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Abstract-In this paper, we present a novel timebased 
positioning scheme (TPS) for efficient location discovery 
in outdoor sensor networks. TF'S relies on TDoA (Time- 
Difference-of-Arrival) of RF signals measured IocaUy at a 
sensor to detect range differences from the sensor to three 
base stations. These range differences are averaged over 
multiple beacon intervals before they are combined to esti- 
mate the sensor loeation through trilateration. A nice fea- 
ture of this positioning scheme is that it is purely localized: 
sensors independently compute their positions. We present 
a statistical analysis of the performance of TF'S in noisy en- 
vironments. We also identify possible sources of position er- 
rors with suggested measures to mitigate them. Our scheme 
requires no time synchronization in the network and mini- 
mal extra hardware in sensor construction. TPS induces no 
eommunication overhead for sensors, as they listen to three 
beacon signals passively during each beacon interval. The 
computation overhead is low, as the location detection algo- 
rithm involves only simple algebraic operations over scalar 
values. TF'S is not adversely affected by increasing network 
size or density and thus offers scalability. We conduct exten- 
sive simulations to test the performance of TPS when TDoA 
measurement errors are normally distributed or uniformly 
distributed. The obtained results show that TPS is an effec- 
tive scheme for outdoor sensor self-positioning. 

I.  INTRODUCTION 
It is anticipated that wireless sensor networks will ex- 

tend our sensory capability to every corner of the world. 
Distributed networks of thousands of collaborative sen- 
sors promise long-lived and unattended systems for many 
monitoring, surveillance and control applications. In this 
paper, we are going to examine the location discovery 
problem in outdoor wireless sensor networks. We will 
propose a novel time-based positioning scheme, hence- 
forth referred to as TPS, that allows sensors to effectively 
determine their positions. 

Many applications of outdoor sensor networks require 
knowledge of physical sensor positions. For example, tar- 
get detection and tracking is usually associated with lo- 
cation information [19]. Further, knowledge of sensor lo- 

cation can be used to facilitate network functions such as 
packet routing [6], [161, [ZO], and collaborative signal pro- 
cessing [ll]. Sensor position can also serve as a unique 
node identifier, making it unnecessary for each sensor to 
have a unique ID assigned prior to its deployment [34]. 

However, location discovery in wireless sensor net- 
works is very challenging. First the positioning algorithm 
must be distributed and localized in order to scale well for 
large sensor networks. Second. the localization protocol 
must minimize communication and computation overhead 
for each sensor since nodes have very limited resources 
(power, CPU, memory, etc.). Third, the positioning func- 
tionality should not increase the cost and complexity of 
the sensor since an application may require thousands of 
sensors. Fourth, a location detection scheme should be 
robust. It should work with accuracy and precision in var- 
ious environments, and should not depend on sensor to 
sensor connectivity in the network. The TPS positioning 
scheme proposed in this research is designed to meet these 
challenges. 

The major contribution of this paper is twofold. First, 
we propose a time-based location detection scheme for 
outdoor sensor networks and demonstrate our algorithm 
by simulation. Second, we analyze the theoretical perfor- 
mance of our scheme in noisy environments and identify 
possible sources of error with measures to help mitigate 
them. We put very few restrictions on the network layout 
and propose a scheme suitable for general outdoor sen- 
sor networks. We rely on RF signal, which performs well 
compared to ultrasound, infrared, etc., in outdoor envi- 
ronments [29]. We measure the difference in arrival times 
(TDoA) of beacon signals. In previous research, Time- 
of-Arrival (ToA) has proven more useful than RSSI in lo- 
cation determination [32]. TPS does not need the spe- 
cialized antennae generally required by an Angle of Ar- 
rival (AoA) positioning system. This time-based location 
detection scheme avoids the drawbacks of many existing 
systems for outdoor sensor location detection. Our sim- 
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ulations show that TPS is potentially very effective and 
computationally efficient. 

Compared to existing schemes proposed in the context 
of outdoor sensor networks, our scheme bas the following 
characteristics and advantages: 

Time synchronization of all base stations and nodes 
is not required in TPS. Sensors measure the differ- 
ence in signal arrival times using a local clock. Base 
stations schedule their transmissions based on receipt 
of other beacon transmissions and do not require syn- 
chronized clocks. Many existing location discovery 
systems for Sensor networks require time synchro- 
nization among base stations 1251, or between satel- 
lites and sensors 1151. Imperfect time synchroniza- 
tion can degrade the positioning accuracy. . There are no requirements for an ultrasound receiver 
[8], [32], second radio [15] or specialized antennae 
[ 5 ] ,  [23], [251 at base stations or sensors. Our scheme 
does not incur the complexity, power consumption 
and cost associated with these components. (TPS 
sensors do require the ability to measure the differ- 
ence in signal arrival times with precision.) 
Our algorithm is not iterative-and doesn’t require a 
complicated refinement step as does [281, [311,[331. 
We refine position estimates by averaging time dif- 
ference measurements over several beacon intervals 
prior to calculating position. This is useful to miti- 
gate the effects of momentary interference and fast 
fading. l h i s  averaging requires less computation 
than repeatedly solving linear system matrices, least 
squares or multilateration algorithms. . TPS has low computation cost. .Our location detec- 
tion algorithm is based on simple algebraic opera- 
tions on scalar values. On the other hand, multilat- 
eration based systems [151, [171, 1321, [331 require 
matrix operations to optimize the objective functions 
(minimum mean square estimation or maximum like- 
lihood estimation), which induces higher computa- 
tion overhead at each sensor. . Sensors listen passively and are not required to make 

- radio transmissions. Base stations transmit all the 
beacon signals. This conserves sensor energy and 
reduces RF channel use. Connectivity based systems 
often require global flooding [26] or global connec- 
tivity information E351 to estimate range. 

This paper is organized as follows. Section I1 presents 
current location discovery techniques for outdoor sensor 
networks. Section Iii presents the network model. Sec- 
tion IV proposes TPS, a time-based location detection 
scheme. Its theoretic performance analysis is given in 
Section V. Simulation results are reported in Section Vi. 

We conclude ow paper in Section VII. 

11. AN OVERVIEW ON CURRENT LOCATION 
DETECTION TECHNIQUES FOR SENSOR NETWORKS 

A. Sensor Location Detection Techniques 
The majority of current sensor location detection 

schemes contain two phases: (i) range or angle measure- 
ment between sensors and baw stations; and (ii) calcula- 
tions which transform these. measurements in to a position 
estimate. Some schemes perform a refinement phase after 
generating an initial estimate. In this subsection, we are 
going to examine related location discovery techniques. 

Range Estimation and Angle Measurement 
Popular techniques for range estimation include Time- 

of-Arrival (ToA), Time-Difference-of-Aval (TDoA), 
and Received-Signal-Strength-Indicator (RSSI). Angle- 
of-Arrival (AoA) involves measurement of the angle at 
which a signal arrives at a base station or a sensor. If 
there is no direct communication between base stations 
and sensors, network connectivity can be used for range 
estimation [261. 

ToA and TDoA measure the signal arrival time or the 
difference of arrival times and calculate distance based on 
transmission times and speeds. They can be applied to 
many different kinds of signals such as RF, acoustic, ul- 
trasound, etc. ToA has a disadvantage compared to TDoA 
as processing delays and non-LOS propagation can intro- 
duce errors [5]. ToA also requires synchronization to ac- 
curately measure time-of-flight. RSSI computes distance 
based on transmitted and received power levels, and a ra- 
dio propagation model. RSSI is mainly used with RF sig- 
nals. Due to multipath fading in outdoor environments, 
range estimation with RSSI can be inaccurate [32]. AoA 
is an attractive method due to the simplicity of the sub- 
sequent calcuhtions (triangulation). But AoA can be dif- 
ficult to measure accurately if a sensor is surrounded by 
scattering objects [5]. Further, measuring AoA requires 
sensors or base stations to be equipped with directive an- 
tennaes or antennae arrays, which may be prohibitive due 
to cost and form factors. Our time-based location detec- 
tion scheme computes range based on TDoA with no re- 
quirement for time synchronization. We actually detect 
the range differences from a sensor to three base stations 
(one is termed the master base station). 

If a sensor can not receive signals from enough base sta- 
tions (2  2 for AoA, 2 3 for ToA, TDoA, and RSSI), none 
of the previous techniques will work. In this case, net- 
work connectivity can be exploited for range estimation 
[26], [31]. DV-hop, DV-distance, and Euclidean are three 
range detection methods in this category. In DV-lrop [26], 
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[31] base stations flood their positions to all nodes in the 
network Sensors compute the minimum distance in hops 
to several base stations. Rase stations compute an average 
disfunce per hop to other base stations. The base stations 
then flood this information to the whole network allowing 
nodes to calculate their positions. DV-distance [26] re- 
places hop counts with cumulative range estimates in me- 
ters estimated from RSSI. Both techniques provide coarse 
range estimation to base stations and both require the ex- 
pensive global flooding to compute the shortest path. Eu- 
clidean[26] estimates a sensor's distance to a base station 
based on the distance to two of its neighbors, the distance 
between the neighbors, and the distance from the neigh- 
bors to the base station. The Euclidean algorithm uses 
basic trigonometry to calculate distance to the base sta- 
tion. Each sensor needs to execute the Euclidean algo- 
rithm twice for two pairs of neighboring sensors to unam- 
biguously determine its range to any base station. 

Location Computation from Range or Angle Measure- 
ments 

Triangulation, trilateration, and multilateration are the 
three techniques for combining ranges and angles. Tri- 
ungulation is the simplest. As in Fig. l(i), if the angles 
((U and 0) to base stations A and B are known, the loca- 
tion of S is where lines from A and B intersect. Thus 
for AoA, at least two base stations are required. Tri- 
luterution computes the intersection of three circles, as 
shown in Fig. I(ii). If the range to each base station is 
not accurate, the three circles may not have a common 
intersection point leading to ambiguous solutions. Mul- 
tiluteration uses an objective function to minimize the 
difference between the estimated position and real po- 
sition of a sensor. -For example in Fig. l(iii), we can 
use minC,(D~% - DsZ)* to compute (z,y) for S, where 
Ds, = J ( x  - z,)~ + (y - Y ~ ) ~ ,  D s ~  is the estimated 
range from S to i, z = A, B,  C, D, E. This technique can 
improve accuracy but involves higher computation over- 
head. For details on multilateration, we refer the readers 
to [32]. Both trilateration and multilateration require at 
least 3 base stations. TPS uses trilateration with range 
difference information. We compute a sensor's position 
and its range to the master base station at the same time. 

B. Existing Sensor Location Detection Schemes 

GPS is the most popular localization system but may 
not be desirable in a sensor network due to cost, form fac- 
tor, energy consumption, and the requirement for a sec- 
ond radio. GPS-less localization techniques have been 
researched extensively. For example, Ref. [3] proposes 

Fig. 1. 
ailateration, (iii) multilateration. 

Range or angle combining techniques: (i) triangulation, (ii) 

to use the centroid of multiple base stations to approxi- 
mate the sensor location. In this subsection, we are going 
to overview in detail several works designed for outdoor 
sensor networks. For a taxonomy of location systems for 
ubiquitous computing we refer the readers to [ 121. 

Ref. [32] proposes a TDoA based scheme (AHLQS) that 
requires base stations to transmit both ultrasound and RF 
signals simultaneously. The RF signal is used for syn- 
chronization purposes. A sensor will measure the differ- 
ence of the arrival times between the two signals and de- 
termine the range to the base station. Multilateration is 
applied to combine range estimates to generate location 
data. Testhed experiments demonstrate that AHLoS pro- 
vides fine-grained localization capability. However, ultra- 
sound transceivers can only cover a short range (several 
meters) and large numbers of base stations may be re- 
quired to cover large areas. Other contributions by [32] 
include the introduction of iterative multilateration and 
collaborative multilateration. In iterative multilateration, 
a sensor becomes a base station after its position is deter- 
mined. Whenever a sensor has range estimates to at least 
three base stations, multilateration is used to compute its 
position; otherwise, it continues to listen to beacon sig- 
nals from base stations. If it is impossible for a sensor to 
find 3 base stations, collaborative multilateration can be 
used. In collaborative multilateration two or more sen- 
sors (which can be multiple hops apart) can form an over- 
determined system of equations with a unique solution 
set. Feasible conditions for collaborative multilateration 
are further explored in FIX], [33]. Ref. [I71 compares the 
performance of different multilateration methods by sim- 
ulation and proposes a new and fast iterative improvement 
algorithm to optimize location discovery. Ref. [XI designs 
and analyzes an acoustic ranging system for robotics ap- 



plications and embedded sensor technology. This paper 
examine methods to detect and eliminate various types of 
interference. 

As mentioned earlier, AoA techniques require spe- 
cial antennae and may not perform well due to omni- 
directional multipath reflections. To avoid requirements 
for directional antennae, Ref. 1251 first transforms TDoA 
measurements in to AoA information and then applies tri- 
angulation to compute location. This scheme requires at 
least 3 base stations with synchronized rotating directional 
antennae. Non-zero antennae beam width and imperfect 
synchronization contribute to decrease system accuracy. 
A prototype navigation system based on AoA measure- 
ments for autonomous vehicles is presented in [23]. It 
estimates AoA by means of a set of optical sources and a 
rotating optical sensor. This system is not suitable for out- 
'door sensor networks due to its cost and complexity. Our 
scheme is similar to the one in Ref. [25] in that TPS mea- 
sures TDoA at each sensor and has no additional special 
requirements for sensors. However, we do not use direc- 
tional antenna in base stations and we do not require any 
kind of synchronization in the whole network. 

The works mentioned above are all based on siraight- 
line range estimation to base stations. Ad Hoc Positioning 
system (AI'S) [261 first estimates ranges based on  DV-hop, 
DV-distance, or Euclidean, and then applies hilateration 
to compute the location of each sensor. If enough base 
stations are available, location errors for A P S  with DV- 
hop can he about 30% of radio range in a dense and regu- 
lar topology. For sparse and irregular network topologies, 
the accuracy degrades to roughly the radio range. For DV- 
distance and Euclidcan, the performance of APS also dc- 
pen& on the accuracy of the distance measured between 
neighboring sensors. Ref. [31] goes one step further: it 
refines location estimates computed by APS with DV-hop 
by using neighboring sensor position and distance esti- 
mates to help convergence to a better solution. To miti- 
gate error propagation, a confidence weight from 0 to 1 is 
associated with each estimated position. With measured 
distance errors of 5% , [311 produces an error of 33% 
of radio range on average for random gaphs. Another 
work is [33], which uses DV-distance to compute range 
and Min-Max to compute position. To refine position es- 
timates, [331 uses a computation tree. Ref. [181 compares 
[261, [31], and [331 in simulation. 

Locating a subscriber in cellular networks or PCS sys- 
tems has been well studied in literature [l], 151, [211. 
The techniques involved produce coarse location granu- 
larity (tens or hundreds of meters), thus may not he suit- 
able for outdoor sensor networks. Research on indoor or 
in-building localization is on-going and many interesting 

systems have been designed. Examples include Active 
Badge [36], Active Bat [lo], RADAR [2], Cricket [27], 
SpotON [13], to name a few. Some of these systems re- 
quire location surveys which are not possible with an air- 
deployed outdoor sensor network. For a brief overview 
on these systems, we refer the readers to [17]. Other in- 
teresting works in sensor networks include [7], [35], [30]. 
Ref. [7] proposes apositioning algorithm based on convex 
optimization. Ref. [351 describes a localization scheme 
based on multidimensional scaling. Both are centralized 
and both rely on connectivity information. Ref. [30] ap- 
plies error detection and correction coding theory to loca- 
tion detection in emergency indoor sensor networks. 

111. NETWORK MODEL 
We assume that the sensors are deployed randomly over 

a 2-dimensional monitored area (on the ground). (How- 
ever, Our proposed sensor positioning scheme can be eas- 
ily extended to 3-dimensional space.) Each $ensor has 
limited resources (battery, CPU, etc), and is equipped with 
an omni-directional antenna. Three base stations A, B, C, 
with known coordinates (za, ya), (zb, y b ) ,  and (zc, y,.), 
respectively, are placed beyond the boundary of the mon- 
itored area, as shown in Fig. 2. Let us assume A he the 
master base station. Assume the monitored area is en- 
closed within the angle LBAC. Let the unknown coordi- 
nates of a sensor be (z, y),  which will he determined by 
TPS. Each base station can reach all sensors in the moni- 
tored area. One restriction on the placement of these base 
stations is that they must be non-collinear, as otherwise, 
the sensor locations will be indistinguishable. 

0. 

Monitored Arc. 

0 
Fig. 2. An example sensor network. 

Note that these base stations will transmit RF heacon 
signals periodically to assist each sensor with location 
discovery. They have long-term power supplies and can 
receive RF signals from each other. Note that there is 
no time synchronization among these three base stations. 
However, we require base stations to detect signal arrival 
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times with precision and to accurately calculate total turn- 
around delay. This calculated turn-around delay consists 
of arandom delay combined with known system transmis- 
sion and reception delays. 

Remark: If the monitored area is so large that 3 base sta- 
tions can not cover the whole area completely, we can al- 
ways divide the area into smaller subareas and place more 
base stations. 

IV. TPS: A TIME-BASED POSITIONING SCHEME 

In this section, we propose TPS, OUT time-based po- 
sitioning scheme for outdoor wireless sensor networks. 
This scheme consists of two steps. The first step detects 
the time difference of signal arrival times from three base 
stations. We transform these time differences in to range 
differences from the sensor to the base stations. In the sec- 
ond step, we perform trilateration to transform these range 
estimates into coordinates. 

A. A Time-Eased Location Detection Scheme 

Given the locations (z,, y,), (zb, yb), and (zc, yc) of 
base stations A, B, and C, respectively, we are going to 
determine the location (z, y) of sensor S, as shown in 
Fig. 3. Let U be the speed of RF beacon signals from 
A, B, and C. Let dab be the distance between base sta- 
tions A and B and d, be the distance between base sta- 

and d, = d(za - %I2 + (ya - yc)2. Let Q,, dabr and 
d,, be the unknown distances from S to A, B, and C re- 
spectively. Our time-based location detection scheme TPS 
consists of two steps. 

tions A and c. Thus d d  = d(z, - $&)2 + (&I, - yb)2 

'\B (% Yd 

d 

\ \ I  

c (%. YJ 

Fig. 3. Sensor S will measu~e Ihe TDoA of bexon signals from base 
stations A. B. and C locally. S also will receive the turn-around delay 
information from B and C .  B's transmission will stan after it receives 
A s  beacon signal, while C's transmission will start after it receives 
both A and B's beacon signals. This procedure will be repeated once 
every T seconds. 

Step 1: Range Detection. 

Let A be the master base station, which will initiate a 
beacon signal every T seconds. Each beacon interval be- 
gins when A transmits a beacon signal. Consider any hea- 
con interval i, at times t!, t:, t:, sensor S, base stations B 
and C will all receive A's beacon signal respectively. At 
time $2. which is > ti ,  B will reply to A with a beacon 
signal conveying information t t  - t i  = At:. This sig- 
nal will reach S at time t i .  After receiving beacon signals 
from both A and B, at time t:, C will reply to A with a 
beacon signal conveying information 6," - t; = At:. This 
signal will reach S at time ti. Based on triangle inequal- 
ity, ti < ti  < ti. Let Atf = ti - tf, At; = t i  - tf,  we 
obtain 

dab + dab - d8, f U At: = v . At! 
d ,  + ds, - ds, +U At: = v . At;, 

(1) 

(2) 

which gives 

dsb = d,, + 2) . At'; - dab - 21 . At; = d,, + k'; 
d,, = d,, +U At; - d, -U . Atf = d,, +IC: ,  

( 3 )  
(4) 

where d,,, dab and d,, are positive real numbers and 

kf = U .  At: - U At; - dab, ( 5 )  
(6) k: = U .  At; - U . At: - dac. 

Averaging kf and k: over I intervals gives 

(7) 

We are going to apply trilateration with IC1 and IC2 to com- 
pute coordinates (z, v) for sensor S in the next step. 

Remarks: (i) All arrival times are measured locally. In 
other words, tl, t 2 ,  t~ are measured based on sensor S's 
local timer; t b  and tb are based on B's local timer and 
known system delays; while t, and t: are based on C's 
local timer and known system delays. There is no global 
synchronization. (ii) We require A to periodically initiate 
the beacon signal transmission for two reasons. First, av- 
eraging ICE and over multiple beacon intervals helps to 
decrease the measurement error. ' h e  number of beacon 
intervals I can be a trade-off between potential accuracy 
improvement and power consumption. Second, sensors 
may sleep to save energy; or they may be deployed at dif- 
ferent times; or they may move during their lifetime. The 
periodic beacon signals from A and the reply signals from 
B and C can facilitate location discovery at any time. 
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Step 2: Location Computation. 
From Eqs. (3), (4), (7) and (8), we have 

dsb = d m  -1 k i ,  (9) 
Q, = d,, + k z .  (10) 

Based on trilateration, we obtain three equations with 
three unknowns x, y, and ds,, where d,, > 0. 

(Z - 2,)’ + (Y - ya)’ = d2 sa (11) 
( x  -.b12 + (Y - ~ 6 ) ~  = (dm + kl12 (12) 
( x  - Z J 2  + (Y - Yc)’ = (&a + k2)* (13) 

In the next Subsection, we will show how to compute 
x,  y and d,, efficiently. We will also give the conditions 
under which the solution set is unique. 

B. An EBcient Solution for  Location Detection by Trilat- 
eration 

Without loss of generality, we assume the three base 
stations are located at (0,0), (x1,0), and (22,y2), re- 
spectively, where x~ > 0, yz > 0. In other words, 

Let sensor S he located at (x ,  y). Note that we can always 
transform real positions to this coordinate system through 
rotation and translation. We want to compute the location 
for s. 

X n  = ya yb = 0, xb = X i ,  2, Z= X2,  and Ye = y2. 

From Eqs.(ll),(lZ),and (13). we have 

x2 + y2 = d:,, 

x2 - 2222 + xf f y= - 2yy2 f y; 
= dz, + 2d,k2 + kg. 

(14) 
X’ - 22x1 + X: + y2 = d:, + 2d&1 + IC:, (15) 

(16) 

Subtracting Eq. (14) fromEq. (15), we obtain 

2x12 = -2kld,, - k: + x:. (17) 

Subtracting Eq. (14) from Eq. (16), we obtain 

2x23: + 2y2y = -2kzd,, - kz + 22 + yz. (18) 

Multiplying Eq. (18) with z l  and submcting the product 
of Eq. (17) with 2 2 ,  we obtain 

2 x 1 ~ 2 ~  = (28122 - 21cz~i)d,, + k:x2 - kzxi 
(19) 

Since 2 1  > 0, yz > 0, E& (17) and (19) can be rewritten 

+X$Xl f y;x1 - x1x2.  2 

as 

Suhstituting Eqs. (20) and (21) into (14), we obtain 

od;,  + Pdsn + y = 0, (22) 

where 

CY = 4[kYyz + ( k i ~ 2  - I c z ~ i ) ~  - Z;Y$], (23) 
p = il[ki(kY - XY)Y/,’ + ( k t X 2  - k2Zl) 

2 

2 2  2 
( k : ~  - 82x1 + ~z.1 +&xi - %:~2) ] ,  (24) 

7 = (k? - X I )  Y2+ 
( k y z z  - k$x1 + x ; x i +  y;x1 - ~ 7 ~ 2 ) ~ . ( 2 5 )  

Theorem NI: w. (22) has a unique positive root for 
d, if and only if one of the following three conditions 
holds. 

1) CY = 0 ,  < 0 ,andy  > 0; 
2)  CY^ < 0; 
3) cup < n,y = E. 

PROOF. We prove the theorem by case study. First, we 
consider the case where both a and p are zero. In 
this case, (22) is either satisfied by all values of d (when 
y = 0) or violated by every value of d (when y # 0). 

Next we consider the case where cy = 0 and p # 0. 
In this case, (22) has a unique root d,, = -3. Since 
y 2 0, -3 is positive if and only if p < 0 and y > 0. 
This corresponds to the first condition in the theorem. 

In the rest of the proof, we will consider the cases where 
CY # 0. Consider the case where  CY^ < 0. This 
implies that y > 0 and CY < 0. It also implies that 
p2 - 40.7 > p2. Therefore (22) has a unique positive 
rootd,, = -’--. 2a This corresponds to the second 
condition in the theorem. 

In the case where 4127 > p2, the equation does not 
have any root in the real field. 

In the case where 0 <: 4ay < p2, the equation has 
two roots d,, - 

which have the same sign. 
In the case where $ay  = p2, the unique root of the 

equation is d,, = -$ which is positive if and only if 
p < 0. This corresponds to the third condition in the 
theorem. 

Next consider the case where y = 0. Note that y = 0 
implies that = xf, which in turn implies that k:xz - 

that p = 0. In th is  case, the equation does not have a 
positive root. This completes the proof of the theorem. 0 

Substituting the value of d,, into Eqs. (20) and (21), we 
will have the coordinates x and y for S. 

In the above solution, we have used the square root 
function. Note that computing the square root X of a pos- 
itive number N only requires a few iterations of Newton’s 

(1) -o+@=G and &) --P-- 
la la 

+%,XI 2 +y2zl  2 -x1x2 2 = 0. Therefore7 = 0 implies 
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method [24] in the form of X := 0.5 * ( X  + N / X ) .  Our 
simulation results show that four iterations are sufficient 
to produce accurate solutions. 

Remarks: (i) Newton’s method converges quadratically, 
thus solving trilateration functions can be done in a fast 
fashion. (ii) Compared to the other location detection 
methods in literature [17], [321, [331, [l51, our scheme 
has an important advantage: we improve performance by 
refining in the first step - averaging time differences over 
multiple beacon intervals, which involves only simple al- 
gebraic operations. Refining through popular strategies 
like maximum likelihood or minimum mean square require 
more computation. 

We note that data collected may have errors. When 
solving a system of linear equations such as those defined 
by (20) and (21), solutions are more accurate when the 
condition number (the condition number of a system of 
linear equations is the ratio of the largest eigenvalue over 
the smallest eigenvalue) is small [91. We note that the con- 
dition number of the system of linear equations (20) and 
(21) is max{$, g}. When designing the system, it is 
better to choose the locations of base stations so that rhe 
ratio 2 is as close to 1 aspossible. It is interesting to note 
that the value of xz does not affect the condition number 
of the system. In practice, we may choose the locations of 
the base stations so that they are sitting at the vertices of 
an equilateral triangle. In this case, the condition number 
will be 1.155, which is veIy close to 1, resulting in a very 
stable system. 

To ensure the unique positive solution ford,,, it suffices 
to have a y  < 0. From Eq. (25), y > 0. Thus the sufficient 
condition is reduced to CY < 0. That is 

k : d  + ( h X 2  - k2Xd2 < x:y;, (26) 

which gives 

and kz are the averaged results over I bcacon intervals, 
and based on the Central Limit Theorem, kl  and k2 are ap- 
proximately normally distributed when I is large. There- 
fore, without loss of generality, we may assume kl  and k2 
are distributed according toN(jb1, U:) andN(p2, U;) ,  re- 
spectively. In this Section, we first give a statistical error 
analysis of sensor coordinate estimation. We then iden- 
tify the major sources of errors affecting TPS’s location 
detection accuracy based on the network model described 
in Section 111. 

A. Theoretical Error Analysis 
To simplify the elaboration, we consider the case when 

base stations A, B, and C are located at (0, 0), (R, 0), and 
(0, R ) ,  respectively. This base station placement corre- 
sponds to condition number 1,  which results in the most 
stable system. To further simplify the analysis, we con- 
sider the case when S is equidistant to any base station. 
The general case can be analyzed similarly. 

In our case, it is reasonable to assume jbl = pz = 0, 
and thus k l / R  N 0, k z / R  N 0. To facilitate our analysis, 
we further assume thaf kl and kz are independent. (In 
general, one can introduce correlation between kl and kz.)  
Plugging x1 = R, x2 = 0, and y2 = R into Eqs. (23), 
(24), and (25), and simplifying the solution to Eq. (22) by 
approximating k:/Rz and k:/R2 with 0, we end up with 

(28) 
2R2 + 2kik2 - (kl + k z )  

2 dsa = ’ 
Substituting the above into Eq. (20) yields 

In our simulation, this condition is satisfied in all cases 
where sensors are not in close Droximitv to or behind a 

where k,‘ = 3 - 4. Similarly, from Eq. (21) we have 

base station. Near the base stations (interior to triangle), 

corresponds to our measurements is interior to the tri&- 
gle, d,, (’) - - e is the correct calculation. 

(31) 
R kikz ya-+-- 
2 2R 

the solutions for d,, are both positive. If the position that 

where k;  = 

Since (x, y) is used to estimate the location of S, the 
error in the estimation must be addressed. There are sev- 
eral ways to do this. The following is a common practice, 
where the variance of each variable is computed and the 
size of the variance or standard deviation is used as a mea- 
sure of estimation error. 

- 6. 
V. THEORETICAL PERFORMANCE ANALYSIS 

The trilateration equations (1 11, (12). and (13) deter- 
mine coordinates (z, U) for sensor S based on the mea- 
sured values kl and kz.  The inaccuracies of kl and k2 
cause sensor position errors. From Eqs. (7) and (8). k-1 
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As kl has a Gaussian distribution with mean p1 and 
variance U:, and kz has a Gaussian distribution with mean 
p2 and variance ug, the linear combination k;  has a Gaus- 
sian distribution with mean % - @and variance A, 
and k$ has a Gaussian distribution with mean k& - 
and variance &. Denote by E ( X )  and V ( X )  the mean 
and variance of a random variable X .  We have, from 
Eq. (30). 

V ( x )  K5 V(k1k;) 
= E(k&)2 - [E(k&)]Z 
= E(!-C;(~; )~)  - [E(k1k;)I2. (32) 

By the independence between kl and k g ,  we have 

E(kik;)  = E ( h ) E ( k ; )  (33) 
E(k?(k;)') = E(k;)E(k2*2) 

= [ V ( k i )  + (E(h) )21  
[ V ( k ; )  + (E(G))'I .  (34) 

Therefore substitution gives 

Since p1 = pp = 0, the above reduces to 

(35) 
U2 U:.; V ( x )  x -2. + - - - 
2 4R2 2 

(36) 
N -+- of U;.; - - U; (1 + &) . 

2 4R2 2 

From the above analysis, we have the following obser- 
vations. First, the variance of both x and y depend on the 
variances of kl and k2. Second, the variance of kl con- 
tributes more to that of z than the variance of k ~ ;  And 
the variance of kg contributes more to that of y than the 
variance of k l .  Thud, when R is large, V ( x )  N 4 / 2 ,  

V ( y )  x &2, showing that the variance of x is depen- 
dent on that of kl while the variance of y is dependent on 
that of k2. Fourth, if U: = U;, the variances of x and y 
can be treated the same in practice. 

Wc note that the above discussion is based only on the 
first two moments of the random variables kl and k2. We 
have not taken advantage of the normality assumption of 
these two variables. In fact, with additional normality as- 
sumption on k~ and kp, we can obtain approximations to 
the distrihutions of z and y. For example, since kl and kg 
are independent, the CDF P(z  5 a)  of x can he approxi- 
mated by (for any real number a). 

where 

2 r l + J z  2 

= (&)"R2(  0 2  ) 
2 

= ($)"2R2 ( 1 + a v  u2 ) . (37) 

The above results will help us to explain simulation re- 
sults. In ow simulation study (Section VI), we consider 
the cases when the errors of TDoA measurements at the 
sensor are normally distributed or uniformly distributed. 
The variance of TDoA measurements determines the vari- 
ances of kl and k 2 .  Simulation results show that position 
error strongly depends on the variance of TDoA measure- 
ments. 

B. Sources of Errors 
There are three major sources of errors for ow time- 

based location detection scheme: the receiver system de- 
lay, the wireless multipath fading channel, and the non- 
line-of-sight (NLOS) transmission. The receiver system 
delay is the time duration from which the signal hits the 
receiver antenna until the signal is decoded accurately by 
the receiver. This time delay is determined by the receiver 
electronics. Usually it is constant or varies in very small 
scale when the receiver and the channel is free from in- 
terference. This system delay can he predetermined and 
be used to calibrate the measurements. For example, base 
stations B and C can always eliminate the system delay 
from A$ and At: before these values are conveyed to 
the sensors in their reply messages to A's beacon signal. 
Meanwhile, as At; and At; arc measured by one sensor, 



the effect of receiver system delay may cancel out. Thus VI. SIMULATION . .  
in our model, if base stations B and C can provide precise 
a priori information on receiver system time delay, their 
effect will be negligible. 

The wireless multipath fading channel will greatly in- 
fluence the location accuracy of any location detection 
system. Major factors influencing multipath fading [291 
include multipath pmpagation, speed of the receiver, 
speed of the surrounding objects, and the transmission 
signal bandwidth. Multipath propagation refers to the 
fact that a signal transmitted from the sender can fullow 
a multiple number of propagation paths to the receiving 
antenna. In our system, the performance is not affected 
by the speed of the receivers since all sensors and base 
stations are stationary. However, a moving tank in the 
surrounding area can cause interference. 

There are two important characteristics of multipath 
signals. First, the multiple non-direct path signals will 
always arrive at the receiver antennae. latter than the direct 
path signal, as they must travel a longer distance. Second, 
in LOS transmission model, non-direct multipath signals 
will normally be weaker than the direct path signal, as 
some signal power will be lost from scattering. If NLOS 
exists, the non-direct multipath signal may be stronger, as 
the direct path is hindered in some way. Based on these 
characteristics, scientists can always design more sensi- 
tive receivers to lock and track the direct path signal. For 
example, multipath signals using a pseudo-random code 
arriving at the receiver later than the direct path signal will 
have negligible effects on a high-resolution DS-BPSK re- 
ceiver [4]. Our location detection scheme mitigates the 
effect of multipath fading by measuring TDoA over mul- 
tiple beacon intervals. ‘I‘DoA measurements have been 
very effective in fading channels, as many detrimental ef- 
fects caused by multipath fading and processing delay can 
be cancelled [5].  

Another factor related to wireless channels that causes 
location detection errors is NLOS transmission. To miti- 
gate NLOS effects, base stations can be placed well above 
the surrounding objects such that there are line-of-sight 
transmission paths among all base stations and from base 
stations to sensors. 

In the next section, we are going to study the perfor- 
mance of our TPS positioning scheme over fading chan- 
nels. We will consider the inaccuracy of TDoA informa- 
tion measured at sensors only. The sources of errors under 
consideration include multipath fading and NLOS. Thus 
we are going to assume the TDoA measurements are ei- 
ther normally distributed or uniformly distributed. These 
assumptions are popular in literature for TDoA measure- 
ments [SI, [17] in fading channels. 

Eqs. (1  I), (12), and (13) compute coordinates x and y 
for sensor S based on kl and k2, which are determined 
by the time-related values at the sensor (At; and At:) 
and base stations B (At;) and C (At;) over beacon inter- 
val z (see Eqs. (7) and (8)). Thus the errors of x and y 
result from the measuring errors of At:, At:, At;, and 
At:. In this simulation, we assume the measuring errors 
of At: and At: are negligible. This is reasonable, as we 
can always take possible measures (see Subsection V-B). 
to decrease the measuring errors of base stations when 
the number of base stations is small (only 3 in our case). 
For example, base stations can be placed well above the 
surrounding objects to avoid multipath fading and NLOS 
transmission, and the system delay can be predetermined 
to calibrate the ToA measurements. (In this case, the sen- 
sor network resides in a 3-dimensional space. TPS needs 
to be modified accordingly.) On the other hand, Eqs. (7) 
and (8) tell us that the measuring error of At: (At;) plays 
the same role as that of At; (At;) in the computation of 
kl (k2). Thus in our simulation study, we only consider 
the measuring errors of At; and At;, which are termed 
TDoA measuring errors in the following description. We 
will study the influence of I and u2 upon position error. 
where I is the number of beacon intervals used to com- 
pute kl and k2, uz is the variance of the TDoA measuring 
error. 

We use Matlab to code TPS. This tool provides pro- 
cedures to generate normally distributed and uniformly 
distributed random numbers. Note that we do not use 
the sqrt function in Matlab. Instead, we use Newton’s 
method described in Subsection IV-B. We found that 4 
iterations generally yielded good results. 

We first check the correctness of our scheme. In this 
simulation, no measuring errors are introduced. Base sta- 
tion A is the master base station. We randomly place 
sensors within the open area formed by the acute angle 
LBAC, as shown in Fig. 2. This area is termed feasi- 
ble area. We found that sensors close to the base stations 
may have two computed locations: one within the feasi- 
ble area, and one outside. This is because Eq. (22) gener- 
ates two positive roots for d,. But if we throw away the 
solution that is outside the feasible area, we can always 
compute the location for each sensor correctly (uniquely). 
Thus in the following simulation, we only consider the 
solutions that are within the open area formed by LBAC. 
This is reasonable, as the base station locations and the 
master base station are known to each sensor. 

Now we study the distribution of position errors over 
a 2D planar monitored area. Fig. 4 is drawn in 3D space 
which demonstrates position errors vs. the real positions 

0-7803-8355-YD4/$20.CHl OZW4 IEEE. 269 ‘3 



Fig. 4. Comparison of computed location emxs by position. The 
sensors are placed at 19 x 19 grid points and u2 = 0.05. The base 
srationsacelocatedat(0,0),(20,0)and(0,20). 

of sensors. In this simulation scenario, the three base 
stations are located at (0,0), (20,O) and (0,20). Sen- 
sors are placed at grid points (i + 0.5, j  + 0.5). where 
i ,  j = 0,1, . . . ,19. We average the sensor location re- 
sults computed from our scheme over 10000 trials. For 
each trial, I = 4. The measuring errors of At; and At: 
are normally distributed according to N(0,0.05). This 
corresponds lo a TDoA deviation of f0 .22 unit. Note 
that we conduct extensive simulation over different U' and 
achieve very similar results. Clearly this simulation shows 
that as the distance from a sensor to all three base sta- 
tions become larger, the position error will become larger 
correspondingly. Also when the sensor is closer to any 
of the three base stations, the error becomes larger. We 
also observe that the sensor at location (6.5,6.5), which 
is close to the intersection of the three angle bisectors of 
AABC, has the smallest position error and the sensors at 
its neighboring area also demonstrate quite low position 
errors. Interestingly, Refs. [25] and [3] provide similar re- 
sults in their simulation study. Intuitively this is because 
the geometry of the intersection of the range circles is poor 
when the sensors are far away from any base station or 
when the sensors are close to any base station. From this 
analysis, we conclude that the position error is related to 
the placement of base stations. Careful studies will be 
conducted in the future as the results can be applied to 
guide the deployment of base stations for better perfor- 
mance. For these reasons, in the following simulation, we 
intentionally enforce an allowable shortest distance (1.0 
unit) from any randomly generated sensor to any base sta- 
tion. This means the three base stations are placed some 
distance away from the boundary of the monitored area. 

Next we consider the scenario when sensors are ran- 
domly deployed in a square region with lower-left comer 
(1,l) and upper-right comer (20,20). The three base sta- 

tions are still located at.(O, O), (20,0),  and (0,20), respec- 
tively. We consider two error models: normal distribution 
according to N(0, a2) and uniform distribution over the 
range [-b, b],  which gives the variance u2 = b2/3. For 
each variance value, we try 10000 random sensor posi- 
tions. The averaged results are reported in Figs. 5 and 6. 
Note that we average over such a large number of sen- 
sor positions for each variance in order to take the whole 
monitored area into consideration. Also note that we re- 
port the simulation results when the number of beacon in- 
tervals I used for position computation is chosen from the 
set {4,8,16,32,64,128}. 

We obtain three observations from Figs. 5 and 6. First, 
as I increases, position error decreases. This is because 
averaging over larger number of beacon intervals to com- 
pute kl  and k2 can better smooth out the effects of mea- 
suring errors in TDoA measurements At: and At:, thus 
produce improved result. A detailed theoretical expla- 
nation comes from Subsection V-A. As I increases, U: 

and U; will decrease, and thus V(z) and V(y) will de- 
crease. Then the errors from estimating the coordinates 
of sensors by x and y will decrease, implying that the 
position error will become smaller. Second, position er- 
ror increases as variance u2 increases. This is reasonable 
as variance corresponds to the measuring error. Again, 
this can be well explained by Subsection V-A. In fact, 
if U' increases, U: and U; will increase. Then V(z) and 
V(y) will increase so that the errors from estimating the 
coordinates of sensors by 3: and y will increase. Thus 
the larger the TDoA measuring error, the larger the po- 
sition error. Thud, for the same variance, position error is 
smaller when the TDoA measuring error is normally dis- 
tributed. This is particularly hue for small values of I. 
An explanation is given as follows. When I is small, kl 
and k2 are still normally distributed if TDoA measuring 
errors are normally distributed. However, for small I, kl 
and k2 are not normal variables if the measuring errors 
are uniformly distributed. Following Subsection V-A, we 
can show that with fixed confidence, the predictive inter- 
vals of x and y for normally distributed measuring errors 
are narrower than those for uniformly distributed measur- 
ing errors. This shows that for normally distributed TDoA 
measuring errors, the position error is smaller. Note that 
shifting the square monitored area within LBAC, we ob- 
tain very similar results. 

In the following, we report the simulation results when 
the base stations form a triangle such that LBAC 5 90". 
In this simulation, three base stations are located at (0, O), 
(z1,0, and (zz,y2), where ZI, 2 2 ,  and y2 are randomly 
drawn from [5,20]. 100 sensors are randomly placed 
within the overlapping area formed by LBAC and the 
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Fig. 5.  
normally distributed. 

Position m r v s .  variance ua. The TDoA measurements are 

08 I 

Fig. 7. Position erroI vs. Mliance U'.  The TDoA measurements axe 
normally distributed. Base stations are placed randomly %thin a fixed 
m a .  

Fig, 6.  Position ermr "S. variance The TDoA are Fig. 8. Position e m r  vs. variance U'. The TDoA measuremcnts 
are uniformly distributed. Base stations are placed randomly witbin a uniformly distributed. 
fixed area. 

square with corners (0,O) and (20,20). we also throw putation overhead and scalability. To evaluate the perfor- 
away sensors whose distance to any base station is < 1.0 mance ofTpS, we conduct& bo& theoretical and 
unit, which means we only count sensors that are not too simulations, our scheme is simple and effective, 
close to any base station. Fig. 7 reports the result when 
the TDoA measuring errors are normally distributed while 
Fig. 8 reports the result when the TDoA measuring errors 
are uniformly distributed. It is obvious that Figs. 7 and 
8 are very similar to Figs. 5 and 6, respectively. We ob- 
tain the same observations. However, for the same TDoA 
measuring error (same u2), we always achieve better per- 
formance in Figs. 7 and 8. Thus LBAC = 90° is not the 
optimal base station.placement. This induces a network Scheme for Next Multi-tier Systems, IEEE 
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