchor underwater, other sensors can be localized in
a similar manner.

e Underwater sensors typically have depth informa-
tion available through various techniques [13], which
may be exploited such that only anchor nodes on the
sea surface (a horizontal plane) are required. In this
case, the surface anchors can be projected to the
plane determined by the depth of the to-be-localized
node, whose position can thereby be resolved.

Based on these observations, we intend to project the
surface anchors to the plane where the to-be-localized
sensor resides, by which the original 3D localization
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problem is transformed to its 2D counterpart such that 2D
localization techniques can be employed. We prove that
each node preserves its localizability in the plane on which
it is projected if the projection is nondegenerative. Under
this condition, a node is localizable in the projection plane if
and only if it is localizable in the original 3D underwater
network. Equipped with this theory, we design a projection-
based underwater network localization framework termed
as Underwater Sensor Positioning (USP). The performance
of USP is extensively investigated via simulation, which
indicates that with only three surface anchors, USP
improves localization capabilities over existing 3D techni-
ques, has low storage and computation requirements,
incurs predictable and balanced communication overhead,
and is robustness to environment-induced errors.

USP is an iterative distributed localization framework
that is designed especially for sparse 3D underwater sensor
networks. It utilizes bilateration as the base localization
method since bilateration works better than trilateration in
2D sparse networks [14]. Via projection, surface anchors
and reference nodes' are projected to the horizontal plane
on which the to-be-localized sensor resides. Via bilateration,
the to-be-localized node starts its position computation
when its distances to two anchor/reference nodes are
available. Its unique position, if currently unavailable, can
be iteratively resolved when more position information
from neighboring anchors/reference nodes is obtained. To
justify the localization capability of USP, we prove that a
node can be localized by a geometric k-lateration localiza-
tion method if and only if it can be localized by the other
k-lateration localization methods. This result guarantees the
equivalence of all geometric k-lateration localization meth-
ods, which facilitates the proof of our major result that USP
is able to determine a unique position for a sensor if and
only if the sensor is uniquely localizable in the original 3D
underwater network.

The remaining portion of the paper is organized as
follows: Section 2 provides a brief overview of related
research. In Section 3, we conduct a network localizability
study that forms the foundation of USP. A detailed
elaboration on the design of USP appears in Section 4,
and an extensive analysis of USP’s performance is provided
in Section 5. We conclude this paper in Section 6 with a
discussion of future research directions.

2 RELATED WORK

Typical localization techniques are either range-based or
range-free. Range-based techniques rely on various me-
chanisms such as Time-of-Arrival (ToA) to estimate the
distances (ranges) to anchor nodes, and then, convert these
distance estimations to position information via trilateration
(in 2D) or quadrilateration (in 3D). Compared to range-
based methods, range-free methods usually provide coarser
position information as only an area containing the to-be-
localized node needs to be determined [15]. Since USP is a
range-based underwater localization framework, which can

1. A reference node is a node whose position has been uniquely or partially
determined, and therefore, it can serve as an anchor to other to-be-localized
nodes.
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employ with any ranging method, we will focus on the
ranging techniques that are proposed especially for under-
water sensor networks. For a comprehensive literature
survey on underwater localization, we refer the interested
reader to [9], and the references therein.

Ranging techniques are either communication-based or
connectivity-based. In “underwater GPS” such as GPS
Intelligent Buoys (GIBs) [16] and PARADIGM [17], active
communication between a to-be-localized sensor and the
surface buoys is needed, and therefore, time needs to be
synchronized in order to convert time measurements into
ranges. To avoid time synchronization, a ping-pong style
scheme to measure the round-trip delay between the sensor
and a buoy for range estimation is proposed by Hahn and
Rice [18]. All these ranging methods require a sensor to
interrogate multiple surface buoys, an action that contri-
butes to network throughput degradation because localiza-
tion information and application communication share the
same underwater channel [12]. To overcome this problem, a
silent positioning scheme is proposed in [8], where sensors
estimate the ranges by passively listening to the beacon
messages exchanged among anchor nodes. This scheme
requires no time synchronization and has low computation
and communication overheads, but needs at least four
noncoplanar anchors that can mutually hear each other.

When there is no direct communication between anchor
nodes and sensors, network connectivity can be exploited
for range estimation. In [19], DV-hop (range estimation is
based on hop count), DV-distance (range estimation is
based on cumulative range estimates obtained from
Received Signal Strength Indicator (RSSI)), and euclidean
(range estimation is based on solving euclidean equations
formed with the distances to two neighbors, the distance
between the two neighbors, and the distance from the
neighbors to the base station) are proposed. Although
euclidean method is shown to perform the best in
anisotropic topologies, there is an expense of larger
computation and communication overheads. The euclidean
ranging method has been extended to support 3D under-
water localization by Zhou et al. [20] when the commu-
nication range of the anchor nodes is short, and by Zhang
and Cheng [21] when long-range anchor nodes are
available. The extensive local flooding in [20] and the
global beacon flooding in [21] are bandwidth-intensive, and
therefore, unavoidably degrade the throughput in USNs.
Additionally, a larger number of anchor nodes are required
in [21], which results in a higher deployment cost.

A recent work termed as SLMP [22] employs GPS-
enabled surface buoys and special-purpose anchor nodes.
The anchors are deployed subsurface among other less
powerful underwater sensors, but have the ability to self-
localize via direct communication with four surface buoys.
Temporal and spatial correlations in underwater group
mobility patterns are leveraged to reduce the communica-
tion overhead incurred while localizing the sensors.
Additionally, latency- and mobility-induced position errors
are countered in [23] with probabilistic models of node
position changes and maximum-a-posteriori estimates of a
node’s position at a particular time period. The work that is
closest to USP is DNR [24]. The scheme requires at least
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three anchor nodes to dive to the depth of the to-be-
localized sensor so that triangulation can be performed.

USP is fundamentally different from the aforementioned
schemes. First, all of ranging techniques proposed in the
literature mentioned above are applicable to USP as USP is
a framework that does not rely on a dedicated ranging
method. Second, USP has a stronger localization capability
compared to existing 3D underwater localization methods.
USP is a projection-based approach that is designed to
iteratively localize all localizable sensors in a 3D under-
water network via bilateration. Third, USP requires only
three GPS-enabled buoys residing at the sea surface in order
to localize a large percentage of nodes (even in sparse
deployments, see Section 5).

Before elaborating the design of USP, we formally study
network localizability and develop the theoretical founda-
tion on which USP is built.

3 NETWORK LOCALIZABILITY STUDY

Since it may not be practical to place anchors on the sea
floor in 3D USNS, they are usually deployed on the surface
as buoys. However, a 3D position cannot be resolved if all
of the anchor/reference nodes, no matter how many they
are, reside on a single plane. What we need is a method to
differentiate the real position of a sensor from the position
of its image relative to the surface plane. This problem may
be solved if we employ the depth information that is
typically available to underwater sensors using various
techniques [13]. Specifically, given the depth of underwater
sensors, we can map the positions of the anchor nodes to
the plane containing a to-be-localized node. This mapping
effectively transforms the problem of 3D underwater
localization into a 2D positioning problem such that many
of the elegant localization techniques for 2D terrestrial
sensor networks become applicable.

In this section, we study whether or not a nondegenera-
tive projection preserves node localizability. We prove that a
node is localizable in the projection plane if and only if it is
localizable in the original 3D network. We also prove that
all of the geometric k-lateration localization methods are
equivalent, which guarantees that USP preserves the
capabilities of the 2D localization methods.

We begin with some basic definitions related to the
network localization problem.

3.1 Background Information

Let G(V, E) be the graph representing a network, where V is
the set of nodes including the anchors and an edge (u,v) € £
if and only if {u,v} C V and the distance between u and v is
available.

A node is localizable if its location can be uniquely
determined; otherwise, the node is unlocalizable. Although a
node is unlocalizable, it is still possible to compute several
candidate positions that form its candidate position set. These
nodes are finitely localizable. For example, as shown in Fig. 1a,
the to-be-localized node C has range information to two
anchors A and B. Because it is essential to be adjacent to at
least three anchors for computing a unique position in 2D via
trilateration, node C is unlocalizable. However, C can derive
two candidate positions C' and C”, with each satisfying the
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(b)

Fig. 1. (@) Node C has two candidate positions. (b) C becomes
localizable after introducing anchor D and performing a reduction
operation.

distance constraints established by A and B. Since only one of
the positions is node C’s real position, C' is a finitely
localizable node with candidate position set {C’, C"}.

Note that if a finitely localizable node can get more
positioning information from another anchor, it can perform
a reduction operation on its candidate position set and
become localizable. A reduction is a procedure that reduces
the number of candidate positions. As shown in Fig. 1b,
node C can delete C" from its candidate position set after the
internode distance to anchor node D is available because C”
does not satisfy the distance constraint imposed by D.?

If all of the nodes in G can be uniquely localized, G is
localizable; if only a fraction of the nodes are uniquely
localizable, G is partially localizable; if the number of possible
positions for each node is finite, G is finitely localizable. A
finitely localizable network is partially localizable.

Let us consider a graph G in d dimensions. G is a
trilateration network if it has a graph representation with a
trilateration ordering. A graph has a trilateration ordering if
its vertices can be ordered as wi,v9,vs3,...,v,, Where
vy, Vg,...,0q.1 are the “seeds,” and each vertex v; with i >
d+1 is adjacent to at least three vertices v; with j <.
Similarly, we can define bilateration networks and quadrila-
teration networks, which require each vertex v; with i > d +1
to be adjacent to at least two or four vertices v; with j <3,
respectively.

Although the complexity of uniquely localizing a net-
work is NP-hard [25], there exist classes of networks that
can be efficiently localized. Examples of such classes
include bilateration networks in one dimension, trilateration
networks in two dimensions, and quadrilateration networks in
three dimensions. In general, (d + 1)-lateration networks
can be uniquely localized with a complexity that is
polynomial in the number of vertices in d dimensions.

The relationship between quadrilateration networks,
trilateration networks, and bilateration networks is illu-
strated in Fig. 2. If the nodes localized by a localization
method can construct a bilateration network, this localiza-
tion method is a bilateration localization method. We can
similarly define a trilateration localization method and a
quadrilateration localization method. These methods differ in
the number of reference nodes, denoted by £, that a to-be-
localized node must “reach” before it can start to compute
its position. For simplicity, we use k-lateration to denote
these localization methods, where k= 2.3, and 4 refer to
bilateration, trilateration, and quadrilateration, respectively.

2. In this simple example, when the distance to D is available, C' can
compute a unique position via trilateration when all range information has
no error. The procedure fo solving the equations in trilateration involves the
same reduction step.
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Bilateration

Trilateration

Quadrilateration

Fig. 2. The relationship between the classes of networks.

Based on the above definitions, it is easier to find a
bilateration ordering than to find a trilateration ordering or
quadrilateration ordering for a network. As pointed out in
[14], given a 2D network, it is possible that a node can be
uniquely localized by a bilateration localization method but
cannot be localized by a trilateration localization method
since the node may be excluded from the corresponding
trilateration ordering. However, the ability to localize more
nodes with a bilateration method does not come for free.
Indeed, for 2D localization, the computational complexity of
a bilateration localization method is exponential in the
number of nodes [14], while that of a trilateration localiza-
tion method is polynomial.

Therefore, it is possible that there exist some nodes
that are localizable in a network but they are not included
in any trilateration or quadrilateration ordering given the
d+1 anchors. Furthermore, there exist localizable net-
works that cannot be localized by trilateration and
quadrilateration methods but can be localized by a
bilateration method. For example, a bilateration method
can uniquely localize all nodes in a 2D wheel network
given three nodes as anchors, as shown in Fig. 3, whereas
trilateration and quadrilateration cannot.

3.2 Localizability Preservation Study

In this section, we prove that a nondegenerative projection
preserves the localizability of the network.

Definition 3.1. Given a plane F in the 3D, a projection is a
function Pp: R® — R®, which projects a node v in the 3D

space to a node oF in the plane F, i.e., Pp(v) = oF,

Note that Py is an euclidean transformation. A projection
is nondegenerative to a node set S if and only if v’ # v}’ when
v 7é V9, where U1, V2 € S.

Definition 3.2. Given a 3D graph G(V, E) and a plane F, the
projection graph Gr(Vp, Erp) is produced by the projection
Pg, where Vi = {v"|v e V} and Ep = {(v],v})|(v;,v;) €
E.i# j}.

Lemma 3.1. If Pr is nondegenerative, then (v;,v;) € E if and

only if (v} ,v}') € Ep, where i # j.

Proof. Pp is a bijective function when there is no
degeneration. Therefore, the claim holds true according
to Definitions 3.1 and 3.2. O

Definition 3.3. Given a plane F' and a node v, the relative
distance Df represents the distance from v to F, ie.,
DEF = v — . Note that DY is a vector.
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Fig. 3. A wheel network with circles representing the anchors and
rectangles representing the to-be-localized nodes.

Definition 3.4. Given a plane F, the 3D coordinate system Cp
derived from F' is called a relative projection coordinate
system.

Theorem 3.1. Assume that the projection Pr is nondegenerative.
Given a 3D graph G(V, E) and a plane F where DY is known
for Yv €V, then v is localizable in G if and only if v" is
localizable in Gp.

Proof. Since Pr is nondegenerative, it is bijective. For
Vv eV, let (22,10, 20) be the coordinates of v in 3D, and
(zF,y" 2I") be the coordinates of v’ in the relative
projection coordinate system Cp. Since Pp is bijective,
P! exists and it is bijective too. Therefore, the euclidean
transformation between the two coordinate systems is
bijective. Thus, the mapping between (z0,10,2") and
(zF,yF, 2F') is unique. According to Lemma 3.1, Pp
preserves the connectivity of G. Therefore, v is localizable

in G if and only if vF" is localizable in Gp. a

Corollary 3.1. If Pr is bijective, then G(V,E) is uniquely
(finitely) localizable if and only if Gr(Vr, Er) is uniquely
(finitely) localizable in the projection plane F'.

Proof. Claims hold from Theorem 3.1. O

Note that Theorem 3.1 and Corollary 3.1 indicate that a
nondegenerative projection preserves the localizability of a
network G. This observation motivates the design of our
distributed USP scheme in Section 4.

3.3 Localizability Equivalence Study

There usually exist a number of anchors in a network. A
k-lateration localization method may localize nodes either
finitely or uniquely, in a step-by-step manner. Initially, the
k-lateration localization method starts to compute a node’s
position if at least k of the node’s neighbors are anchors.
Any node can compute its position if it is adjacent to k or
more anchors or reference nodes. The algorithm termi-
nates when there does not exist any unlocalized node
with k or more previously positioned neighbors. In
general, a (k— 1)-lateration localization method always
performs better in terms of localizability that a k-lateration
localization method.

Recall that a k-lateration localization method follows a
k-lateration ordering. Intuitively, different k-lateration
localization methods localize the nodes in different
k-lateration orderings given the network and its anchors.
In this section, we will prove that all of the k-lateration
localization methods are equivalent in node localizability
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given the network and its initial reference nodes. This
means that the nodes localized by all of the k-lateration
localization methods will induce a unique network. In other
words, a node can be localized by one k-lateration
localization method if and only if it can be localized by
the other k-lateration localization methods.

The proof is based on the definitions that appear below.
Assume that G(V, E) is a d-dimensional graph with d > 1.

Definition 3.5. A t-seed subgraph G;(Vis, Ey;) of G is a graph
induced by t vertices vy, vs,...,v in G. In other words,
Gis(Vis, Eis) is a t-seed subgraph of G if Vis={v1,v9,..., v}
CV, and (v;,v;) € Ey if and only if (v;,v;) € E, where i, j =
1,2,...,t,and i # j.

For a to-be-localized network, all of the initial reference
nodes induce the t-seed subgraph, where ¢ is the number of
initial reference nodes. Note that ¢ > d is necessary to
uniquely localize a network in a d-dimensional space.

Definition 3.6. A k-lateration extension of a subgraph
Go(Vo, Ey) of G produces a new subgraph G,(V1, Ey) of G,
where Gy is an induced graph of Vi =V U{v|v € V\ 1},
Ju1,va,...,0 € Vi, st (v,v;) € Efori=1,2,... k}.

Definition 3.7. Given a t-seed subgraph Gy of G, a k-lateration
extension subgraph G,,(V,,, E,,),m = 1,2, ..., is produced
by k-lateration extensions starting from Go = Gis.

Next, we will prove the main property of the k-lateration
extension subgraph G,,(V,,, E;,). We need the definition of
a k-credit node, which is introduced in [26].

Definition 3.8. Given a node T, if a node S has k vertex-disjoint
paths to T, S is called a k-credit node.

In [26], we proved the following theorem:

Theorem 3.2. A set of k vertex-disjoint paths from S to T can be
found for a (k — 1)-credit node S if there exists a k-credit node
P and a path Sp between S and P such that Sp is vertex-
disjoints with all of the known (k — 1) paths from S to T and
the k paths from P to T.

Lemma 3.2. A node v is a vertex in a k-lateration extension
subgraph V,,,m =1,2,..., if and only if v has at least
k vertex disjoint paths to k distinct nodes in Vi, and each of
the nodes in v’s paths also has at least k vertex disjoint paths to
k distinct nodes in V.

Proof. If v € V}, then the claim holds trivially according to
Definition 3.6. Now, we assume that when v € V; the
claim is true for Vj = 1,2, ... 1.

Now consider the case when v € V;4; \ V. According
to the definition of k-lateration extension, there exist at
least k different nodes vy, vs,...,vj,...,v; € Vj, such that
these k nodes joint v as shown in Fig. 4a. Based on the
assumption, each of these k nodes has at least k vertex
disjoint paths to k distinct nodes that are in V,, and all of
the nodes in its paths also have at least k vertex disjoint
paths to k vertex distinct nodes that are in V.

It is clear that the path/edge between v and any
vj,1 < j<k, is vertex disjoint with all of the other
already-known paths according to the Definition 3.7. In
the following, we will construct k vertex disjunct paths
from v to k distinct nodes in V.

IEEE TRANSACTIONS ON MOBILE COMPUTING,
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Fig. 4. The progress of constructing k vertex disjoint paths.

We assume that there is a virtual sink node T
connecting all of the initial reference nodes, as shown
in Fig. 4b. We will construct k vertex-disjoint paths from
v to T' step by step as following:

e Pick one of v;’s paths, which does not pass any of
V2,...,Vj,...,v. There must exist such a path
because it is impossible for k vertex-disjoint paths
sharing k£ — 1 nodes for v;. The concatenation of
this path and the edge between v and v; forms the
first path for v, as shown in Fig. 4c. And this path
does not pass any of vy, ..., v;,..

e Pick two of vy’s paths, which do not pass any of

V3,...,j,...,0 as shown in Fig. 4d. According

to Theorem 3.2, there exist two vertex-disjoint

paths between v and 7.

<y Uk

e Pick j of v;’s paths, which do not pass any of
Vjt+1,--.,U;, as shown in Fig. 4e. Based on
Theorem 3.2, there exist j vertex-disjoint paths
between v and T

e Pick k paths from v,’s paths, as shown in Fig. 4f.
Based on Theorem 3.2, there exist k vertex-disjoint
paths between v and 7.

Therefore, whenv € V;;, the claim s true. The opposite

direction is true according to Definition 3.7. 0

Definition 3.9. Given a t-seed subgraph G.s of G, a maximum
k-lateration extension subgraph Gy/(Vir, Ey) of G is a k-
lateration extension subgraph such that for Yv eV \ Vy,
|N(v) N V| < k, where N(v) = {v;|(v,v;) € E} is the neigh-
bor set of v in G.

Note that the k-lateration ordering followed by a
k-lateration localization methods starts with the graph
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induced by the initial reference nodes. Therefore, a new
k-lateration extension subgraph is generated whenever a
new node in the k-lateration ordering is localized.
k-lateration localization method terminates, a maximal
k-lateration extension subgraph is computed.

In the following, we prove that given a t-seed subgraph
Gys of G, the maximum k-lateration extension subgraphs
Gy (Var, Eyr) computed from all of the k-lateration localiza-
tion methods are the same.

Theorem 3.3. Let Gy (Var, Eyr) be any maximum k-lateration
extension graph of the G(V, E), which is derived from the
same t-seed subgraph Gy, then the Vi is unique.

Proof. Assume that there are two Vys, Vi, and Vjy,, which
means that G has two different maximum k-lateration
extension graphs from Gy. For Vv e Vj, it can be
concluded that v € Vj;, according to Lemma 3.2. There-
fore, Vi, C V. Similarly, it can be concluded that
VMz - V]L[l. Thus, Vj\,[l = ‘/}\,12. O

Corollary 3.2. All of the k-lateration localization methods are
equivalent, given the same set of initial reference nodes.

Proof. Nodes that are localized by a k-lateration-based
localization method are the elements of V. Since Vjy is
unique, the proposition is true. 0

4 USP DESIGN

In this section, we present a distributed positioning scheme
for 3D USNs termed as USP, deferring its analysis to the
next section. USP is based on a novel projection-based
localization technique that enables traditional 2D localiza-
tion methods to be applicable to 3D environments.

The scheme is composed of two main phases: an offline
predistribution phase and a distributed localization phase.
The first phase consists of nodes being preloaded with
initial configuration information (e.g., the amount of time
allocated to each iteration), while the latter iteratively
executes the distributed localization technique. Before
presenting USP, we discuss its network model and under-
lying assumptions, and elucidate the projection technique
that it employs.

4.1 Network Model and Assumptions

We consider 3D USNs where relatively stationary nodes
[12] are randomly distributed throughout an oceanic
medium, with at least three anchor nodes included in the
deployment. To simplify the process of endowing anchor
nodes with their positions, they are placed on the surface as
GPS-enabled buoys.

Practical issues such as economics suggest that the
sensors will be sparsely deployed [12]. Furthermore, we
require nodes to be capable of measuring distances (ranges)
between themselves [9]. Note that USP is a localization
framework that does not rely on any dedicated ranging
method. Therefore, any of the ranging techniques surveyed
in Section 2 is applicable.

Each sensor also employs its depth information. This
information is typically computed with a pressure sensor
and knowledge of the pressure-depth relationship that is
associated with the medium of interest. Other techniques
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Fig. 5. The projection of three reference nodes A, B, and C to a plane
containing the to-be-localized node X. The projected nodes are
represented as A’, B/, and C’, and their positions are used to localize X.

for obtaining this information include having sensors adjust
self-regulated wires attached to a seabed anchor [13].

4.2 Projection Technique

Recall that traditional 3D underwater localization techni-
ques (e.g., silent positioning [8]) require the existence of at
least four noncoplanar anchors or reference nodes to be
within communication range of the to-be-localized node.
However, in USP, this requirement is obviated through the
use of sensor depth information and a location projection
technique that maps the positions of reference nodes from
one plane to another. A simple projection is to map the
reference nodes to the horizontal plane containing the to-be-
localized node.

For example, consider an underwater sensor X that
needs to compute its position within a 3D oceanic deploy-
ment area, as shown in Fig. 5. In this scenario, node X is
within communication range of three reference nodes A, B,
and C' located at known positions (x4, ya,24), (5,YB, 2B),
and (z¢, yc, zc), respectively.

Given X'’s measure of its depth as zx and the success-
fully received broadcasts of the locations of A, B, and C,
node X can compute a projection of each node onto its
plane Px (i.e., the plane containing node X). Specifically,
node A is projected onto Py as node A’ located at position
(r4,Y4,2x), and nodes B and C are projected analogously
as nodes B’ and (', with the first located at position
(zp,yp,zx) and the second at position (z¢,yc,zx). Note
that this projection is nondegenerative if and only if no two
nodes have the same = and y coordinates.

With a nongenerative projection, the task of localizing
node X in a 3D space has been reduced to localizing X in a
2D space. Therefore, after three reference nodes A’, B/, and
C' have been projected, elegant localization methods such
as simple bilateration may be employed to localize node X.

Otherwise, if the projection is not nondegenerative, the
to-be-localized node can easily detect this and respond
accordingly. Since the positions of A’, B/, and C’ are known,
the to-be-localized node can simply check to see if any of
the two reference nodes have the same position in the
projection plane. Similarly, if a line computed between a
pair of reference nodes is equal to a line computed between
a different pair of reference nodes, a degenerative projection
is detected. In either case, the to-be-localized node simply
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TABLE 1
Preloaded System Parameters

M Number of iterations USP will be executed
Time sending/receiving broadcasts per iteration.
Time updating a node’s PS per iteration.

Ag | Per iteration silence period.

selects a different (not necessarily disjoint) set of reference
nodes to project when available. Note that the sparse
deployments of USNs make it unlikely that a degenerative
projection will occur.

We also note that the postprojection distances used by
the chosen localization technique are not the initial
distances measured from the ranging method that is used.
For example, consider to-be-localized node X and reference
node B, as shown in Fig. 5. The position of B is known by X
to be (zp,yp,25) because B is a reference node for X.
Additionally, X has the ability to measure its depth as zy.
Therefore, if the distance between X and B that is
calculated by ranging is d,, the distance between X and B
that is used by the localization technique, d,’, can be
computed as:

& — (2x — 2p)°. (1)

4.3 Predistribution

Prior to deployment, each sensor is preloaded with a
unique ID. Each node also maintains candidate position sets
PS and NS, which will store the position information of
themselves and their neighbors, respectively. Additionally,
three nodes are selected at random to be anchors. These
nodes bootstrap the localization procedure by announcing
their positions once deployed.

System parameters M, Ap, Ac,and Ag, as listed in Table 1,
are also initialized during this phase. While Ap and A¢
support fundamental USP operations, Ag helps mitigate the
effect that error sources such as receiver system delay and
underwater multipath fading have on the performance of
USP. Note that these parameters can be estimated before
deployment through analysis or simulation (as shown in
Section 5).

Therefore, the total time for an iteration i, with
1 <i < M, can be expressed using (2):

Az, = Ap, + A, + As;. (2)

This definition allows for variance among the minimum
lengths (i.e., the minimum amount of time to compute a
given iteration) of each Ar. An example of its usefulness
can be seen in that while broadcasts are made during each
iteration, the number of broadcasts made differs from
iteration to iteration. However, for succinctness of nota-
tions, we consider each iteration to take the same amount of
time, which is denoted as Ar.

4.4 Distributed Localization

USP is executed for a maximum number of iterations M by
each of the deployed nodes in a distributed manner. Its
psuedocode appears below.
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Algorithm. USP
: during(Ap)
2: if new_pos_info then

3 broacast(pos_info)

4 new_pos_info «— false
5: end if
6
7
8
9

—_

. if receive(neighbor_pos_info) then
update(N S, neighbor_pos_info)
: recv_info «— true
: end if
10:
11: during(Ac)
12: if |PS| =0 then
13:  if [NS| > 2 and recv_info is true then

14: new_pos — project_location(NS)
15: update(PS, new_pos)

16: new_pos_info «— true

17: end if

18: end if

19: if |PS| > 1 and recv_info is true then
20: PS’" — reduction(PS, NS)
21: if |[PS\ PS'| > 0 then

22: PS «— PS

23: new_pos_info < true
24: end if

25: end if

26: recv_info «— false

27:

28: during(Ag)
29: sleep(Ag)

As shown in (2), the total time for each iteration is
composed of three main time periods. During Ag, the first
time period, each sensor performs a local broadcast of any
new position information that it has (line 3, USP). This
information is available when a node is just deployed
(when a node is an anchor) or when a node’s location
information is updated from a reduction operation. A
sensor also updates the position information of any
neighbor from which it receives position information
broadcasts (line 7, USP) during this period.

Next, the second time period A has sensors to compute
their position information (using bilateration operations)
when new position information broadcast is received. If a
sensor has no previous position information (line 12, USP),
it attempts to compute its position via the projection
technique (described in Section 4.2) with the position
information of its neighbors (line 14, USP). Alternatively,
if a sensor already has position information, it attempts to
reduce its set of candidate positions (line 20, USP).

Lastly, all sensors sleep for a period of Ag. After
completion of this step (line 29, USP), an iteration of total
length A7 has finished and the subsequent iteration of
USP begins.

4.5 USP Localization Capability

USP employs both projection and bilateration to achieve 3D
underwater localization. On one hand, the multi-iteration
execution procedure of USP computes a maximal bilateration
extension subgraph of the original network in a step-by-step

Authorized licensed use limited to: The George Washington University. Downloaded on November 25, 2009 at 15:21 from IEEE Xplore. Restrictions apply.



TEYMORIAN ET AL.: 3D UNDERWATER SENSOR NETWORK LOCALIZATION

manner. At any iteration, each node executes lines 13-17
once. Starting from the t¢-seed subgraph induced by all
anchor nodes, each iteration produces a binary extension to
the previous subgraph, and USP terminates when no new
position information is broadcasted. Therefore, based on
Theorem 3.3 and Corollary 3.2, USP is able to localize any
node that could be localized by bilateration. On the other
hand, Corollary 3.1 indicates that USP is able to localize any
node thatis localizable in the original 3D network since only a
nondegenerative projection is utilized (see Section 4.2). As
bilateration has the potential to localize more nodes than
trilateration and quadrilateration given a network and a set
of anchor nodes, we claim that USP provides an optimal
solution, i.e., USP can localize all sensors that could be
localized by any possible bilateration, trilateration, and
quadrilateration-based localization method. This elaboration
leads to the following corollary:

Corollary 4.1. USP is able to determine a unique position for a
sensor if and only if the sensor is uniquely localizable in the
original 3D underwater network.

Generally speaking, a bilateration localization method
cannot localize all of the localizable nodes in the original 3D
network without projection. However, without employing
bilateration, a localization method may not work well in a
sparse 3D network. Furthermore, without a distributed
implementation, a bilateration localization method cannot
work well for large-scale networks. USP is a distributed
localization framework that seamlessly unifies projection
and bilateration, the two techniques that jointly guarantees
its optimal localization capability.

5 EVALUATION

In this section, we analyze the performance of USP through
extensive MATLAB [27] simulations. Relevant simulation
parameters are outlined below.

e The network consists of 1,000 nodes (including three
anchor nodes) randomly deployed in a 3D cubic
region with a size of 100 x 100 x 100 units.

e Sensing range varies to control the density and
connectivity of the network. Since underwater
sensor networks are sparse, the highest node degree
considered in this paper is approximately 10.

e The outcomes of all simulations are averaged over
100 network instances.

The reported results include localization efficiency, storage
and computation overheads, energy consumption, and
robustness to errors.

5.1 Localization Capability
The localization capability of USP is evaluated by analyzing
both its ability to localize nodes and the number of
iterations required to localize these nodes. Recall that in
Section 3.3, USP is formally shown to be able to localize all
nodes that are capable of being localized by any bilateration
method (e.g., Sweeps [14]), thereby transforming the 3D
localization problem into its 2D counterpart.

This transformation allows USP to possess significantly
improved localization capabilities over traditional 3D
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Fig. 6. The ratio of nodes localized by USP in comparison with that of
quadrilateration. The ratio of nodes finitely localized by USP is also
shown. All computations are made with respect to average node degree.

localization techniques such as quadrilateration. More
specifically, the ability of nodes to compute location
information (i.e., a unique or ambiguous position using a
trilateration or bilateration method, respectively) with as
few of two reference nodes in USP as opposed to the four
reference nodes required for quadrilateration provides a
significant performance increase.

Indeed, as illustrated in Fig. 6, the ratio of nodes
localized by USP reaches about 47 percent, while that of
quadrilateration is near 15 percent when the average node
degree is 10. The relative performance increase is even
higher for smaller node degrees. This is an important
characteristic given the sparse nature of USN deployments
[12]. As average node degree increases, a network is more
easily localized because a greater percentage of nodes can
be covered by each anchor node.

Also reflected in Fig. 6 is the number of nodes that USP
finitely localizes. This value represents an increase in the
percentage of localizable nodes by about 5 percent of the
overall network size, and is a nice additional feature of USP
because for many applications (e.g., target tracking), partial
location information for a known set of nodes is preferable
to incorrect or missing information for an unknown set of
nodes [28].

Note that these results are obtained when including only
three anchor nodes in the initial deployment. As can be
expected, the number of localized nodes increases with the
number of anchor nodes. This can be intuitively explained
by the greater likelihood of having neighbors with known
position information.

Complementing USP’s ability to increase the number of
localized nodes is the number of iterations that are required
to actually localize the network. As indicted by Fig. 7, the
distributed nature of USP is suited particularly well for
sparse networks; only about 20 iterations are needed for
USNs with an average node degree that is <6.

Additionally, a reasonable maximum number of itera-
tions of about 45 occurs when the average node degree is
between 7 and 8. This can be expected as around this level
of connectivity, many small disconnected network clusters
begin to be assimilated into a larger single component.
Consequently, the number of localizable nodes increases
faster than the number of nodes that can be localized per
iteration at the beginning of the simulation.
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Fig. 7. The number of iterations required by USP to localize a network
with respect to the average node degree.

5.2 Storage and Computation Overhead

The storage overhead imposed by USP is also relevant as a
node’s candidate position set may store multiple ambig-
uous positions prior to obtaining a unique position via, for
example, some reduction operation. As indicated by Fig. 8,
the average number of candidate positions by each node is
about 16 regardless of the average node degree.

Note that this value is simultaneously a metric for the
computation overhead associated with USP. Specifically, the
average size of a node’s candidate position set represents
the average number of reduction operations that should be
performed by a node in order to uniquely localize itself.

The maximum size of a node’s candidate position set is
also plotted in Fig. 8. Based on the significant difference
between this curve and the mean curve, we conclude that
although the possibility of greater storage and computation
overheads exists, the proposed algorithm does not require
much storage space or reduction of very large candidate
position sets on average.

Despite the low average storage and computation over-
heads of USP, it may be argued that the occasional
maximum candidate position set size creates too much of
a resource burden for each underwater sensor. Therefore, a
way to further relax this constraint is desirable. One intuitive

AN
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Fig. 8. The average size of a candidate position set with respect to the
average node degree. The maximum size of a candidate position set is
plotted as well. These curves also reflect the computation overhead
associated with USP.
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Fig. 9. The ratio of the number of localized nodes to the overall network
size with respect to different candidate position size restrictions for three
different average node degrees.

solution is to limit the allocated memory budget to a more
suitable amount. However, the effect this storage restriction
has on the localization capabilities must be investigated.
Insight into this relationship is provided in Fig. 9.

The curves in Fig. 9 correspond to average node degrees
of 3.7,7.8, and 9.8, and each begins to flatten out at a storage
limit of about 16 candidate positions. This value corre-
sponds nicely with the previously discussed average
candidate position set size. Furthermore, the relatively
constant percentage of localized nodes after this size
restriction indicates that USP has the ability to localize
most localizable nodes with reasonable storage and
computation overheads.

5.3 Energy Consumption

The energy supply and available bandwidth are two closely
related and severely limited resources in USNs [13], with
communication decreasing both the available battery power
and bandwidth. Therefore, we evaluate USP in terms of its
two most energy-intensive activities: receiving messages
and broadcasting messages.

Recall that in USP, each node receives messages (or
“listens”) for position updates until it has a unique location
or the algorithm stops after the maximum number of
iterations M has been completed. The number of listening
nodes during each iteration of USP is illustrated in Fig. 10
with respect to the average node degree.

Number of Nodes Listening

" 100

S
10
Node Degree
00

0
Iteration

Fig. 10. The number of listening nodes during each iteration of USP with
respect to the average node degree.
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Fig. 11. The number of active nodes during each iteration as it relates to
the average node degree.

The graph shows that the number of listening nodes
decreases as the number of iterations increases. This
behavior is attributed to the number of localized nodes
(hence, no longer listening) increasing with the number of
iterations. Also shown in Fig. 10 is the effect that average
node degree has on the number of listening nodes. We
observe that the number of listening nodes is quite balanced
with respect to node degree. For example, the number of
listening nodes steadily increases until an average node
degree of about 9 is reached, at which point the value
begins to steadily decrease.

Of particular importance to the energy consumption in
USP is the number of nodes broadcasting messages (or
“active nodes”) per iteration. Indeed, a typical acoustic
modem uses about 50 J/s when transmitting, while only
0.2 J/s when receiving [12]. As shown in Fig. 11, USP has a
relatively predictable number of active nodes during each
iteration. Specifically, for sparse node deployments, the
number of active nodes steadily increases to about 25 at
iteration number 9, and then, gradually decreases until
about iteration number 20 when there are no active nodes
remaining.

We also notice from Fig. 11 that at higher node degree,
the number of nodes climbs up faster and reaches its peak
earlier, and drops down to the ground faster and earlier.
This phenomenon is caused by the fact that a denser
deployment results in a larger number nodes updating their
positions and a smaller candidate position set at each
iteration. Roughly speaking, the rising edge of the curve
represents the process of candidate position discovery, and
the falling edge illustrates the procedure of reduction.

Contrasting with the number of nodes active per
iteration (as shown in the previous figure), we illustrate
the average number of iterations that each node is active
with respect to node degree in Fig. 12. The results indicate
that the purely distributed nature of USP enables to localize
themselves quickly, with an average of about three position
update messages sent by each node. This also suggests that
USP makes very efficient use of the limited bandwidth
available in USNs.

5.4 Robustness

It is obvious that both ranging errors and depth errors
negatively affect the accuracy of USP. In this section, we
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Fig. 12. The average number of iterations that each node is active with
respect to the average node degree.

examine their effect on the positioning error of USP by
simulation.

As mentioned earlier, USP is a projection-based 3D
underwater localization framework that does not define a
specific ranging method. Therefore, when considering
positioning error, we simply assume that ranging errors
are Gaussian distributed. To be specific, we assume that
ranging errors satisfy N (0, 0%), where o? is set tobe 2, 4, 6, 8,
10, 12, 14, 16, and 20 percent in our simulation. Underwater
ranging errors result from the variations in water tempera-
ture, salinity, and the overall clarity [29]. For the same
reason, we assume that depth errors are Gaussian-distrib-
uted with a mean of 0 and a variance of 1. At underwater
environment, the depth information is usually obtained by
measuring water pressure. Current water pressure sensor
technologies could provide very accurate underwater depth
measurement [30]. We first investigate the effect of ranging
errors when perfect depth information (no depth error) is
available. As illustrated in Fig. 13, the location error
increases with the increase of node degree. This is because
at a higher node degree, a larger number of iterations are
needed to uniquely localize a node. We also notice that the
increase of the positioning error is much slower than that of
the ranging error. This indicates that USP is robust to
ranging errors. When the ranging error is above 10 percent,
the two lower curves approach to each other because the

L L L
14 16 18 20

L L L
2 4 [ 8

1
10 12
Ranging Error (% Range)

Fig. 13. The cumulative localization error with respect to the ranging
error for different average node degrees, where ND and DE represent
node degree and depth error, respectively.
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Fig. 14. The cumulative localization error with respect to the ranging
error for different average node degrees when depth errors satisfy
N(0,1), where ND and DE represent node degree and depth error,
respectively.

transmission ranges corresponding to these two curves are
close as the node degrees differ by only about 1. For the
same reason, the two upper curves approach to each other
when ranging errors are larger than 10 percent.

When depth errors satisfy A (0, 1), we obtain very similar
results, as reported in Fig. 14. Comparing to Fig. 13, we
notice that the location error is smaller when the depth
information is not perfect. This demonstrates another
advantage of our projection technique, which makes the
two different types of errors (depth and ranging) try to
cancel each other’s effect. Equation (1) better explains this
situation, as ranging errors contribute to the positive term
and depth errors contribute to the negative. An example
illustrating this situation is given in Fig. 15.

6 SummARY AND FUTURE WORK

In this paper, we have studied the localization problem in
3D underwater acoustic sensor networks. To employ the
depth information available to an underwater sensor,
projection is introduced to transform the 3D localization
system to 2D such that popular terrestrial positioning
techniques can be easily applied. We prove that a
nondegenerative projection preserves the network localiz-
ability and that all of the k-lateration localization methods
are equivalent. Then, a novel distributed localization
scheme termed as USP for sparse 3D sensor networks is
proposed. USP employs a distributed nondegenerative
projection technique where reference nodes are projected
to the plane that contains the to-be-localized sensor.
Through extensive simulation, we show that USP is able to:

1. improve localization capabilities over existing 3D
methods;
2. maintain consistently low storage overhead and
computation overhead;
3. display predictable and balanced communication
overhead;
4. perform localization that is robust to underwater
acoustic channel errors.
Additionally, the design of USP is general enough to
support relative sensor positioning. We will therefore
explore the feasibility of postdeployment endowment of
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Fig. 15. An example to illustrate the situation when the effect of depth
errors and that of the ranging errors try to cancel each other. In this
example, A(0,0,0), B(—3,-1,0), and C(—2,—4,0) are three reference
nodes and X is the to-be-localized node. When only ranging errors exist,
the measured distances from X to A, B, and C are AX = 10.57,
BX =11.05,and CX = 10.07. After projection (projected to the plane zx),
we have A’X’ = 3.43, BX' = 4.71,and " X’ = 1.17. Then, the computed
position for X is X'(1.14,-3.23,10). In this case, the location error
(errorl) is 1.96. When depth errors do exist, the projection plane
becomes zy. Now, we have A”"X" =5.51, B"X" =6.21, and C"X" =
4.22 and the computed position for X is X”(1.74,—5.02, —9.14). In this
case, the location error (error2) is 0.90, which is smaller than the case
with a perfect depth information.

anchor nodes with position information so that a transfor-
mation of the relative coordinate system may be computed.
We also plan to incorporate a network partitioning and
joining strategy so as to reduce the total number of
iterations and the accumulated errors.

We also propose to investigate the applicability of
geometric constraint solvers [31] for sensor network
localization. Generally speaking, the localization problem
can be viewed as an equation-solving problem. Existing
localization methods differ in the way the constraints are
constructed and utilized. Therefore, in theory, geometric
constraint solvers can be employed to localize the rigid
parts of the network via seeking the unique subsolution
among all the possible solutions.
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