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Abstract— Fault-tolerant target detection and localization is a
challenging task in collaborative sensor networks. This paper
introduces our exploratory work toward identifying a stationary
target in sensor networks with faulty sensors. We explore both
spatial and temporal dimensions for data aggregation to decrease
the false alarm rate and improve the target position accuracy. To
filter out extreme measurements, the median of all readings in the
closed neighborhood is used to approximate the local observation
to the target. The sensor whose observation is a local maxima
computes a position estimate at each epoch. Results from multiple
epoches are combined together to further decrease the false alarm
rate and improve the target localization accuracy. Our algorithms
have low computation and communication overheads. Simulation
study demonstrates the validity and efficiency of our design.

Keywords: Sensor networks, target detection, target localiza-
tion, fault tolerance.

I. INTRODUCTION

Advances in wireless sensor networks make many of the
impossible possible. Roadway safety warning [15], habitat
monitoring [11], smart classroom [16], etc., are prosperous
applications tied to our daily life. Such networks rely on the
collaboration of thousands of resource-constrained error-prone
sensors for monitoring and control. In our study, we consider
the detection and localization of targets (e.g. tanks, land mines,
etc.) through sensor networks that contain faulty sensors. In
other words, we seek fault-tolerant algorithms to identify the
region containing targets and the position of each target.

Filtering faulty sensor measurements and locating targets
are not trivial. Due to the stingy energy budget within each
sensor, we have to seek localized and computationally efficient
algorithms such that a single sensor can determine whether
a target presents and whether it needs to report the target
information to the base station. The existence of faulty sensors
exacerbates the “hardness” of the problem. False alarms waste
network resource. They may mislead users to make wrong
decisions. Therefore target detection algorithms must be fault-
tolerant, must have a low false alarm rate, and must be robust.

In this paper we propose fault-tolerant algorithms to detect
the region containing targets and to identify possible targets
within the target region. To avoid the disturbance of extreme
measurements at faulty sensors, each sensor collects neighbor-
ing readings and computes the median, representing its local
observation on the target. Median is proved to be an effective

robust nonparametric operator that requires no strong mathe-
matical assumptions [9]. A median exceeding some threshold
indicates the occurrence of a possible target. Whether a real
target exists or not must be jointly determined by neighboring
sensors at the same time. To localize a target within the target
region, a sensor whose observation is a local maxima computes
the geometric center of neighboring sensors with similar
observations. We also explore time dimension to reduce the
false alarm rate. Results from multiple epoches are combined
to refine the target position estimates. Our algorithms have
low computation overhead because only simple numerical
operations (maximum, median, and mean) are involved at each
sensor. The protocol has a low communication overhead too,
since only sensors in charge of location estimation report to
the base station. Simulation study indicates that in most cases
only one report per epoch is sent to the base station when one
target presents in the target region, 30% of the sensors are
faulty, and the network is moderately dense.

This paper is organized as follows. Related work and net-
work model are sketched in Section II and Section III, respec-
tively. Fault-tolerant target detection algorithms are proposed
in Section IV. Performance metrics are defined in Section V.
Simulation results are reported in Section VI. We conclude
our paper in Section VII.

II. RELATED WORK

Target detection and localization [4], [20], [21], [22], target
classification [5], [6], [13], and target tracking, [1], [2], [18],
[19] have attracted many research activities in sensor networks.
In this section, we focus on related works in target detection
and localization.

Clouqueur, Saluja, and Ramanathan [4] seek algorithms to
collaboratively detect a target region. Each sensor obtains the
target energy (or local decision) from other sensors, drops
extreme values if faulty sensors exist, computes the average,
and then compares it with a pre-determined threshold for final
decisions. For these algorithms, the challenge is the determi-
nation of the number of extreme values. This is unavoidable
when using “mean” for data aggregation. As a comparison,
we explore the utilization of “median” to effectively filter out
extreme values for target region detection.

Zou and Chakrabarty [20], [21], [22] propose an energy-
aware target detection and localization strategy for cluster-
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based wireless networks. The cluster head collects event
notification from sensors within the cluster and then executes
a probabilistic localization algorithm to determine candidate
nodes to be queried for target information. This algorithm is
designed only for cluster-based sensor networks. The cluster
head must keep a pre-generated detection probability table
constructed from sensor locations. Each sensor reports the
detection of an object to the cluster head based on its own
measurements. This work does not consider fault-tolerance at
all, thus the decision by cluster head may be based on incorrect
information.

Li et. al [10] estimate target position by solving a non-linear
least squares problem. Target localization based on the time-
of-arrival (TOA) [7] or the direction-of-arrival (DOA) [17]
of acoustical/seismic signals has also been explored. Locating
victims through emergency sensor networks in a centralized
fashion has been studied in [12]. In [5], [6], [18], [19] a
spanning tree rooted at the sensor node close to a target is
used for tracking and counting, with target position estimated
by the location of the root sensor. We propose much simpler
algorithms for target detection and localization in this paper.

III. NETWORK MODEL

In this paper, we assume that N sensors are deployed
uniformly in a b×b square field located in the two dimensional
Euclidean plane R2, with a base station residing in the bound-
ary. Sensors are powered by batteries and have a fixed radio
range. The base station has a strong computational capability
with an unlimited power supply. Power conservation and fault-
tolerance are the major goals when designing algorithms for
target detection.

Let R(si) or Ri denote the reading of sensor si. Instead of
a 0-1 binary variable, R(si) is assumed to represent signal
strength measurements on factors such as vibration, light,
sound, and so on. A target region, denoted by T R, is a subset
of R2 such that it contains all the sensors that can detect the
presence of the target. A sensor’s reading is faulty if it reports
inconsistent and arbitrary values to the neighboring sensors
[4]. Sensors with faulty readings are called faulty sensors. In
this paper, we will use si to refer to either the ith sensor or
the location of the ith sensor.

We assume each sensor can compute its physical position
through either GPS or some GPS-less techniques [3], [14].
In this paper we focus on the fault-tolerant target detection
and localization, and thus the delivery of the target location
will not be considered. We assume there exists a robust routing
protocol in charge of the transmission of the target information
to the base station.

All targets emit some kinds of signals (vibration, acoustic,
light, etc.) when present. These signals will be propagated to
the surrounding area with a decayed intensity. The following
model is used to quantify the signal strength at location si for

a target at location L [4].

S(si) =

{
P0, if d < d0,

P0
(d/d0)k , otherwise,

(1)

where P0 is the signal intensity at L, d = ‖L − si‖ is the
Euclidean distance between the target and the sensor at si, d0

is a constant that accounts for the physical size of the target,
and k ∈ [2.0, 5.0] [8] is a decay factor determined by the
environment. The signal strength measured by a sensor at si

is then
R(si) = S(si) + N(si), (2)

where N(si) represents the noise level at si. We assume N(si)
follows N (µ, σ2), a Gaussian distribution with mean µ and
variance σ2. For Gaussian white noise, µ = 0.

In this paper we assume sensors can properly execute our
algorithms even though their readings are faulty. In other
words, we assume there is no fault in processing and trans-
mitting/receiving neighboring measurements.

IV. FAULT-TOLERANT TARGET DETECTION

In this section we first describe an algorithm for target
region detection. Then we present a procedure to estimate the
location of the target from sensors within the target region. We
also propose an algorithm for data aggregation along temporal
dimension to decrease the false alarm rate and improve the
target position accuracy.

A. Target Region Detection

Our target region detection algorithm aims at finding all
sensors that can detect the presence of a target. Nodes closer
to the target usually have higher measurements. Faulty sensors
may report arbitrary values.

Let N (si) denote a bounded closed set of R2 that contains
a sensor si and additional n − 1 sensors. The set N (si)
represents a closed neighborhood of the sensor si. An example
of N (si) is the closed disk centered at si with its radius equal
to the radio range. Let R

(i)
1 , R

(i)
2 , · · · ,R(i)

n denote the signal
strength measured by the nodes in N (si). A possible estimate
of signal strength at location si is

R̃i = medi, (3)

where medi denotes the median of the set
{R(i)

1 , R
(i)
2 , · · · , R

(i)
n }. In other words, one could estimate Ri

by the “center” of {R(i)
1 , R

(i)
2 , · · · , R

(i)
n }.

Note that medi in equation (3) should not be replaced
by the mean (R(i)

1 + R
(i)
2 + · · · + R

(i)
n )/n of the set

{R(i)
1 , R

(i)
2 , · · · , R

(i)
n }. This is because the sample mean can

not represent well the “center” of a sample when some values
of the sample are extreme. Nevertheless, median is widely
used to estimate the “center” of samples with outliers. Its
conditional correctness is proved in [9]. Faulty sensors may
have extreme values, representing outliers in the sample set.
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Faulty readings have little influence on medi as long as most
sensors behave elegantly.

The procedure of target region detection is described as
follows.

Algorithm 1 for Target Region Detection:

1) Obtain signal measurements R
(i)
1 , R

(i)
2 , · · · , R

(i)
n from

all sensors in N (si).
2) Compute medi of the set {R(i)

1 , R
(i)
2 , · · · , R

(i)
n } as the

estimated reading R̃i at location si.
3) Determine event sensors. A sensor si is an event sensor

if the estimated value R̃i is larger than a predefined
threshold θ1.

Intuitively, an event sensor is a sensor that can detect the
presence of the targets. Compared to the value fusion method
for target region detection in [4], which computes the mean
after dropping κ highest and κ lowest values, Algorithm 1 is
superior in that it effectively eliminates the effects of faulty
sensors without exploiting any complicated algorithm for the
estimation of κ.

B. Target Localization

Algorithm 1 is used to detect the presence of targets. It
does not tell how many targets exist and where they are.
Shifting the task of target localization to the base station by
sending the measurements of all sensors in the target region
is too expensive in terms of energy consumption. Therefore
we consider to delegate one sensor to communicate with the
base station for each target and compute the position of the
target locally. The following algorithm is employed to locate
a target in a target region.

Algorithm 2 for Target Localization:

1) Obtain estimated signal strength R̃
(i)
1 , R̃

(i)
2 , · · · , R̃

(i)
m ,

from all event sensors in N (si) if si is an event sensor.
2) Determine root sensors. An event senor si is a root

sensor if

m ≥ n/2. (4)

and

R̃i ≥ max{R̃(i)
1 , R̃

(i)
2 , · · · , R̃(i)

m }. (5)

3) For each root sensor si, estimate the location of a pos-
sible target by the geometric center of a subset of event
sensors in N (si). Let {s′i1, s′i2, · · · , s′iq} be the subset

of event sensors in N (si) such that R̃
(i)′
j ≥ R̃i − θ2 for

1 ≤ j ≤ q, where R̃
(i)′
j is the estimated signal strength

from s′ij and θ2 is a threshold that mainly characterizes
the target size. Denote the x and y coordinates of s′ij by
x(s′ij) and y(s′ij), respectively, and set

L̃i(x) = [x(s′i1) + x(s′i2) + · · · + x(s′iq)]/q, (6)

L̃i(y) = [y(s′i1) + y(s′i2) + · · · + y(s′iq)]/q (7)

L̃i(x) and L̃i(y) are the estimated coordinates for a
possible target close to si.

Note that in Step 1) of Algorithm 2, m can be smaller than
n. A sensor is selected as a root sensor if its estimated signal
strength is a local maxima among event sensors in N (si).
Nodes closer to the target usually have larger measurements
and thus have a higher probability to become root sensors.
Furthermore, the number of root sensors is constrained by
Eq. (4) and Eq. (5). A root sensor uses Eq. (6) and Eq. (7) to
compute the location of the target based on the locations of
some neighboring nodes. As a comparison, most related works
in literature [5], [6], [18], [19] utilize the position of the root
sensor as an approximation of the target position.

C. Temporal Dimension Consideration

We observe that the two algorithms proposed in subsec-
tions IV-A and IV-B explore only spatial information for
data aggregation. In reality, sensors sample their observations
periodically. By investigating along the temporal dimension,
performance for target detection can be improved, as veri-
fied by simulation study in Section VI. In this subsection,
we discuss how the base station can identify false alarms
and improve the target position accuracy by using location
estimates obtained at T epoches from root sensors. For better
elaboration, we call the location estimates by root sensors the
raw data.

Assume both Algorithms 1 and 2 are executed once per
epoch. The base station receives a sequence of raw data,
denoted by {L̃(1), L̃(2), . . . L̃(t) . . .}, from root sensors, where
each L̃ is two dimensional. The base station then applies an
appropriate clustering algorithm to group the received location
estimates for final target position computation. Each group
corresponds to one target.

Note that the base station may observe a group computed by
a group of neighboring faulty sensors. Such a group represents
a false alarm and may be signaled in the following way. If a
group is less than half of T , then with a high probability this
group is a false alarm based on majority vote.

Based on the previous analysis, we propose the following
target detection algorithm exploring both temporal and spatial
information.

Algorithm 3 for Target Detection:
1) For each epoch, apply Algorithms 1 and 2. All root

sensors report their target position estimates to the base
station.

2) After collecting raw data for T epoches, the base sta-
tion apply a clustering algorithm to identify groups for
targets. For each group G with cardinality |G|,

• If |G| < T/2, then reports a false alarm.
• Otherwise, report a target and obtain the estimate of

the position of the target, denoted by L̃, using the
geometric center of all raw data within G.
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Note that the communication overhead of our algorithms
is low, even though location estimates are sent to the base
station. As indicated by the simulation study in Section VI,
in most cases only one message per target will be sent to the
base station per epoch in moderately dense sensor networks.

V. PERFORMANCE METRICS

Evaluation of the target detection algorithm includes two
tasks: evaluating the degree of fault-tolerance and evaluating
the accuracy of the estimated positions of targets.

A. Fault-tolerance evaluation

To evaluate the degree of fault-tolerance, we consider the
case where no targets are present. Let C denote the set
of sensors whose estimated values R̃i are larger than the
predefined threshold θ1. With T epoches, C is a set of sensors
where for each sensor the estimated value R̃i exceeds the
threshold θ1 for at least half of the epoches. Let O denote
the set of faulty sensors in the field. The performance of C is
evaluated through the correction accuracy a(C) and the false
correction rate e(C), defined as

a(C) = 1 − |C ∩ O|
|O| , e(C) =

|C| − |C ∩ O|
N − |O| . (8)

A high a(C) and a low e(C) indicate a good fault-tolerance.

B. Accuracy evaluation of the target position

To evaluate the accuracy of the estimated positions of the
target, we define position error e(L̃) to be the Euclidean
distance between L̃ and the real target location L, i.e,

e(L̃) = ‖L̃ − L‖ (9)

Obviously, smaller e(L̃) indicates higher position accuracy.

VI. SIMULATION

A. Simulation Set-up

MATLAB is used to perform all simulations. The sensor
network contains 1024 nodes in a b × b square region, which
resides in the first quadrant such that the lower-left corner
and the origin are co-located. Sensor coordinates are defined
accordingly. We require b to be variable in order to get
different network densities. Network density is defined as
the average number of one-hop neighbors for each sensor.
Sensors are randomly deployed according to the uniform
distribution. We choose N (si) to be the set containing all
one-hop neighbors of si.

To demonstrate faulty sensor correction, no target is gener-
ated in the square region. For sensor si, its noise level N(si)
is drawn from N(µ, σ2) with µ = 0 and σ = 1, characterizing
both environment disturbance and sensor measurement error.
We set S(si) to be a constant number 10 when no target
presents. Therefore a typical sensor reading R(si) is S(si) +
N(si) = 10 + N(si).

In the simulation for target detection and localization, one
target is placed at (x0, y0), where x0 and y0 are randomly
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Fig. 1. Correction accuracy vs. p with different network densities.

chosen from [14b, 3
4b]. The signal intensity P0 at (x0, y0) is set

to 30. Signal model follows Eq. (1) with d0 = 2 and k = 2.
(We have simulated cases of k = 3, 4, 5 and obtained similar
results. We only report the result for k = 2 in this paper.) The
readings of a faulty sensor are randomly chosen from [0, 60].

The base station classifies the position estimates from
different epoches into different groups based on the distances
of pairwise estimates and d0. A group indicates the existence
of a target only if its cardinality is not less than half of the
number of epoches under consideration.

Note that two thresholds (θ1 in Algorithm 1 and θ2 in
Algorithm 2) are needed to make decisions. Throughout the
simulation, we choose θ1 = 3σ = 3, showing that a normal
sensor has a low probability (1−99.7%) to report a noise value
larger than 3σ. To estimate the location of the detected target,
we set θ2 = 4. This means that sensors in close proximity of
a root sensor will contribute to the target position estimation
if the deviation of their (estimated) signal strengths from that
of the root sensor is at most 4.

B. Simulation Results

In this subsection, we report our simulation results, with
each representing an averaged summary over 100 runs. The
performance metrics include the correction accuracy and false
correction rate defined by Eq. (8) and the position error defined
by equation (9).

Fig. 1 and Fig. 2 plot the correction accuracy and false
correction rate vs. p, the probability that a sensor reading
becomes faulty, under different network densities. In Fig. 1, it
is observed that the higher the p, the lower the correction
accuracy. On the contrary, it is shown in Fig. 2 that the
false correction rate increases with p. From both graphs, we
also observe that a higher network density often leads to a
higher correction accuracy and lower false correction rate.
Statistically more sensors (and thus more data) in N can bring
more accurate estimations, such as the estimation of medium,
and subsequently lead to better results. Note that the correction
accuracy is still above 99%, and the false correction rate is
below 1% even for p up to 0.35 if density ≥ 30.
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Fig. 2. False correction rate vs. p with different network densities.
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Fig. 3. Correction accuracy vs. p with multiple epochs.
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Fig. 4. False correction rate vs. p with multiple epochs.

Fig. 1 and Fig. 2 explore only the spatial dimension. As
pointed earlier, the temporal dimension also plays a significant
role in data aggregation for sensor networks. Fig. 3 and Fig. 4
report the performance for density = 30 when measurements
from multiple epochs are aggregated. In this simulation, the
number of epochs is set to be 1, 5, 9, 13, 17, and 21. Both
Fig. 3 and Fig. 4 illustrate higher correction accuracies and
lower false correction rates when more sequential measure-
ments are used for decisions. However, a large number of
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Fig. 7. Position error in units vs. p with different network densities when
T = 1.

epochs may delay the signalling of event alarms. We also
observe that the increase of correction accuracy and the
decrease of false correction rate are not dramatic when the
number of epoches ≥ 9 for p ≤ 35%. This indicates that
it’s sufficient to overcome the disturbance of the Byzantine
behavior of faulty sensors using the readings from 9 epoches
when the number of faulty sensors does not exceed 35%. As
confirmed by the simulation for target localization, a sensor
network does not function well for target detection when the
number of faulty sensors exceeds 35%. When p ≤ 0.25, data
aggregation from 1 epoch works well, which shows the high
fault-tolerance ability of our algorithms.

Now we study the performance of our algorithm for target
localization. We observe that for a low network density and
a high sensor fault probability, the base station fails to locate
the real target with a reasonably low false alarm rate. This
is because the faulty sensor correction accuracy decreases
dramatically, as shown in Fig. 1. Thus we decide to simulate
using p ≤ 0.35 for target localization.

Fig. 5 and Fig. 6 illustrate the number of targets detected
by the base station when position estimates from 1 epoch and
from 9 epoches are exploited, respectively. First, we observe
that in moderate and high density networks, the probability
of reporting the existence of one target is high. The false
alarm rate equals to 0 for p ≤ 0.25 and density = 30, 50
when aggregating over 9 epoches, as shown in Fig. 6. By
comparing Fig. 5 with Fig. 6, we observe that the number
of reported targets contributing to the false alarm rate can
be reduced by increasing T . We also notice that the average
numbers of position estimates sent to the base station at each
epoch are 1.04 and 1 for p = 0.25 and density = 30, 50,
respectively (as shown in Fig. 5 (b) and (c)). This indicates
that in many cases, only one root senor needs to send its target
location estimation to the base station at each epoch. Thus, the
communication overhead of our algorithms is low.

Fig. 7 and Fig. 8 illustrate the position error in units vs p for
target detection under different network densities. Both figures
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